Common Configuration Management Tasks:
How to Do Them with Subversion*

Tom Verhoeft
(© 2007-2008 — Latest update: May 2008

Contents

{1 The Big Picture]

|2 Subversion Help|

3 Create New Empty Repository|

[4 Obtain Access to Repository|

[Tnspect Repository]

6 Modify Repository|

[7__Create Working Copy|

1 reate Working Copy from Repository|
.2 reate Empty Working Copy|
7.3 Convert Existing Directory Tree into Working Copy|

|8 Inspect Working Copy|

[9 Modify Working Copy|

[LO Update Working Copy from Repository|

(11 Update Repository from Working Copy|

{12 Update Repository from Patch|

[L3 Get Rid of Working Copy|

{14 Basic Work Cycle|

{15 Make svn ignore certain files in working copy]|

(16 Not Covered|

“subversion.tigris.org

http://subversion.tigris.org/

1 The Big Picture

Usually, a project has one central repository (Master Library and Archive Li-
brary) and multiple working copies (Development Libraries). Each working
copy starts as a copy of (part of) the repository, and changes independently,
These changes can be fed back into the repository, and from there propagate
to other working copies. This may give rise to conflicts, when two independent
changes are not compatible. Conflicts must subsequently be resolved.

2 Subversion Help

svn help

svn help command , in particular for arguments and options

o The Subversion Book (freely available on the web: |svnbook.red-bean. com)

e Pragmatic Version Control Using Subversion: www.pragprog.com

Some commands have alternative forms (not shown here). See help.

3 Create New Empty Repository

Needs to be done only once. Often done by an administrator.

e svnadmin create path , where path is an existing empty directory

4 Obtain Access to Repository

Use an appropriate (network) protocol, e.g. https, for (remote) access to the
repository; you need appropriate permissions. Ask the repository administrator.

5 Inspect Repository
e svn list URL shows listing (sva list -v shows details)
e svn info URL shows general information
e svn log URL shows log messages
e svn cat URL shows file contents

e svn diff URLI1 URL2 shows line-by-line differences

e svn blame URL shows who edited which lines

IThis is Unix command-line terrminology. Terminology for other Subversion tools is usually
the same, but can differ slightly.

http://svnbook.red-bean.com/
http://www.pragprog.com/

6 Modify Repository
e svn mkdir URL creates a new directory
e svn delete URL removes a file or directory (but not from the history)
e svn move sourceURL destURL (also used for renaming)

e svn copy sourceURL destURL (also used for tagging and branching)
e svn import path URL adds the contents of a directory tree

e svn commit [path] incorporate changes from working copy (see i)

7 Create Working Copy

There are three scenarios:
1. You have nothing, and want to start with something from the repository.

2. You have nothing (yet), neither has the repository, and you want to start
from scratch.

3. You have a directory tree with files not yet in the repository, and want
to convert it into a working copy, adding some or all of these files to the
repository.

7.1 Create Working Copy from Repository

The repository already has all the files, and you now want a fresh local working
copy with these files.

e svn checkout URL

N.B. Watch out if you do this inside an already existing working copy!
N.B. The name (of the root directory) of this working copy does not have
to be the same as in the repository: svn checkout URL path .

7.2 Create Empty Working Copy

You want to start with an empty working copy to fill the repository later.
Create a new (empty) directory in an appropriate place in the repository
(svn mkdir URL ; you must choose where it belongs in the repository), and

check out this empty directory (sva checkout URL [path]).

7.3 Convert Existing Directory Tree into Working Copy

A directory tree already exists outside the repository, and you want to turn this
into a working copy, where some of these files will be added to the repository.
Do the preceding step to create an empty directory in the repository, then
check it out into the existing directory (this will not affect existing files), and flag
the files (incl. subdirectories) that need to go into the repository with svn add .
These are then put into the repository at tne next svn commit .
To put (some of) the files in directory mytree into the repository:

1. svn mkdir URL/repos-name-of-mytree
2. svn checkout URL/repos-name-of-mytree mytree
3. svn add -N path for all (sub)directories without adding their contents

4. svn add path for all files/directories to end up in the repository
N.B. (sub)directory contents are added recursively.

5. svn commit

When a complete directory tree already exists outside the repository, and
you want all these files to be added to the repository, you can also consider using
svn import [path] URL and then svn checkout to another (!) location.

8 Inspect Working Copy
e svn info shows where a working copy came from

e svn log shows log messages

e svn diff shows line-by-line differences
e svn blame shows who edited which lines when
e svn status shows what will happen when committing

e svn status -q minimizes output

e svn status -u also shows what will happen when updating

9 Modify Working Copy

Changes to the working copy are typically not propagated into the repository
until an explicit svn commit is done.

Use local (non-SVN) commands for editing files that already exist in the
repository.

Create new file that eventually needs to end up in the repository: create
locally, then svn add . Also works for new subdirectories (svn add -N path
works non-recursively, i.e., without also adding all files in the directory), but
svn mkdir path is preferred.

Deletion, renaming, and copying (when intended to go into the repository)
are better not done locally, but (to preserve history) should be done through

e svn delete path
e svn move source-path dest-path (also used for renaming)
e svn copy source-path dest-path

Revert to previous revision: svn revert .

N.B. The working copy can (and often will) contain additional files (e.g.,
created by the “build” process) that are not intended to end up in the repository.
Setting properties may make life easier, so that Subversion will not bother you
about these auxiliary files.

10 Update Working Copy from Repository

e svn update N.B. Could give rise to conflicts.

11 Update Repository from Working Copy
e svn commit

Include a brief description of the purpose of this commit (log message). Remem-
ber that later a diff can be used to tell you what was changed, but a diff does
not tell you why. Possibly do several commits, each with its own appropriate
log message.

12 Update Repository from Patch

If you don’t have write permission to the repository (often the case in open
source projects), then you can communicate changes via patches:

e svn diff > changes .patch : Contributor produces a patch file.

Contributor sends the patch file changes.patch to a developer.

e patch -p0 -i changes .patch : Developer applies the patch file.

N.B. Execute in same subdirectory (of developer’s working copy) where it
was created.

Developer reviews the patch.

e svn commit : Developer commits the change when accepting the patch.

13 Get Rid of Working Copy

1. Check whether there are any uncommited changes: svn status
2. If necessary, commit changes: svn commit
3. Just in case: svn cleanup to finish unfinished business

4. Now it is safe to delete the working copy directory tree (if necessary, it
can be recovered from the repository).

14 Basic Work Cycle

Also see The Subversion Book, Chapter 2.

Step Commands Remarks
Incorporate svn status -u | Only needed with multiple working copies
external changes svn update
Make your changes edit contents
svn add
svn delete Do not simply use rm, cp, mv
svn copy
svn move
Examine your changes | svn status
svn diff
Undo some changes svn revert Only when needed
Resolve conflicts svn update Can only occur with mulitple working copies
svn resolved
Commit your changes | svn commit Include appropriate log message

15 Make svn ignore certain files in working copy

e svn propedit svn:ignore dir-path one file name per line (wildcards
allowed); in this directory, svn will ignore all files matching a pattern;
these properties are versioned and need to be commited like any other
change

16 Not Covered

e Installing server and client software for Subversion

e Choosing a directory tree structure for the repository:
trunk , tags, branches

e What to put in the repository and what not
e When to commit (quality criteria)
e How to deal with binary files (incl. use of appropriate properties)

e Revisions and how to identify them with option -r :
revtsion number , HEAD , BASE , COMMITTED , PREV , { "date" }

e How to handle conflicts (incl. svn resolved)

e Properties (propedit , propget , proplist, propset , propdel)
e Tagging (via svn copy URL in tags subdirectory)

e Branching (via svn copy URL in branches subdirectory)

e Merging: svn merge , also consider Python script svnmerge.pyﬂ

svn lock, svn unlock claim/release exclusive access to items
e svn switch converts a working copy to another revision

e svn export extracts a directory tree, but not as a working copy

2See: Subversion Wiki about svnmerge . py

http://www.orcaware.com/svn/wiki/Svnmerge.py

	The Big Picture
	Subversion Help
	Create New Empty Repository
	Obtain Access to Repository
	Inspect Repository
	Modify Repository
	Create Working Copy
	Create Working Copy from Repository
	Create Empty Working Copy
	Convert Existing Directory Tree into Working Copy

	Inspect Working Copy
	Modify Working Copy
	Update Working Copy from Repository
	Update Repository from Working Copy
	Update Repository from Patch
	Get Rid of Working Copy
	Basic Work Cycle
	Make svn ignore certain files in working copy
	Not Covered

