Algorithmic Adventures
From Knowledge to Magic

Book by Juraj Hromkovič, ETH Zurich
Slides by Tom Verhoeff, TU Eindhoven
There is no greater loss than time which has been wasted

Michelangelo Buonarroti
Undecidability Is Not Rare

• Decide* whether a **Game of Life configuration** stabilizes

• Decide whether a **set of Wang tiles** can tile the plane

• Decide whether a **Diophantine equation** (multivariable polynomial equation, like \(a^3 + b^3 = c^3\)) has a solution in integers

• Decide whether a **program** has a specific non-trivial property, like whether it always halts, always outputs 0, ... [cf. Rice’s Theorem]

*In each case, the algorithm needs to work for *all* possible inputs (shown in yellow). All these decision problems turn out to involve a *universal* mechanism.
Some Algorithms Are Very Inefficient

For some *algorithmically solvable* problems, our algorithmic solutions turn out to be very slow

Slow algorithms are *practically* unusable:

- Packing puzzles
- Scheduling jobs on machines
- Traveling Salesman Problem (TSP): find shortest tour visiting each town in a given set, given their distances

How can we investigate this phenomenon?

How can we overcome this limitation?
Algorithmic Complexity

The **time complexity** of algorithm A on input I:

number of instructions performed in computation of A on I

The **space complexity** of algorithm A on input I:

amount of memory used in computation of A on I

Complexity varies with **size of the input** (amount of input data)

The **time complexity** of algorithm A as function of input size:

$$Time_A(n) = \text{worst-case number of instructions performed in computation of } A \text{ on any input of size } n$$
Asymptotic Algorithmic Time Complexity

The function $\text{Time}_A(n)$ also depends on details of the programming language and implementation of the algorithm as program

Definition Function $f(n) \geq 0$ is $O(g(n))$ (‘f is big oh of g’) when

$$f(n) \leq C \cdot g(n)$$

for some constant C and all sufficiently large n

Example: $10n^2 + 7n + 20$ is $O(n^2)$, but not $O(n)$ and not $O(\log n)$

The **asymptotic time complexity** of algorithm A is $f(n)$:

$$\text{Time}_A(n) \in O(f(n)) \quad \text{and} \quad f(n) \in O(\text{Time}_A(n))$$

The asymptotic complexity is **robust**, independent of implementation

Complexity classes: Constant, Logarithmic, Linear, Linearithmic $O(n \cdot \log n)$, Quadratic, Cubic, . . ., Polynomial, Exponential, . . .
Asymptotic Time Complexity Examples

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Name</th>
<th>Example*</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(1)$</td>
<td>Constant</td>
<td>Determine whether n-bit number is even</td>
</tr>
<tr>
<td>$O(\log n)$</td>
<td>Logarithmic</td>
<td>Find item in sorted list by Binary Search</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>Linear</td>
<td>Find item in list by Linear Search</td>
</tr>
<tr>
<td>$O(n \log n)$</td>
<td>Linearithmic</td>
<td>Sort list by Merge Sort</td>
</tr>
<tr>
<td>$O(n^2)$</td>
<td>Quadratic</td>
<td>Sort list by Bubble Sort</td>
</tr>
<tr>
<td>$O(n^k)$</td>
<td>Polynomial</td>
<td>Determine whether n-bit number is prime</td>
</tr>
<tr>
<td>$O(2^n)$</td>
<td>Exponential</td>
<td>Solve TSP by Dynamic Programming</td>
</tr>
<tr>
<td>$O(n!)$</td>
<td>Factorial</td>
<td>Solve TSP by Brute Force Search</td>
</tr>
</tbody>
</table>

The input is a list of n elements (possibly bits)
What Is the Limit of Practical Solvability?

<table>
<thead>
<tr>
<th>n</th>
<th>$f(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td>$10n$</td>
<td>100</td>
</tr>
<tr>
<td>$2n^2$</td>
<td>200</td>
</tr>
<tr>
<td>n^3</td>
<td>1000</td>
</tr>
<tr>
<td>2^n</td>
<td>1024</td>
</tr>
<tr>
<td>$n!$</td>
<td>$\approx 3.6 \cdot 10^6$</td>
</tr>
</tbody>
</table>

A problem is called **tractable** when it can be solved by a **polynomial** algorithm (asymptotic time complexity is $O(n^k)$ for some constant k).

\mathcal{P} denotes the class of all **polynomial decisions problems**
How Much More Can You Do on a 2× Faster Machine?

Assume \(n = 100 \) takes 1 hour on machine \(A \).
How much further do you get on a 2× faster machine \(B \) in 1 hour?

<table>
<thead>
<tr>
<th>Function Type</th>
<th>Time</th>
<th>(n) on (A)</th>
<th>(n) on (B)</th>
<th>More on (B)</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logarithmic</td>
<td>(C_1 \log_2 n)</td>
<td>100</td>
<td>10000</td>
<td>9900</td>
<td>100</td>
</tr>
<tr>
<td>Linear</td>
<td>(C_2 n)</td>
<td>100</td>
<td>200</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>Linearitmic</td>
<td>(C_3 n \log_2 n)</td>
<td>100</td>
<td>178</td>
<td>78</td>
<td>1.78</td>
</tr>
<tr>
<td>Quadratic</td>
<td>(C_4 n^2)</td>
<td>100</td>
<td>141</td>
<td>41</td>
<td>1.41</td>
</tr>
<tr>
<td>Cubic</td>
<td>(C_5 n^3)</td>
<td>100</td>
<td>126</td>
<td>26</td>
<td>1.26</td>
</tr>
<tr>
<td>Exponential</td>
<td>(C_6 2^n)</td>
<td>100</td>
<td>101</td>
<td>1</td>
<td>1.01</td>
</tr>
</tbody>
</table>

© 2009, T. Verhoeff @ TUE.NL 9/20 Ch. 5: Hard Problems
Algorithm R is a **polynomial reduction** from problem U_1 to U_2 when

- R is a *polynomial* algorithm, and

- the solution for instance I of problem U_1 equals the solution for instance $R(I)$ of problem U_2, for all instances I of U_1
By definition, the following statements are equivalent:

- Problem U_1 is **polynomial-time reducible** to problem U_2
- There exists a polynomial reduction R from U_1 to U_2
- $U_1 \leq_{\text{pol}} U_2$
- Problem U_1 is **polynomially no harder than** problem U_2

An example follows
Knapsack Problem

Subset Sum Problem, or (simplified) Knapsack Problem:

For a given positive integer K and set S of items x with positive integer size $s(x)$, does there exist a subset T of S whose total size $\sum_{x \in T} s(x)$ equals K?

K is the size of the knapsack, S contains the items to pack, and s gives their sizes.

The question is whether the knapsack can be filled exactly with a suitable selection T of the items.

Example: item sizes $110, 90, 70, 50, 30, 30, 20$, and $K = 150$
Settling Debts Problems

A group of friends lend each other money throughout the year. They carefully record each transaction. When Alice lends 10 euro to Bob, this is recorded as Alice $\rightarrow 10$ Bob.

At the end of the year they wish to settle all their debts. Money can be transferred between any pair of persons.

Problem variants:

- minimize the number of transfers
- minimize the total amount transferred
- minimize both
Given an instance I for Knapsack, construct an instance $R(I)$ for Settling Debts: $|S|$ positive balances $s(x)$ for $x \in S$, and two negative balances $-K$ and $K - \sum_{x \in S} s(x)$. N.B. The total balance \(= 0\).

\[
\begin{array}{cccccccc}
+110 & +90 & +70 & +50 & +30 & +30 & +20 \\
-150 & -250 \\
\end{array}
\]

The instance $R(I)$ requires at least $|S|$ transfers to settle, since each positive balance needs an outgoing transfer. A settling of all debts for $R(I)$ with $|S|$ transfers exists if and only if there exists a subset T of S whose total size equals K, that is, when it solves I.

Thus: Knapsack \leq_{pol} Settling Debts \textit{in minimum number of transfers}
Using Polynomial-time Reducibility $U_1 \leq_{pol} U_2$

(Compare to *algorithmic* reducibility and its uses, in Ch. 4)

If we know $U_1 \leq_{pol} U_2$, then this can be used in two ways:

1. Polynomial solvability of U_2 implies polynomial solvability of U_1
 (Note the order of U_2 and U_1 here)

2. If U_1 cannot be solved by a polynomial algorithm, then U_2 cannot be solved by a polynomial algorithm

Many problems for which we have not found polynomial algorithms are polynomially equally hard: $U_1 \leq_{pol} U_2$ and $U_2 \leq_{pol} U_1$

These problems are called \textbf{NP-hard}

Knapsack (Subset Sum) is known to be NP-hard
Hence, \textbf{Settling Debts in minimum number of transfers} is NP-hard
Easy/Hard Pairs

- **Hard**: Determine whether a graph has a Hamiltonian circuit that visits each vertex exactly once
- **Easy**: Determine whether a graph has an Euler circuit that visits each edge exactly once

- **Hard**: Determine a settling of all debts, that minimizes the number of transfers
- **Easy**: Determine a settling of all debts, that minimizes the total amount transferred

- **Hard**: Traveling Salesman Problem (TSP)
- **Easy**: Determine a Minimum Spanning Tree (MST) of a connected, edge-weighted graph: a set of edges of minimum total weight that connects all vertices (this is a tree; see figure)
Here is a greedy* algorithm:

1. Determine the balance b_i for each person

2. While there is still someone with a nonzero balance, do:

 (a) Select any person i with $b_i < 0$, and any person j with $b_j > 0$

 (b) Let m be the minimum of $-b_i$ and b_j; hence, $m > 0$

 (c) Include transfer $i \xrightarrow{m} j$ in the settlement

 (d) Increase b_i by m and decrease b_j by m

3. All $b_k = 0$, hence the included transfers settle all debts

*Step 2a makes it greedy: settle maximally among the first candidate pair found
Settling Debts, Minimizing Total Amount Transferred: Proof

\[\sum_k b_k = 0 \] holds initially and after every iteration of Step 2. (Invariant)

Step 2a is always possible, because \(\sum_k b_k = 0 \) and not all \(b_k = 0 \).

The repetition of Step 2 terminates, because in each iteration at least one nonzero \(b_k \) is reduced to zero by Step 2d.

Therefore, the number of transfers is at most \(N \) (number of persons). In fact, it is at most \(N - 1 \), because the final two nonzero balances cancel each other in a single transfer.

Let \(P \) be the total amount of the positive balances, and \(N \) the total amount of the negative balances. Hence, \(P = -N \). The minimum total amount to be transferred equals \(P \).

The total amount transferred equals \(P \), and hence is minimal.
Summary

- Algorithmically solvable does not mean practically solvable.

- **Time complexity** of an algorithm: how many steps it takes to compute an answer, in relation to input size (worst-case).

- **Complexity classes** defined in terms of *asymptotic* complexity: Polynomial time (P), Exponential time (EXP), . . .

- **NP decision problem** ≈ YES answer *verifiable* in polynomial time.

- **NP-hard**: class of *hardest* NP problems (*polynomial reduction*).

- **P = NP** : Can all NP problems be solved in polynomial time?

- Today we know only *exponential* algorithms for NP-hard problems: intractable, practically unsolvable for larger inputs; not hopeless.
• It is hard to prove lower bounds on the (time) efficiency of algorithms that solve a specific problem

• For some problems, every algorithm solving it can be made more efficient; i.e., there is no lower bound on efficiency (Blum's Speed-up Theorem)

• The street supervision problem (VC = Vertex Cover)

• Approximation algorithm for VC