
Software Engineering: Theory and Practice

NMA – National Student Academy

Summer Session 2008, Nida, Lithuania

Lecture 5

Tom Verhoeff

Technische Universiteit Eindhoven

Department of Mathematics & Computer Science

Software Engineering & Technology

Feedback to T.Verhoeff@TUE.NL

c© 2008, T. Verhoeff @ TUE.NL 1 Software Engineering: Lecture 5

http://www.nmakademija.lt/
http://www.win.tue.nl/~wstomv/
http://www.tue.nl/
http://www.win.tue.nl/
http://www.win.tue.n/set/
file:T.Verhoeff@TUE.NL


Topics

• Metrics

• Future Developments

c© 2008, T. Verhoeff @ TUE.NL 2 Software Engineering: Lecture 5



GQM – TQM

• Goals (high-level, ultimate)

• Questions (specific)

• Metrics (how to)

• Total Quality Management (address quality everywhere)

c© 2008, T. Verhoeff @ TUE.NL 3 Software Engineering: Lecture 5



Goals: What Do You Want to Achieve

• Quality control (objective vs. subjective, quantitative)

• Project planning & reporting

• Accountability (e.g. in case of an audit)

• Process improvement

• Measuring is not a goal in itself

c© 2008, T. Verhoeff @ TUE.NL 4 Software Engineering: Lecture 5



Questions: What Do You Want to Know

• What is the quality of the system functionality?

• How much extra (time, staff) will it take to complete the system?

• What is the branch coverage of the tests?

• How complex is the system?

• How much time was spent on defect removal?

c© 2008, T. Verhoeff @ TUE.NL 5 Software Engineering: Lecture 5



Metrics: What/How Do You Want to Measure

• What actually to measure?

• What measurement to use? Alternatives, trade-offs

• How to measure? (organize the measurement process)

• What to do with measurement results?

c© 2008, T. Verhoeff @ TUE.NL 6 Software Engineering: Lecture 5



Measurement Process

1. Select metric(s) appropriate for goals and questions.

Also consider: validation, calibration, tuning, staff training

2. Collect and store measurement data.

3. Consolidate and report : graphs, trend charts, . . .

4. Interpret results w.r.t. goals and questions.

5. React : close the feedback loop.

c© 2008, T. Verhoeff @ TUE.NL 7 Software Engineering: Lecture 5



What to measure

• Product -related

• Process -related

c© 2008, T. Verhoeff @ TUE.NL 8 Software Engineering: Lecture 5



Fundamental Metrics

• Size of product (LOC, SLOC, FP, ABC, . . . )

• Cost of project (Euro) [N.B. Not: product pricing]

• Duration of project (calendar months)

• Effort for project (person-months)

• Quality of product (number of remaining defects)

• Relationships , models

• Economy or diseconomy of scale: Effort = Sizee, e < 1 or e > 1

c© 2008, T. Verhoeff @ TUE.NL 9 Software Engineering: Lecture 5



Size versus Complexity

• LOC, SLOC: (Source) Lines Of Code (SLOC = nonempty with-
out comments)

• % of lines with comments

• # classes; # (public) methods or inst. var. per class

• # parameters or LOC per method

• depth of inheritance hierarchy

• # overridden methods

• % of duplicated code

c© 2008, T. Verhoeff @ TUE.NL 10 Software Engineering: Lecture 5



Cyclomatic Complexity

• McCabe 1976

• Measure for testability, understandability (maintainability)

• # linearly independent paths in flow graph

• # edges − # vertices + 2 ∗ # components

• # binary decisions + 1

• Typical reasonable upper bound to impose per module: 10

c© 2008, T. Verhoeff @ TUE.NL 11 Software Engineering: Lecture 5



Code Metrics Example

Python code:

1 p, q = 0, N # given A[0..N)

2

3 while p <> q :

4 if A[p] : p = q

5 else : p = p + 1

6

7 if p == N : print "Not found"

8 else : print "Found at", p

LOC = 8; SLOC = 6

A, B, C = 4, 2, 3

Cyclomatic complexity = 4

p = q

p, q := 0, N

A[p]

p := q p := p + 1

Start

p = N

Stop

Yes No

Yes No

'Not 
found'

'Found 
at', p

Yes No

c© 2008, T. Verhoeff @ TUE.NL 12 Software Engineering: Lecture 5



Measurement Tools

• Configuration management tools

• Defect/issue trackers

• Test tools (also measure coverage)

• Static code analyzers (e.g. JDepend)

c© 2008, T. Verhoeff @ TUE.NL 13 Software Engineering: Lecture 5

http://www.clarkware.com/software/JDepend.html


Benchmark

• Point of reference, specifically for program/processor performance

• SPEC: Standard Performance Evaluation Corporation www.spec.org

• Dhrystone → SPEC CINT2000 (without floating point)

• Whetstone → SPEC CFP2000 (with floating point)

c© 2008, T. Verhoeff @ TUE.NL 14 Software Engineering: Lecture 5

file:www.spec.org


Future Developments

• Increasing software/system complexity

• Further integration with hardware: sensors, robotics, 3D output

• Further standardization; certification of product, process, staff

• Higher-level formal models, e.g. for architecture, to generate code

• Dynamically evolving, self-adjusting, “organic” code

• Other kinds of processors: neural networks

c© 2008, T. Verhoeff @ TUE.NL 15 Software Engineering: Lecture 5



Lasting Principles

• Rigor & formality

• Separation of concerns

• Modularity

• Abstraction

• Anticipation of change

• Generality

• Incrementality

c© 2008, T. Verhoeff @ TUE.NL 16 Software Engineering: Lecture 5



Looking Back

• Software (and) Engineering

• Product, Process, Project, Documentation

• Requirements Engineering

• Configuration Management

• Dealing with Errors in Engineering

• Verification by Review and by Testing

• Architecture

• Quarto by New Mind Applications

c© 2008, T. Verhoeff @ TUE.NL 17 Software Engineering: Lecture 5



What Was the (Real) Goal?

c© 2008, T. Verhoeff @ TUE.NL 18 Software Engineering: Lecture 5



Look beyond Planting the Flag

• Planting the flag is highly visible, but not the ultimate goal.

Though the media would often like you to believe it is.

• Planting the flag brings you halfway, at best.

• The cost after planting the flag exceeds that of before.

• You must prepare for the second half before you depart.

• In software, planting the flag is the yell “it works”.

After that comes maintenance (and usually much more).

c© 2008, T. Verhoeff @ TUE.NL 19 Software Engineering: Lecture 5



References

• “Applying the ABC Metric to C, C++, and Java” by Jerry Fitz-

patrick. C++ Report, June 1997.

c© 2008, T. Verhoeff @ TUE.NL 20 Software Engineering: Lecture 5


