The Spurs of D.H. Lehmer

Hamiltonian Paths in Neighbor-swap Graphs of Permutations

Tom Verhoeff
\[Q \begin{aligned} \& Technische Universiteit
\& Eindhoven
\& University of Technology \end{aligned} \]

Department of Mathematics \& Computer Science
Software Engineering \& Technology Group

Submitted to Designs, Codes and Cryptography
In honor of Andries Brouwer's 65th Birthday

Historic Introduction

- International Mathematical Olympiad (IMO) 2009, Germany Opening Ceremony: All (100+) teams get stage time

Present All Permutations of a String by Neighbor Swaps

All distinct symbols: possible (change ringing, in 17th C)

Present All Permutations of 000111 by Neighbor Swaps

Can Present All Permutations of 000111 by Neighbor Swaps

Cycle is impossible

Present All Permutations of 000011 by Neighbor Swaps

Cannot Present Permutations of 000011 by Neighbor Swaps

No edge between same colors: On any path, the two colors alternate

One color exceeds the other color by more than one

Conclusion: A Hamiltonian path does not exist

Present All Permutations of $0^{k_{0}} 1^{k_{1}}$ by Neighbor Swaps

Theorem (Eades, Hickey, Read, 1984): Path exists if and only if

- $k_{0} \leq 1$ or $k_{1} \leq 1$ (trivial because graph is a chain), or
- both k_{0} and k_{1} are odd

Proof

- "Only if": by (involved) coloring argument
- "If": by efficient (not so simple) recursive algorithm

Alternative algorithms: Cor Hurkens, Ivo van Heck

Neighbor-swap Graph for Permutations of 00122

Colored Neighbor-swap Graph for Permutations of 00122

Present All Permutations of $0^{k_{0}} 1^{k_{1}} 2^{k_{2}} \ldots$ by Neighbor Swaps

Three or more kinds of objects

Theorem (Stachowiak, 1992): Path exists if and only if

- at least two of the k_{i} are odd

Proof

- "Only if": by extended coloring argument
- "If": by rather complex algorithm

Based on linear extensions of posets

In fact, always a cycle, except for (even, 1, 1)

What can be salvaged if less than two of the k_{i} are odd?

Some requirement on the presentation method must be dropped.
Conjecture (Lehmer, 1965): Imperfect Hamilton path always exists Imperfect: Allow "spurs" (limited way of visiting a vertex twice)

Spur: path contains subsequence $v w v$

Spurs

Path with 4 spurs: single spurs at A and C; double spur at B

Terminology and Notation

- Signature: $\left(k_{0}, k_{1}, \ldots\right)$
- Arity : number of non-zero k_{i} in signature
- $n=k_{0}+k_{1}+\cdots$

Coloring and Counting

- Inversion in permutation: out-of-order symbol pair $2110 \rightarrow 5$
- Partity of permutation: parity of its number of inversions
- Neighbor swap changes number of inversions by 1, i.e., parity flips
- Color permutations by parity: bipartite graph
- $M\left(k_{0}, k_{1}, k_{2}, \ldots\right)$: number of permutations of $0^{k_{0}} 1^{k_{1}} 2^{k_{2}} \ldots$

$$
M\left(k_{0}, k_{1}, k_{2}, \ldots\right)=\binom{n}{k_{0} k_{1} k_{2} \ldots}=\frac{n!}{k_{0}!k_{1}!k_{2}!\cdots}
$$

- $D\left(k_{0}, k_{1}, \ldots\right)$: number of even minus number of odd permutations

$$
D\left(k_{0}, k_{1}, \ldots\right)= \begin{cases}M\left(k_{0} \div 2, k_{1} \div 2, \ldots\right) & \text { if at most one } k_{i} \text { is odd } \\ 0 & \text { if at least two } k_{i} \text { are odd }\end{cases}
$$

New Proof for $D\left(k_{0}, k_{1}, \ldots\right)$

- Stutter permutation: $e_{1} e_{2}\left|e_{3} e_{4}\right| \ldots\left|e_{2 j-i} e_{2 j}\right| \ldots$ with $\forall i: 2 i \leq n: e_{2 i-1}=e_{2 i} \quad \leftarrow$ left-index-odd (lio) pairs
- Stutter permutations are even
- A stutter permutation has at most two odd k_{i}

Number of stutter permutations equals $M\left(k_{0} \div 2, k_{1} \div 2, \ldots\right)$

- Non-stutter permutations can be paired even-to-odd

Reverse left-most lio pair whose elements differ

- $D\left(k_{0}, k_{1}, \ldots\right)=$ number of stutter permutations

Lemmata for Stutter Permutations

1. The number of odd permutations never exceeds the number of even permutations.
2. The number of non-stutter permutations is even.
3. There are no stutter permutations when the signature has two or more odd k_{i}.
4. There is exactly one stutter permutation when the signature is unary, or when it is binary and one $k_{i}=1$ and the other is even, that is, when the graph is linear.
5. A stutter permutation of arity two or more is at distance 1 (in the neighbor-swap graph) from a non-stutter permutation.
6. The distance (in the neighbor-swap graph) between two distinct stutter permutations is a multiple of 4.

Tom's Conjecture

- There always exists an imperfect Hamilton path, with the stutter permutations as spurs.
- More specifically, there exists a Hamilton cycle on the non-stutter permutations, except when

1. the arity is zero or one, or
2. the arity is two, and at least one of the k_{i} is odd, or
3. the signature is a permutation of $(2 k, 1,1)$

In these cases, there exists a Hamilton path.

- Proven for arity at most 2

Proof for 'except when'

A Hamilton cycle is impossible in the indicated cases, because

1. the graph is a singleton;
2. at least one of the permutations $0^{k_{0}} 1^{k_{1}}$ and $1^{k_{1}} 0^{k_{0}}$ is a non-stutter permutation, and it has only one neighbor;
3. the edges $0^{i} 120^{j} \sim 0^{i} 210^{j}$, for $0 \leq i, j$ and $i+j=k_{0}$, form a disconnecting set, and there is an odd number of them.

A Hamiltonian cycle would need to cross over an even number of times between the two components connected by these edges; in one component 1 precedes 2 in all its permutations, and in the other 2 precedes 1.

Proof for Binary Case

By induction on $n=k_{0}+k_{1}$.

Distinguish three cases for $\left(k_{0}, k_{1}\right)$:

1. odd-even
2. even-even
3. odd-odd

We already knew this, but my construction is more elegant

Theorem must be strengthened to help induction, by stating explicit edges that are on the path/cycle.

Odd-Even Case, Split on Trailing Bit

Special parallel edges: $b 1 \sim c 1$ and $d 0 \sim e 0$

Even-Even Case, Split on Trailing Bit

Special parallel edges: $b 1 \sim a 1$ and $d 0 \sim e 0$

Odd-Odd Case, Split on 2 Trailing Bits

The two even-even parts are isomorphic and parallel
by swapping the trailing two bits

Combining Two Parallel Cycles with Spurs

Parallel even-length cycles with single spurs (left)

Combined into one cycle without spurs (right)

Break-down of the two parallel cycles for the even-even parts

Combining Four Doubly Parallel Paths

Four doubly parallel paths (left)

Combined into one modular path (right)

General Case, at most two odd

Vertex cycle cover for general case. Inductive structure:

- all even: split on trailing two numbers $x y$
$-x=y$: all even, hence cycle
$-x \neq y$: two odd; $_x y$ and $_y x$ are parallel, hence cycle
- all-but-one even, not (even, 2, 1): split on trailing number x
- k_{x} odd: all even, hence cycle
$-k_{x}$ even: two odd, not (even, 1, 1), hence cycle
- (even, 2, 1), using paths for (even, 1, 1) and (odd, 2, 1)
- (even, 1, 1)

Conclusion

- Stutter permutations: candidates for spur tips
- Proven for binary case
- Evidence for general case: experimental and inductive structure

Why Is This Relevant?

- Exhaustive search across combinatorial objects
- Cryptography: code breaking
- Hardware testing: traverse test patterns
- Statistics
- Genetic algorithms, to solve optimization problems

Present All Permutations of $0^{k_{0}} 1^{k_{1}}$ by Prefix Rotations (2009)

1. Determine the shortest prefix that ends in $01 X$.

Take the entire bit string, if such a prefix does not exist.
2. Rotate the prefix cyclicly by one position to the right: X (or last element) moves to the front.

$$
0011
$$

$$
001 \underline{1} \rightarrow \underline{1} 001
$$

$$
1001 \rightarrow \underline{1} 100
$$

$$
110 \underline{0} \rightarrow \underline{0} 110
$$

$$
01 \underline{1} 0 \rightarrow \underline{1} 010
$$

$$
101 \underline{0} \rightarrow \underline{0} 101
$$

