Algorithmic Adventures
From Knowledge to Magic

Book by Juraj Hromkovič, ETH Zurich
Slides by Tom Verhoeuff, TU Eindhoven
Discuss, commit errors, make mistakes, but for God’s sake think – even if you should be wrong – but think your own thoughts.

Gotthold Ephraim Lessing
How Large Is the Set of All Texts?

There are infinitely many texts, but what kind of infinity?

A text is a sequence of \textit{symbols} from an enumerable \textit{alphabet} A (often: from a \textit{finite} alphabet, cf. ASCII keyboard)

Each text can be encoded in a \textit{tuple of natural numbers}, by representing each symbol of A by a unique natural number

\[
\text{Juraj & Tom} \rightarrow (74, 117, 72, 97, 106, 32, 38, 32, 84, 111, 109)
\]

The number of all texts over A is equal to $|\mathbb{N}^*| = |\mathbb{N}|$ (Ch. 3)
How Large Is the Set of All Programs?

Every program is a text over some suitable enumerable alphabet \(A \)

Not every text over \(A \) is program: it must be **syntactically correct** according to the rules of the **programming language**

A **compiler** checks the syntactical correctness of a text as a program (but not **semantical** correctness: whether the text is an **algorithm**)

Construct an enumeration* of all programs from an enumeration of all texts over \(A \) by deleting all texts that are not syntactically correct:

\[
P_0, P_1, P_2, \ldots, P_i, \ldots
\]

where \(P_i \) denotes the \(i \)-th program

Every algorithm† appears in the sequence, not every \(P_i \) is an algorithm

*Each programming language gives rise to its own enumeration
†Provided the programming language is sufficiently expressive
Problem(c)

For real number c, Problem(c) is defined by

Input: a natural number $n \in \mathbb{N}$

Output: the number c up to n decimal digits after the decimal point

Algorithm A_c solves Problem(c) when

for any given $n \in \mathbb{N}$, A_c outputs all digits of c before the decimal point and the first n digits of c after the decimal point

N.B. c is not an input of the problem, but a ‘built-in’ constant

E.g., $A_{\sqrt{2}}$ with input $n = 5$ must output 1.41421
Not All Problem\((c) \) Are Algorithmically Solvable

Because \(|\mathbb{R}| > |\mathbb{N}|\), there are more algorithmic tasks than algorithms*:

There exist \(c \in \mathbb{R} \) such that Problem\((c) \) is not algorithmically solvable

Real numbers having a finite representation are exactly the numbers that can be algorithmically generated

There exist real numbers that do not possess a finite representation and so are not computable (algorithmically generable)

For these unsolvable problems, \(c \) is not explicitly specifiable

Are there other (more interesting) algorithmically unsolvable tasks?

*Note that no algorithm can solve more than one Problem\((c) \)
Decision Problem \((\mathbb{N}, M)\)

For \(M \subseteq \mathbb{N}\), decision problem \((\mathbb{N}, M)\) is defined by

- **Input:** a natural number \(n \in \mathbb{N}\)
- **Output:**
 - YES if \(n \in M\)
 - NO if \(n \notin M\)

Example: for primality testing take \(M := \{2, 3, 5, 7, 11, 13, 17, 19, \ldots\}\)

Algorithm \(A\) solves decision problem \((\mathbb{N}, M)\) when

for any given \(n \in \mathbb{N}\), \(A\) outputs YES if \(n \in M\) and NO if \(n \notin M\)

\((\mathbb{N}, M)\) is called **decidable** when there exists an algorithm to solve it, and **undecidable** if no such algorithm exists.
Not All Problems \((\mathbb{N}, M)\) Are Decidable

Because \(|\mathcal{P}(\mathbb{N})| > |\mathbb{N}|\), there are more problems \((\mathbb{N}, M)\) than algorithms. There exist \(M \subseteq \mathbb{N}\) such that \((\mathbb{N}, M)\) is undecidable.

Define set \(\text{DIAG} = \{ i \in \mathbb{N} | \text{program } P_i \text{ does not output } \text{YES} \text{ on input } i \}\)

N.B. Each way of enumerating all programs, gives rise to its own set \(\text{DIAG}\).

Problem \((\mathbb{N}, \text{DIAG})\) is undecidable, because no program \(P_i\) implements an algorithm \(A\) that solves \((\mathbb{N}, \text{DIAG})\):

\[
A \text{ outputs } \text{YES} \text{ on input } i \\
\Rightarrow \quad [\text{by definition of “A solves } (\mathbb{N}, \text{DIAG})\text{”}] \\
i \in \text{DIAG} \\
\Rightarrow \quad [\text{by definition of } \text{DIAG}] \\
P_i \text{ does } \text{not} \text{ output } \text{YES} \text{ on input } i
\]
Comparing Problems for Algorithmic Solvability

By definition, the following statements are equivalent:

• Problem U_1 is easier than or as hard as problem U_2

• Problem U_1 is no harder than problem U_2

• $U_1 \leq_{\text{Alg}} U_2$

• Algorithmic solvability of U_2 implies algorithmic solvability of U_1
 (Note the order of U_2 and U_1 here)

• It is not the case that:

 U_2 is algorithmically solvable and U_1 is not algorithmically solvable
How to Prove $U_1 \leq_{\text{Alg}} U_2$?

Question Can you prove $U_1 \leq_{\text{Alg}} U_2$ without knowing about the algorithmic solvability of U_1 and U_2?

Answer Yes, via problem reduction:

Reduce algorithmic solvability of U_1 to that of U_2

Provide a solution for U_1 *in terms of* a hypothetic solution for U_2

U_1 can be algorithmically reduced to $U_2 \Rightarrow U_1 \leq_{\text{Alg}} U_2$

N.B. The converse implication does not necessarily hold

It is not necessary to know whether U_2 is solvable, and if U_2 is solvable, it is not necessary to know how to solve U_2
Examples for Proving $U_1 \leq_{\text{Alg}} U_2$ by Algorithmic Reduction

Example 1
$U_1 : \ ?_x : a \neq 0 : ax^2 + bx + c = 0$
$U_2 : \ ?_x :: x^2 + 2px + q = 0$

Solve U_1 by taking $p, q := \frac{b}{2a}, \frac{c}{a}$ in an algorithm for U_2, if it exists

Thus, $U_1 \leq_{\text{Alg}} U_2$
N.B. Also $U_2 \leq_{\text{Alg}} U_1$, by reduction $a, b, c := 1, 2p, q$

Example 2
$U_1: \ ?_x : a_5 \neq 0 : \sum_{i=0}^{5} a_i x^i = 0$ (5-th degree equation)
$U_2: \ ?_x : b_6 \neq 0 : \sum_{i=0}^{6} b_i x^i = 0$ (6-th degree equation)

Solve U_1 by taking $b_i := a_{i-1} - a_i$ with $a_6 = a_{-1} = 0$ in an algorithm for U_2 and dropping result $x = 1$: $(x-1) \sum_{i=0}^{5} a_i x^i = \sum_{i=0}^{6} (a_{i-1} - a_i) x^i$

Thus, $U_1 \leq_{\text{Alg}} U_2$
(N.B. Also $U_2 \leq_{\text{Alg}} U_1$, but not by reduction)
Diagram for Problem Reduction

\begin{itemize}
\item \(a, b, c\) with \(a \neq 0\)
\end{itemize}

\begin{align*}
p &:= \frac{b}{a} \\
q &:= \frac{c}{a}
\end{align*}

A reduction

Solve the quadratic equation
\(x^2 + px + q = 0\)
by applying the \(p\)-\(q\)-formula

\((x_1, x_2)\) or “no solution”

algorithm \(C\)
for solving general quadratic equations
\(ax^2 + bx + c = 0\)
How to Use $U_1 \leq_{\text{Alg}} U_2$?

Assumption We know $U_1 \leq_{\text{Alg}} U_2$

i.e. solvability of problem U_2 implies solvability of problem U_1

Question How can we use that knowledge?

Answer In two ways:

1. If you solve problem U_2, then you know that U_1 is solvable as well
 But you do not necessarily then also know how to solve U_1
 If you have a reduction of U_1 to U_2, you do know how to solve U_1

2. If you know U_1 is not solvable, then you know the same about U_2
Examples for Using $U_1 \leq_{\text{Alg}} U_2$

1. We know $\not_{x : a \neq 0} : ax^2 + bx + c = 0 \leq_{\text{Alg}} \not_{x : x^2 + 2px + q = 0}$

 The second problem is solvable: $x = -p \pm \sqrt{p^2 - q}$ when $p^2 - q \geq 0$

 Hence, first problem is solvable: $x = \frac{-b}{2a} \pm \sqrt{\left(\frac{b}{2a}\right)^2 - \frac{c}{a}} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

2. We know $\not_{x : a_5 \neq 0} : \sum_{i=0}^{5} a_ix^i = 0 \leq_{\text{Alg}} \not_{x : b_6 \neq 0} : \sum_{i=0}^{6} b_ix^i = 0$

 The first problem is not solvable in radicals* (Abel, 1824)

 Hence, the second problem is not solvable in radicals

 Note that the reductions were also ‘in radicals’

*‘In radicals’ means ‘by using $+, -, \times, /,$ and $\sqrt{}$ only’
Properties of \leq_{Alg}

Relation \leq_{Alg} is transitive:

$$U_1 \leq_{\text{Alg}} U_2 \leq_{\text{Alg}} U_3 \Rightarrow U_1 \leq_{\text{Alg}} U_3$$

Solvability propagates from *right to left* across a chain of the form

$$U_1 \leq_{\text{Alg}} U_2 \leq_{\text{Alg}} U_3$$

Unsolvability propagates from *left to right* across the chain

Algorithmic reducibility is also transitive:

If you can reduce U_1 to U_2 and you can reduce U_2 to U_3, then you can reduce U_1 to U_3
Problems UNIV and HALT

More interesting problems:

UNIV (the **universal problem**)

Input: a program P and a natural number $i \in \mathbb{N}$

Output:
YES, if P outputs **YES** on input i

NO, if P outputs **NO** or does not halt on input i

HALT (the **halting problem**)

Input: a program P and a natural number $i \in \mathbb{N}$

Output:
YES, if P halts on input i

NO, if P does not halt on input i

N.B. Simulation of P will not work, because it need not terminate
UNIV \leq_{Alg} HALT by Reduction

$P \downarrow i \quad \text{algorithm that decides the halting problem}$

A_{HALT}

B algorithm B decides UNIV

$P \downarrow i$

S

simulates the finite computation of P on i

P answers NO for i

P answers YES for i

NO YES
HALT \leq_{Alg} UNIV by Reduction

Modify P into P' in such a way, that P never answers NO by exchanging all occurrences of NO for YES.

A_{UNIV} decides whether i is in $M(P')$ or not.

D algorithm that decides, whether P halts on i.

© 2009–2010, T. Verhoeff @ TUE.NL 18/20 Ch. 4: Computability
\[(N, \text{DIAG}) \leq_{\text{Alg}} \text{UNIV} \text{ by Reduction}\]

Conclusion: UNIV and HALT are also not solvable by an algorithm
There exist tasks that cannot be automatically solved.

This claim is true independent of computer technologies.

Algorithmic reductions help to compare problems for solvability.

Among the algorithmically unsolvable problems, one can find:

- Is a program correct?
- Does a program avoid endless computations?

Syntactic tasks, usually related to the correct *representation* of a program, are algorithmically solvable.

Semantic questions, related to the *meaning* of a program, are not algorithmically solvable, unless trivial.