
Software Engineering: Theory and Practice

NMA – National Student Academy

Summer Session 2008, Nida, Lithuania

Lecture 2

Tom Verhoeff

Technische Universiteit Eindhoven

Department of Mathematics & Computer Science

Software Engineering & Technology

Feedback to T.Verhoeff@TUE.NL

c© 2008, T. Verhoeff @ TUE.NL 1 Software Engineering: Lecture 2

http://www.nmakademija.lt/
http://www.win.tue.nl/~wstomv/
http://www.tue.nl/
http://www.win.tue.nl/
http://www.win.tue.n/set/
file:T.Verhoeff@TUE.NL


Topics

• (Software) Project Organization

• Requirements Engineering

• Configuration Management

c© 2008, T. Verhoeff @ TUE.NL 2 Software Engineering: Lecture 2



Product and Process

What is important in a software project?

Historic learning path, becoming aware of the relevance of

• Product (ultimate deliverable)

• Product documentation , other intermediate artifacts , verification

• Process (how work is organized and done)

• Process documentation , verification of process

c© 2008, T. Verhoeff @ TUE.NL 3 Software Engineering: Lecture 2



Project Management

Cycle of activities:

1. Plan : Make/change a plan

Who does what when; write it down

2. Do : Execute the plan

3. Check : Monitor the plan

4. Act : Analyze and decide, go to 1

“Failing to plan is planning to fail.”

c© 2008, T. Verhoeff @ TUE.NL 4 Software Engineering: Lecture 2



General Problem Solving (left) and Waterfall Process (right)

1. Admit you have a problem Business Case

2. Define the problem clearly User Requirements

3. Understand and analyze the problem Software Requirements

4. Outline a solution approach (blueprint) Architectural Design

5. Construct an actual solution Coding/Production

6. Teach the solution to others Release/Transfer

7. Apply/adjust the solution Operation and Maintenance

8. (Not applicable?) Retirement

When doing work, always verify the work as soon as possible.

c© 2008, T. Verhoeff @ TUE.NL 5 Software Engineering: Lecture 2



Software Development Process

There are many alternative ways of organizing activities.

There is not one right way.

Any clear process is better than no process.

Is more than project management (who does what when).

Answers questions: Why do it? Do what? Make what? Do it how?

Process quality affects product quality:

Process → Product Internals → Product Externals → User Experience

c© 2008, T. Verhoeff @ TUE.NL 6 Software Engineering: Lecture 2



Why Requirements Engineering?

Important potential problem:

Building a good system but not the right system

c© 2008, T. Verhoeff @ TUE.NL 7 Software Engineering: Lecture 2



Requirements Engineering: Concepts

• Requirement : capability or constraint that must be met in order

to satisfy a contract or specification

• Quality characteristic/dimension/factor : . . . , e.g. Functionality,

Reliability, Usability, Efficiency, Maintainability, Portability

c© 2008, T. Verhoeff @ TUE.NL 8 Software Engineering: Lecture 2



How To Obtain Requirements: Elicitation and Analysis

• Interview, survey

• Study existing products

• Analyze requirements of system that contains the software

• Consolidate and structure raw requirements

• Follow-up, discuss draft requirements

• Prototype (could be a paper mock-up)

• Model (e.g. state machine)

c© 2008, T. Verhoeff @ TUE.NL 9 Software Engineering: Lecture 2



General Requirements

• Name, purpose

• Overview of capabilities, constraints, rationale

• User categories, typical usage

• Operational environment, context diagram

• External interfaces

• Expected future changes

c© 2008, T. Verhoeff @ TUE.NL 10 Software Engineering: Lecture 2



Specific Requirements

• Atomic (single sentence; avoid passive voice)

• Identifier (ensure traceability), priority

• Capability requirements: include capacity, speed, accuracy

• Constraint requirements: product and process qualities

• Redundancy: good and bad, cross reference

• Concern the problem domain, not the solution domain.
N.B. Software engineers often lack problem domain knowledge

• Must be verifiable
c© 2008, T. Verhoeff @ TUE.NL 11 Software Engineering: Lecture 2



Why Configuration Management?

Important potential problems:

• Ambiguity as to what document or file is meant

• Inconsistent combinations of files

• Lost files, lost changes

• Undocumented, unapproved changes

• Not knowing the composition of released software

• Not being able to go back to a previous version

c© 2008, T. Verhoeff @ TUE.NL 12 Software Engineering: Lecture 2



Configuration Management (CM) Terminology

• Configuration Item (CI) : (document, software, hardware) entity

treated as a unit for CM; atomic or composite

• Version and relations between versions:

– revision replaces obsolete/incorrect version

– variant exists parallel to other version

• Baseline : formally reviewed and approved CI serving as a basis

for further development

c© 2008, T. Verhoeff @ TUE.NL 13 Software Engineering: Lecture 2



Configuration Management Goals

• Identify and define the CIs of the project: all relevant artifacts

• Control the release and change of CIs throughout the project

• Record and report the status of CIs and of change requests

• Verify the completeness and correctness of CIs

c© 2008, T. Verhoeff @ TUE.NL 14 Software Engineering: Lecture 2



Configuration Management Tools

• Tools are not a complete solution: also need to use them well.

Establish clear and effective procedures and rules. Train users.

• CVS, Subversion, Bazaar, Mercurial, Git

• Bugzilla

• Trac: an enhanced wiki and issue tracking system for software

development projects

• Also consider tools for building and releasing (not treated here).

c© 2008, T. Verhoeff @ TUE.NL 15 Software Engineering: Lecture 2

http://subversion.tigris.org/
http://bazaar-vcs.org/
http://www.selenic.com/mercurial/
http://git.or.cz/
http://trac.edgewall.org/


Configuration Management with Subversion

• One central repository with current and past versions

– Trunk holds main line of development

– Tags mark baselines, releases, . . .

– Branches hold variants, experiments, . . .

• Multiple local working copies

– checkout, update, commit

Copying in the repository is cheap, both in time and in memory usage.

Tagging and branching are done by copying. The name of the copy
identifies the tag or branch.

c© 2008, T. Verhoeff @ TUE.NL 16 Software Engineering: Lecture 2



Subversion: Create Working Copy from Repository

Repository

Before After

Repository
(unchanged)

New
Working Copy

checkout

Remote

Local

c© 2008, T. Verhoeff @ TUE.NL 17 Software Engineering: Lecture 2



Subversion: Create Working Copy from Repository

Repository

Before After

Repository
(unchanged)

Updated
Working CopyWorking Copy

update

Remote

Local

c© 2008, T. Verhoeff @ TUE.NL 18 Software Engineering: Lecture 2



Subversion: Commit Changes in Working Copy to Repository

Repository

Before After

Updated 
Repository

Working Copy 
(unchanged)Working Copy

commit

Remote

Local

c© 2008, T. Verhoeff @ TUE.NL 19 Software Engineering: Lecture 2



Configuration Management: Good Practices

• Only commit code that compiles, runs, and passes all unit tests.

• When committing, always include a log message explaining why

the change was made (svn diff can tell you what changed).

c© 2008, T. Verhoeff @ TUE.NL 20 Software Engineering: Lecture 2



References

• Example: Anagrams User Requirements Document

• Checklist for User Requirements

• “Configuration Management”, Ch. 17 from Software Engineering:
Planning for Change by D. A. Lamb. Prentice-Hall, 1988.

• Common CM Tasks in Subversion by T. Verhoeff

• The Subversion Book

• Turtoise SVN: GUI client for Subversion on Windows

• svnX: GUI client for Subversion on Mac OS X
c© 2008, T. Verhoeff @ TUE.NL 21 Software Engineering: Lecture 2

http://svnbook.red-bean.com/
http://tortoisesvn.tigris.org/
http://svnx.lachoseinteractive.net/

