Little Mathematics Librar
« P L.

NONYJIAPHLIE NEKIIHHA IO MATEMATHKE

B. A. YCIIEHCKUA
MAIIIMHA IIOCTA

ASOATEIBLTBO «HAYKA» MOCKBA

Little Mathematics Library

V.A.Uspensky

POST’S
MACHINE

Translated from the Russian
by
R. Alavina

MIR PUBLISHERS
MOSCOW

First published 1983
Revised from the 1979 Russian edition

Ha anzaulickom ssuxe

© InaepEas pegaxkmousa PHU3HKO-MATOMATHIOCKOH JHTEPATypPH
nagatenscrBa ¢Hayka», 1979

@© FEnglish translation, Mir Publishers, 1983

CONTENTS

Preface
1. How the Post Machine Works
Sec. 1.1. “An Outward Appearance” of the Post Machine

Sec. 1.2. The Program for the Post Machine
Sec. 1.3. The Operation of the Post Machine
Sec. 1.4. Examples of Performing Programs
Sec. 1.5. Methodological Notes

2. Addition of Unity on the Post Machine

Sec. 2.1. Recording Numbers on the Post Machine and the
Statement of the Problem on Addition of Unity

Sec. 2.2. Addition of Unity in the Simplest Case

Sec. 2.3. Addition of Unity in More Complicated Cases
Sec. 2.4. Addition of Unity in Yet More Complicated Case
Sec. 2.5. Addition of Unity in the Most General Case

3. Analysis and Synthesis of Programs for the Post Machine
Sec. 3.1. Diagrams and Block Diagrams

Sec. 3.2. Analysis of the Program of Adding Unity

Sec. 3.3. Again on the Problem on Addition of Unity

Sec. 3.4. Addition of Numbers in Simple Cases

Sec. 3.5. Addition of Numbers in More Complicated Cases

4. The Post Machine Potentialities

Sec. 4.1. On the Problem of Addition of Numbers at Arbi-
trary Distances

Sec. 4.2, Post's Proposal

Sec. 4.3. The Post Machine and Algorithms

Sec. 4.4. Additional Comments on Post’'s Hypothesis
(Post’s Thesis and Post’s Principle)

Sec. 4.5. The Post Machine and Electronic Computers

Supplement
Finite Combinatory Processes—Formulation 1

67

72
77

82

PREFACE

This booklet is intended first of all for schoolchildren.
The first two chapters are comprehensible even for junior
schoolchildren. The book deals with a certain “toy” (“ab-
stract” in scientific terms) computing machine—the so-
called Post machine—on which calculations involve many
important features inherent in the computations on real
electronic computers. By means of the simplest examples
the students are taught the fundamentals of programming
for the Post machine, and the machine, though extremely
simple, is found to possess quite high potentialities.

The reader is not expected to have any knowledge of
mathematics beyond the primary school curriculum.

The author hopes that the present booklet can to a cer-

» 6

tain extent advance such concepts as “algorithm”, “univer-
sal computing machine”, “programming” in the secondary
school, even in its earlier grades. The author’s personal
experience makes him confident that the schoolchildren
of primary school and even children of pre-school age
can easily cope with “computations”® on the Post ma-
chine by the preset program (for instance, with the aid of
paper tape, ruled in square sections, and the clips or
buttons that are used as labels) and prepare the simplesf.
programs (containing no transfer-of-control instruc-
tions). This is precisely why the first chapter, easiest to
grasp by junior schoolchildren, includes a special section
“Methodological Notes”.

Over forty years ago an article by Emil L. Post, an
outstanding American mathematician, appeared in The
Journal of Symbolic Logic. The article was called “Finite
combinatory processes—formulation 1” (it is presented
as a supplement to this booklet). In this article and in
the article “On computable numbers with an application
to the Entscheidungsproblem” by the British mathemati-
cian A. M. Turing, published in Proceedings of London
Mathematical Society at the same time, there were given
the earliest definitions of the concept of “algorithm”, one

* The word “computations” is taken in quoles because it is not
in the least necessary that the initial data and the results of con-
versions executed on the machine be numbers. Operations with
combinations ot symbols having no numerical values are in a num-
ber of cases much more visual.

of the central in mathematical logic amd cybernetics.
It is playing an increasingly important part in automation
and so in the whole life of modern society.

The definitions of the concept of “algorithm” proposed by
Post and Turing are of importance nowadays. The Turing
machine is constantly employed as a working device in
the modern theory of algorithms. The Post machine is
less popular though, or because, it is simpler than the
Turing machine*. The works mentioned are notable for
one more reason: they preceded in an abstract form the
basic principal features of computers a few years before
large-scale (so-called universal) computers appeared (first
not even electronic but electromechanic). The very devices
proposed by Post and Turing were formulated as certain
“abstract machines”. It was done in an apparent form
by Turing and more obliquely by Post who did not even
use the term “machine”. Turing’s reasoningisoftencited in
literature on the theory of algorithms including popular
science. As to Post’s reasoning, despite its utmost simplic-
ity compared with Turing’s, it was for a long time not
presented either in specialized or in popular science
literature**, except for Post’s original article. At the same
time it is Post’s reasoning, as the author’s teaching expe-
rience shows, that can make as natural an introduction to
the theory of algorithms as Turing’s.

It is the concept of the algorithm suggested by Post that
the present booklet is dedicated to. The version is some-
what modified and, in particular, takes on the form of the
description of a certain abstract computing machine. That
is why it seems appropriate to introduce terms differing
from Post’s.

The given issue of “Little Mathematics Library” is based
on the lectures delivered by the author to schoolchildren
as well as lectures delivered to the students of the mechan-
ics and mathematics, and philology departments of
Moscow University since the 1961-62 academic year.

* The Post machine is simpier than the Turing machipe in that
its elementary operations are simpler and the recording technique
is less diverse. These are the reasons, however, why recording and
processing of data on the Post machine demand, generally speaking,
bigger storage capacity and more steps than on the Turing machine.

** In 1967 tﬁe author published a series of four articles underly-
ing this booklet in Mathematics in School, 1-4 (in Russian).

8

1. HOW THE POST MACHINE WORKS

Sec. 1.1. “An Outward Appearance”
of the Post Machine

First of all we must warn the reader that the Post
machine is not a really existing device; that is why the
words “an outward appearance” are taken in quotes. The
Post machine as well as its near relative, the Turing ma-
chine. is an imaginary device, existing only in our imagi-
nation* (though it could in principle have been made “of
metal”**). It is this fact that is meant when they say
that the Post and the Turing machines are “abstract”
calculating machines. That the Post machine does not
practically exist will, however, be of no consequence to
us. Just the opposite, we shall, for vividness, assume it
“as if existing”. And just as we can learn to calculate
on a counting frame or on a slide rule without having them
before us but only using their description and imagining
them, so we will learn how to calculate on the Post ma-
chine summoning our imagination and using the descrip-
tion given below.

The Post machine consists of a tape and a carriage (that
is also called a reading and recording head). The tape is
infinite and marked off into square sections (later referred
to as cells) of equal size; to make it more graphic we will
arrange the tape horizontally (Fig. 1).

The infiniteness of the tape contradicts the above-made
assertion that the Post machine could have been built in
principle. The thing is that we only call the tape infinite
for the sake of simplicity of the presentation. The tape

* That is why recommendations on getting acquainted with
like machines such as: “...in order to get a better notion of a really
operating machine, those concerned should turn to technical
literature” sound absmid (A. 1. Popov, Introduction to Mathematical
Logic, LGU Press, Leningrad, 1959, p. 91 (in Russian)).

** A device, that makes it possible to simulate the operation of
the Post machine with short-length programs and nonbulky calcu-
lations, was made in Simferopol State University in 1970 (see
V. N. Kasatkin, Seten Problems on Cybernetics, Kiev, 1975, p. 26
(in Russian)).

could equally have been assumed growing unlimitedly in
both directions rather than infinite; for instance, we
could believe the tape to link a new cell as soon as the
carriage reaches the end of the tape and must move fur-
ther (for the carriage motion, sce below) or we could believe

HEEEEEEANEEEEE

Fig. 1. The tape of the Post machine is squared into cells and
grows infinitely to the left and to the right.

a new cell to be linked on the left and on the right per
unit time. We think. however, more convenient to regard
all the cells on the left and on the richi to have been lin-
ked and thereby to assume the tape infinite in hoth direc-
tions ignoring the real state ot things

—4~3-2-101 23 4 5 ¢

IHEEEEEEEEEEEY

Fig. 2.

The order the cells of the tape are arrauged in is simi-
lar to that of integers. 1t is natural, therefore, to use on
the tape a whole-number system of coordinates, i.e. to
give the cells integral numbers: —3, —2, —1, 0, 1, 2,
3, ... (Fig. 2).

We will hold that the coordinate system isticidly linked
to the tape and this will enable us to denote a certain
cell on the tape by its number or coordinate. (Sometimes,
though, it is helpful to introduce, alongs<ide the principal
“constant” coordinate system, another, auxiliary, “addi-
tional”, coordinate system shifted in respect to the
initial one.)

Each cell of the tape either may contain nothing (such
cell is called blanl) or may contain a label (such cell is
called labelled) (Fig. 3).

10

The information on which cells are blank and which are
labelled characterizes the condition of the tape. In other
words, the condition of the tape depends on how the labels
are distributed over the celle.* As we will see later, the
condition of the tape changes in the process of machine
operation.

The carriage can move along the tape to the left or to
the right. When it is at a standstill, it only faces precisely

VI TIM VM T T T Td

Fig. 3. Each cell of the tape either contains nothing or containg
a label.

one cell (Fig. 4a; this drawing and those that follow depict
the carriage as a solid square); the carriage is said to
examine this cell or to keep it in view.

IINEEEEREENENY
o I

INEEEEEEREEEEI
.(b;

Fig. 4. When the carriage is at a standstill it examines one of the

cells of the tape as shown in (a) rather than as it is shown in (b).

The situation depicted in (&) can arise ouly during the carriage
movement.

The information on which cells are blank and which are
labelled and which cell i~ being examined by the carriage
characterizes the internul stute of the Post machine. So
the state of the machine is composed of the condition of
the tape and the number of the cell being examined by
the carriage. The carriage can move one cell to the left
or to the richt in a unit time (that will be referred to
as a step). Besides, the carriage can put (print) or cancel

* The condition of the tape is in an orthodox mathematical lan-
guage a function that correlates a number (a cell number) either
with the label or, say, with the word “blank”.

1

(erase) the label in the cell being examined and recog-
nize whether or not the cell being examined is labelled.
What governs the carriage behaviour and what it means
“to recognize” as applied to the carriage will be cleared
up in Sec. 1.3.

See. 1.2. The Program for the Post Machine

The Post machine operation consists in that the carriage
moves along the tape and either prints or erases labels.
The operation proceeds by a certain instruction, that is
called a program. Various programs can be prepared for
the Post machine. Let us see how a program is devised.

Each program for the Post machine consists of instruc-
tions. We will call an expression of one of the following
six forms an instruction to the Post machme (7, J1s]2
denote everywhere natural numbers 1, 2, 3, 4, 5, ..

Ist form. Move-to-the-right instructions

i. =j.
2nd form. Move-to-the-left instructions

i. <«=j.
3rd form. Instructions for printing the label
i. Vi.
4th form. lnstructions for erasing the label
i. £j.
5th form. Transfer-of-control instructions
i. ?/]1
s
6th form. Halt instructions
i. stop.
For example,
137. =1
is a move-to-the-right instruction,
- /32
tJe n\
25

12

is a transfer-of-control instruction, and
6386. stop

is a halt instruction.

The number i before an instruction is called the number
of the instruction. So, the instructions just mentioned have
numbers 137, 20 and 6386. respectively. The number j at
the end of an instruction (j, and j, for transfer-of-control
instructions) will be called a jump (j; being the upper
jump and j, the lower jump for the transfer-of-control
instruction). Halt instructions have no jump. Numbers 1,
32. 25 denote the jumps in transfer-of-control instructions
given above as examples, 32 being the upper jump and 25,
the lower jump.

We will call a finite nonblank (i.e. containing at least
one instruction) list of the Post machine instructions
possessing the following two features the program for the
Post machine:

(1) The instruction with number 1 occupies the first
place, the one with number 2, the second place (if at all),
and so on; the instruction with number %, generally,
occupies the kth place.

(2) A jump of any instruction in the list coincides with
the number of a certain instruction (the same or any
other) in the list (more precisely: to every jump of every
instruction in the list there corresponds an instruction
whose number equals the jump under consideration).

The following list, for example, will serve as a program
for the Post machine:

1. stop 3. £E3
4
/
2. ?\1 4. step

whereas these two lists cannot be programs for the Post
machine:

4
/
2. ?\1 3.3

1. stop 4. stop

13

(the first restriction is not satistied),
1. stop 3. &3

4
2. 3/ 4. stop
N5

(the second restriction is not satisfied).

We will write the programs for the Post machine in
columns to make them more graphic. The number of
instructions in the program is called the length of the
program.

Exercise. Write all the programs of length 1 for the
Post machine. How many programs are there of length 2,
length 3, length n?

Sec. 1.3. The Operation of the Post Machine

To start the Post machine it is necessary: (a) to preset
a program, (b) to set the machine in a certain internal
state, i.e. to arrange somehow labels in the tape cells (for
example, all the cells can be left blank) and to place
a carriage facing one of the cells. As a rule, we will sup-
pose that in the initial internal state (i.e. in the state given
in the begiuning) the carriage of the machine is always
placed facing the cell with the zero number (coordinate).
With such a stipulation the initial internal state of the
m achine is completely determined by the condition of
the tape.

As already stated, the program is an instruction which
is the basis for the machine’s operation. The machine
operates on the basis of the preset program (and at the
given initial internal state) as follows: it is driven into
the initial internal state and starts executing the first
instruction of the program (what it means “to execute an
instruction™ will be cleared up below). The instruction
is executed in one step; after that the machine starts
executing the instruction whose number (call it o) equals
the jump (one of the jumps if there are two) of the first
instruction. This instruction is executed in one step too;
after that the instruction is executed whose number equals
the jump of the instruction with number «. Generally
speaking, each instruction is executed in one step while

14

in going from the execution of oneinstruction to the execu-
tion of another, the following rule is observed: let at the
kth step the instruction with number i be executed; then
if this instruction has a single jump j, at the (¢ -}- 1)th
step the instruction with number j is executed; if this
instruction has two jumps, j, and j,, at the (¢ 4+ 1)th step
one of the two instruetions is executed, that is with num-
ber j, or with number j, (it will be pointed out below
which); finally, if the instruction executed at the kth
step has no jump at all, then at the (£ -+ 1)th and all
subsequent steps no instruction is executed: the machine
stops. It remains to make it clear what it means to exe-
cute an instruction and which of the two jumps, if there
are two, is taken as the number of the next instruction.

The execution of the move-to-the-right instruction
eonsists in the carriage being moved one cell to the right.
The execution of the move-to-the-left instruction consists
in that the carriage is moved one cell to the left. The
execution of the instruction of printing a label consists
in that the carriage prints a label on the cell being ex-
amined. This instruction is executable only provided the
cell being examined before executing the instruction is
blank. If, however, the cell being examined has already
been labelled, the instruction is regarded nonexecutable.
The execution of the instruction of erazing the label
consists in the carriage cancelling the label in the cell
being examined. The execution of this instruction is pos-
sible only in the case when the cell being examined is
labelled; but if there is no label in the cell being examined
the instruction is considered nonexecutable. The execu-
tion of the transfer-of-control instruction with the upper
jump j, and the lower jump j, in no way changes the inter-
nal state of the machine: none of the labels is cancelled
or printed and the carriage is at rest (the machine does,
$o to say, a do-nothing step). It, however, the cell being
examined before the execution of the instruction was
blank, the next should be the instruction with numnber j,;
if this section was labelled, the instruction with number j,
should be executed next (consequently, the role of the
transfer-of-control instruction consists in that the carriage,
in executing this instruction, sort of “recognizes” whether
it examines the label; that precisely was meant in the last
but one statement of Section 1.1). The execution of the

15

halt instruction does not in any way change the internal
state of the machine either and leads to its halt.

Now if having preset a program and an internal initial
state we set the machine in motion, one of the three op-
erations will be accomplished:

(1) In the course of performing the program the ma-
chine comes to a nonexecutable instruction (e.g. printing
a label in the nonblank cell or erasing a label in the blank
cell). Then the execution of the program is stopped, the
machine halts; the so-called no-result halt takes place.

(2) In the course of performing the program the ma-
chine comes to a halt instruction. In this case the program
isregarded to be accomplished, the machine stops. The so-
called result halt takes place.

(3) In the course of performing the program the ma-
chine does not come to the execution of either instruction
dealt with in (1) and (2). The execution of the program
never stops, the machine keeps going. The machine
operation goes on forever.

Sec. 1.4. Examples of Performing Programs

Let us set an initial internal state shown, for example,
in Fig. 5 and the following program:

1. V4 4 =5
2. t3

4
3. «2 5.3/ .
N3

Let us see how the machine will operate given such an
initial state and a program.

HITTMT OMMTE UMM
n n H

Fig. 5. Fig. 6. Fig. 7.

At the first step instruction No. 1 will be executed after
which the internal state of the machine will turn as
shown in Fig. 6. After instruction No. 1 is executed we

16

should pass to the execution of the instruction whose num-
ber coincides with the jump of instruction No. 1, i.e. in-
struction No. 4. It will be executed at the second step
and the machine internal state will become as depicted in
Fig. 7. Now instruction No. D is to be executed (for the
jump of instruction No. 4 is equal to 5). This instruction
will be executed at the third step; as a result of this step
the internal state of the machine will not change and

MM T IM VT TITMO
H | |

Fig. 8. Fig. 9. Fig. 10.

remains as it was in Fig. 7. Since the cell being examined
is blank in this case, the next instruction to be executed
is the one whose number is equal to the upper jump, i.e.
No. 4. After instruction No. 4 is executed at the fourth
step, the machine will reach the internal state shown in
Fig. 8. Now, at the fifth step instruction No. 5 will be
executed. This time the cell being examined is labelled,
therefore the next instruction to be executed is that
with the number equal to the lower jump, i.e. No 3.
After execution, at the sixth step, of instruction No. 3 the
machine comes to the internal state shown in Fig. 9 and
starts, at the seventh step, executing instruction No. 2.
But the latter will appear to be nonexecutable as it orders
erazing the label in the blank cell. Consequently, a no-
result halt will take place at the seventh step.

Various programs applied to the same initial internal
state can lead to various outcomes, i.e. to a no-result
halt, to a result halt, to a haltless operation of themachine.
Let us set, for instance, the initial internal state shown
in Fig. 10 and apply to that initial state the program:

1. =2
2. =3
3. Vi

The machine will perform two steps and a no-result halt
will occut at the third. Another program is applied to

20337 17

the same initial internal state:

1. =2
2. =3
3. stop.

The machine will perform two steps and a result halt will
occur at the third. Finally, yet another program is applied
to the same initial internal state:

1. =1.

The machine will operate perpetually. Let us apply the
program:

1
1. /.
N

Again the machine will operate perpetually (in spite of
the fact that neither the recording on the tape nor the
~arriage position will change).

The same program when applied to various initial in-
ternal states can in exactly the same manner produce var-
ious results. Let us regard, for instance, the following
program:

2. £3 4. =2

and apply it to initial internal states A4, B, C depicted
in Fig. 11. For initial internal state A we have a result
halt at the fourth step, for B, an endless operation of the
machine, for C, a no-result halt at the third step. Applied
to the same initial internal states, the program

4
1. ?<3 3. stop

2. V& 4 =2

produces a no-result halt for 4, result halt for 73, and an
endless operation for C.

18

Exercise 1. Can there be a program producing, at any
initial internal state, a result halt? A no-result halt?
An endless operation of the machine? What is the least
number of instructions in these programs?

Exercise 2. A certain program is known to produce:
(a) a result halt when applied to a definite initial internal

A« [TTTIM T
H

S IEREYEE
H

cATT IV I
|

Fig. 11.

state; (b) a no-result halt when applied to a definite initial
internal state; (c) an endless work of the machine when
applied to a definite initial internal state. Prove that the
number of instructions in this program is not less than 4.
Write all such programs of length 4.

Sec. 1.5. Methodological Notes

This section is addressed to the teachers of primary
school, to the supervisors of school groups for younger
children and in general for all those who are going to
instruct schoolchildren of earlier grades on the Post
machine.

As already stated in the Preface, it is possible to train
to work on the Post machine (drawn in chalk on the
blackboard or with the aid of paper tape and buttons or
clips used as labels) even seven-year-olds. In presentation
to the schoolchildren it is, of course, necessary not only to
miss some details but Lo introduce new stipulations. So
it is appropriate

2% 19

(1) to say nothing of the coordinate system on the tape
(that is needed only to specify the term “state”) and not
to introduce the concept of the internal state of the ma-
chine as a whole and of the condition of the tape;

(2) to employ as the numbers of programs some sym-
bolic representations (for instance, representation of geo-
metric figures) rather than numerals;

(3) to assume the tape finite rather than infinite and
to agree that the machine stops when the carriage comes
to the end of the tape;

(4) not to speak at all of the no-result halt; if it never-
theless occurs in performing some program, then say that
“the machine gets oul of order”;

(5) to introduce the instructions not all at a time but
step by step, each new instruction being followed by
visual exercises.

The exercises should, of course, be chosen to match the
school age. It is helpful to offer the following

Exercise. The machine starts with the blank initial
internal state (that is the state in which all the cells are
blank) and operates by the program:

1. V2
2. =3
3. =1.

The question is: what will happen to the tape? The answer
is graphic enough; it is shown in Fig. 12.

(T T ™M IV M M VIR

The carriage was
here at the beginning

Fig. 12.

We believe, though, that a schoolboy or a schoolgirl
must (and can) apply any program to any initial internal
state, so that any exercises in performing programs taking
not very much time (and even exercises in writing some
programs, for example, a program leading to the condi-
tion of the tape depicted in Fig. 12) quite do for the pur-
pose.

20

Certainly, in presenting the material to junior school-
children it is no good mentioning the words“algorithm”,
“Post machine” (you had better exclude the word “ma-
chine” altogether and say, for example, “we pass to the
next square on the right” instead of “the carriage moves
one cell to the right” and so on). And what is more, any
comment on what the given device is used for should be
delayed until it is clearly understood and the execution
of programs becomes free and easy to grasp. Tlere a quota-
tion from Prelude to Mathematics by W. W, Sawyer* is
relevant: “I will tell you first what [do; I will tell you
the reason afterward”.

The capability of perceiving any system of concepts or
any reasoning, in general, before (and regardless of) the
purpose of the knowledge is obtained, i.e. before (and
regardless of) any application seemsone of the most impor-
tant qualities which are trained by mathematical studies.
Giving an idea of the goal you are after in presenting
material makes, perhaps, for its memorizing but should
not affect understanding which can and must proceed
regardless of the goal. The ability to think formally is
a special ability developing like every ability through
training. This training can begin from an early age. The
summation of multiple digit numbers** and the simplest
exercises with the Post machine can serve as the elements
of such training, easy to grasp for primary schoolchildren.

Concluding the presentation of a certain device, the
presentation with a sufficient number of examples and
exercises, means the completion of the important stage;
following it, at the next stage, we can pass to the applica-
tion of the device described. For the Post machine such
an application consists in computations that can be done
with it. To demarcate the Lwo stages we confine ourselves
to a brief outline of the Post machine in this chapter.

* W. W. Sawyer, Prelude to Mathematics, Penguin Books, Bris
tol, 1955, p. 125.

** Multiple digit numbers are not attached a conventional quan-
titative meaning but are taken as chains of figures; the sum being
determined by the algorithm of addition in colunins (see V. A. Us-
pensky “On Teaching Mathematics in Primmary School” Mathematics
in School, No. 2, 1966 (in Russian); what we mean is that only
later is the formal summation described used to get the sum of
two quantities of apples or notebooks.

24

After the outline it is appropriate to tell the school-
children that the Post machine can be employed to obtain
the results of arithmetic operations and to offer examples
of programs (and later problems on programming too)
leading to the results of operations with the numbers
recorded on the tape. Addition of unity to a number is
one of the simplest operations. To this end we must,
of course, agree in advance how to record numbers on the
tape of the Post machine and make some more specifica-
tions. But this is the subject of the next chapter specially
devoted to the addition of unity. We can suggest, as
a helpful example, that the reader should put an exact
sense into the following formulation: “Write a program
for the Post machine performing addition of a unity” and
perhaps it will turn out that such a sense is not the only
one?

2. ADDITION OF UNITY
ON THE POST MACHINE

Various calculations can be performed on the Post ma-
chine. This chapter presents to the reader one of simplest
calculations, the addition of unity toan arbitrary number;
this can be accomplished in a few ways depending on one
formulation of initial conditions or another.

Analysing the addition of unity on the Post machine

(though as simple as it is) enables us to acquaint the rea-
der (in a very simplified form, of course) with prob-
lems arising when operating on real high-speed compu-
iers too.
The point is that the principal mathematical problem
that faces us in operation on the computers remains the
same both for physically existing and “abstract” machines.
This problem is preparing a program for the machine leading
to the given goal; and this is called programming. This
chapter deals with the problem (a series of problems, to
be more exact) on preparing programs for the Post ma-
chine that result in an increase of an initial number by
a unity.

Apart from the common principal problem, there are
many other common features typical of programming for
the Post machine and for real machines. Here are a few
points noticeable even in analysing the problem on addi-
tion of unity:

1. We can prepare different programs that lead to the
(same) specified goal, i.e. that carry on the specific pro-
cessing of data; the reader will see (in Sec. 2.2, Exercise)
that the Post machine can even operate by an infinitely
great number of programs executing the addition of unity
(even by the simplest mode of the addition).

2. If a class of initial data applied to which a program
leads to a needed result extends, the programming in this
case becomes more difficult and the program itself, which
is a solution of the problem, more complex; it will be seen
later how the program of adding unity will become more
complex with extending a class of admissible initial
conditions.

23

3. When preparing programs for the solution of more
general or more complex problems it is often expedient
to use programs, built earlier for the solution of more
particular and simpler problems, as “prefabricated” build-
ing units; the reader will see later in Sec. 2.4 how pro-
grams for the solution of more particular problems can be
used when building a program for a more general problem
on addition of unity.

4. Preparing a program, we have to bear in mind not
only what numbers it should be applied to but how these
numbers are arranged in the “store” or “memory” of the
machine; it will be seen later that the variantsunderstudy
here of the problem on addition of unity will only differ
in the position of the initial number in respect to the
carriage.

5. To strive for making programs as short as possible
is natural and this can in a number of cases be a decisive
maiter for practical computers and problems; the reader
will see later that special attention will be paid to
minimizing the program length.

Sec. 2.1. Recording Numbers on the Post
Machine and the Statement of the Problem
on Addition of Unity

Various operations with numbers can be performed on
the Post machine. But we must first of all agree how to
record numbers in the Post machine. We will always speak
of integral nonnegative numbers 0, 1, 2, 3, 4, ...

Let us consider the finite sequence of the labelled cells
following in succession one another, which sequence is
confined between two blank cells. Such sequence of labelled
cells will be referred to as an array, and the number of cells
in it, an array length. For example, Fig. 13 shows an
array of length 3, and Fig. 14, three arrays of length 5,
length 1 and length 2 each.

Now let us agree to record number n on the tape by
means of an array of length n 4+ 1 and the array itself
will be referred to as a machine record of number n. Fig-

24

ures 13 and 14, consequently, show machine records of
numbers 2, 4, 0, and 1.

Let us set a goal to perform the addition of unity on the
Post machine. We will understand our task as follows:
a program is to be built that being applied to the tape,
containing the record of number n, would lead to a result
halt; after the halt number n 4 1 should be recorded (we
mean one program applicable for any n).

The problem was not formulated quite specifically in
the preceding statement, as we know nothing of: (a) an

T IVMIVVITT I

Fig. 13,

U IVIVIVIVIVI TT IV VIV T T T3

Fig. 14.

initial internal state (i.e. the state in the beginning) of
the machine; (b) an end internal state (i.e. the state after
the result halt) of the machine; (¢) which cell the number
is recorded in; (d) what else is recorded on the tape;
(e) which cell the carriage should examine. We will assume
that in the beginning and in the end of the program opera-
tion the tape only contains the records of the respective
numbers (r in the beginning and » + 1 in the end) ar-
ranged arbitrarily; the rest of the tape is blank. To facili-
tate the task we will impose no restrictions on the end
state; so any program leading to n + 1 record on the
tape will satisfy us wherever the record was and wher-
ever the carriage was. At the same time we will make broa-
der assumptions on the relative positions of the carriage
and the machine record of the number in the initial in-
ternal state of the machine. Consequently, we will deal
with a series of problems rather than one problem. We
strongly recommend that the reader should try to solve
the problem himself before reading its solution.

29

Sec. 2.2. Addition of Unity
in the Simplest Case

We will begin with the strongest restriction imposed on
the relative positions of the machine record of the number
and the carriage at the beginning, and thereby, with the
simplest problem. We will call it problem 1.

Problem 1 (lengthy statement). Write the Post ma-
chine program possessing the following property. Whatever
number r is, if the initial internal state of the Post ma-
chine is such that the tape contains tlie machine record
of number n (and the rest of the tape is blank) and the

—4-3-2—-1 0} 23 45 6 7 89

(TTTTTTTTTIivivivi | [
[
—4-3-2-1 0 1.2 3 456 7839
OIT VMM TTTT I T
~4-3-2-1 0 1 2345 67839

ITTTIVIMVITT T LTS
|

Fig. 15. The states of class A4, differ from one another only in the
“shift” relative to the coordinate system.

carriage faces the leftmost cell of the record, executing
the program must yield a result halt; after that number
n -+ 1 must be recorded on the tape (in an arbitrary space,
the rest of the tape must be blank), the carriage being
positioned against any cell.

Denote all such states of the Post machine by A4,; in
each of these states precisely n - 1 cells are labelled and
the carriage faces the leftmost of the labelled cells. Fig-
ure 15 shows a few states of class A,; they only differ from
one another in the position of an array and the position
of the carriage, “rigidlv linked to it”, relative to the coor-
dinate origin.

Denote by F, the totality of all the Post machine
states in each of which precisely n |-1 cells are labelled and

26

the carriage is positioned against any cell. £, includes
all the states denoted by A4, and many others. Figure 16
shows a few states of class F,.

Now we can state Problem 1 shorter.

-1 01

(LI TV T T T T T T T T T TR
H

-10 1

AITTTTTITTITITMVIMITT
o
-1 01

AITTTTTTTTITTITTITT VIVIVE S
o
-1 0 1
ATTTTTTITTTITTIVIVIMTT TN
n
-1 01

gITHIT TV LT TR T T T
o

Fig. 16.

Problem 1 (shorter statement). Write a program for the
Post machine that, for any n, being applied to an arbi-
trary state from class A, produces a result halt in a state
from class E,.,.

Before approaching problem 1, we note that it does not
specify what the application of the sought program to the
states belonging to no one of classes 4, (n == 0,1, 2, ...)
should lead to, consequently, what will take place in such
states chosen as initial does not matter to us: any pro-
gram converting states from A, into states of £,,, will
come right whatever it did to the rest of the states.

Such a program, for example, will be a solution of
problem 1:

o7

Program 1,

1. <=2

2, V3

3. stop.

We said “for example” because this solution is not
unique; other programs satisfying the conditions of the

problem are possible to be built. Such a program, for
example, will also be a solution 1o problem 1:

1. =2 3. <4

4, <=5
3 5. V6

2. ¥/ oV
N3 6. stop.

The foregoing program I, is, however, the shortest (one of
the shortest, to be more precise) of the programs satisfy-
ing the conditions of problem 1. Indeed, we can prove
(and recommend the reader doing so) that no program of
length 1 or 2 can be a solution of problem 1; at the same
time there is exacily one more program of length 3 that
is also a solution of our problem; here is the program:

Program 1,
1. <=3
2. stop
3. V2

Exercise. Prove that there is an infinite multitude of
programs that are solutions of problem 1.

Note. With fixed n the states from A, only differ from one an-
other in the shift relative to the origin of coordinates (Fig. 15).
Whatever program we apply to these initial states, the results pro-
duced will, obviously, differ from one another in the same shift.
It is therefore sufficient to choose one state a, from cach class 4,
and build a program converting cach a, into a certain state fromn
Ep 1. Every program like that will in itself be a solution of prob-
lem 1. Note that state a, can be chosen from A, guite at will.

Problem 1’, differing from problem 1 only in that the
carriage first examines the rightmost cell of the array,
can be solved in a like manner. Just denote by 4, the class

#3

of all the states from £, in which the carriage examines
the rightmost labelled cell. Then the shorter statement
of problem 1’ will be as follows:

Problem 1' (shorter statement). Write the program for
the Post machine that, for any n, being applied to an
arbitrary state from class A, produces a result halt in
a cerlain state from class £, ;.

The following two programs will be the only shortest
programs satisfying the conditions of problem 1’:

Program 1;
1. =2
2. V3
3. stop.

Program 1,
1. =3
2. slop
3. V2.

Sec. 2.3. Addition of Unity in More
Complicated Cases

Now we will not stipulate that the carriage should by
all means examine one of the exireme cells of the array
as we did in problems 1 and 1’. We will only require that
at the initial state the carriage should examine one of the
cells of the array.

Problem 2 (lengthy statement). The program for the
Post machine is to be built that possesses the following
property. Whatever number r is, if the initial internal
state of the Post machine is such that number 7 is record-
ed onto the tape (and the rest of the tape is blank)and
the carriage faces one of the number record cells, the
program performed should lead to a result halt; after
that number n -+ 1 should be recorded onto the tape
(in any space of it; the rest of the tape should be blank);
the carriage can be positioned anywhere in this case.

Denote by B, the totality of the Post machine states;
precisely n + 1 cells are labelled in every state and the
carriage faces one of the labelled cells. Class B, is, ev-

29

idently, a part of class E, and contains in turn class 4,
as a part. Figure 17 depicts a few states from class B,, and
Figure 18, the general view of the state from class B,,. Then
we get the following shorter statement of problem 2:

Problem 2 (shorter statement). Build the program for
the Post machine that, for any n, being applied to an
arbitrary state from class B, leads to a result halt in
a certain state from class E, ,.

QLT IVMMVM TTTTTTT
L
1T IVMIVMIVIVI T TTT T T T8

U1 TIVIVIVVM T TTTITR
[

Fig. 17.
) n cells n” cells
U IMIVNIMVIVMIMIVI T TR
B

Fig. 18. The general view of the state from class 8,,. Here ' > 0,
n">0, n n"=n.

Each solution of problem 2 will, obviously, be at the
same time a solution of problem 1 and problem 1’ too.
There are, however, solutions of problem 1 that are not
solutions of problem 2. Such are programs I, and I,. For
problem 2, just as for problem 1, there is an infinite multi-
tude of programs that are its solution. We will, as before,
take interest in the shortest programs. We can prove (and
recommend the reader doing so) that no program of lengths
1,2 or 3 can be a solution to problem 2. At the same
time, solutions of length 4 of problem 2 are possible.
Here is one of the solutions:

30

Program il

1. <=2 3. V4

3
2. v/ 4, stop.
M

Exercise 1. Arrive at another two solutions of problem 2
of length 4 that contain a move-to-the-left instruction.
See to it that each of the solutions found contains an
instruction of label printing, a transfer-of-control instruc-
tion and a halt instruction.

Exercise 2. Prove that, apart from program II,, there
are precisely another eleven (I1,, II,, ..., II;,) solutions
of length 4 of problem 2 that contain a move-to-the-left
mstruction. Write down these solutions.

Exercise 3. Verify that programs II;, II’, ..., II,
resulting from programs 11,, I,, ..., I, by substituting =
for <= are also solutions of problem 2. P’rove that programs
I, IL,, ..., I1,,, 11, IL, ..., 11}, exhaust all the solu-
tions of length 4 of problem 2.

Consider now the initial states in which the carriage
surveys a certain blank cell rather than a certain cell of
the initial array. We will assume here that whether the
carriage positioned to the left or to the right of the
initial array is known in advance. The words “is known in
advance” imply that two programs one of which is for the
case when the carriage is at first to the left of the array
and the other is for the case when the carriage is at first
to the right of the array and not a single program operat-
ing in all the cases are to be built. So we have two problems
rather than one here. In order to obtain shorter state-
ments of these problems at once we will introduce the
following notation:

C, is a totality of all the states from class %, in which

the carriage is to the left of the array;

C. is a totality of all the states from class I, in which

the carriage is to the right of the array.
Figure 19 presents the general view of a state from class C,,,
and Figure 20, the general view of a state from class Cj,.

Problem 3 (shorter statement). Build the program for
the Post machine that, for any n, being applied to an

31

arbitrary state from class C, leads to a result halt in
a certain state from class &, ,.

Problem 3’ (shorter statement). Build the program for
the Post machine that, for any n, being applied to an arbi-
trary state from class C,, lcads Lo a result halt in a certain
state from class E, ;.

Each program that is a solution of problem 3 can ev-
idently be turned into a solution of problem 3’ if the

k cells

1
LTI T VIVIM IVIVT [}
. n+1 cells

Fig. 19. The general view of the state from class C,. Here k> 0.

k cells
A1 1 IVIVV MYIVI [T TTT
n+1 cells .

Fig. 20. The general view of the state from class €. Here k> 0.

symbol <« is throughout substituted for the symbol =-
and the symbol =>, for the symbol <. The solution of
problem 3’ is turned into the solution of problem 3 like-
wise. It is therefore sufficient to solve only one of these
problems. Here is one of the solutions of problem 3:

Program 111

1. =2 3. <4

o 3/ 4 VP
N3

2. stop.

Try to prove that problem 3 does not permit shorter so-
lutions. How many solutions of length 5 of this problem
are there?

32

Sec. 2.4. Addition of Unity in Yet More
Complicated Case

We shall consider in this section a union of all the classes
By, Co, By, Cy, B,, Cy, By, Cy, ... from the preceding
section as a class of initial states. This class will, conse-
quently, consist of all such, and only such, states of the
machine in each of which the carriage either faces any
cell of the initial array or is positioned to the left of
the array.

Denote by /), a totality of all the states of class £,
in which the cell examined by the carriage is either label-
led or positioned to the left of all the labelled cells. For
every n, class 1), is, obviously, a union of classes B,
and C,.

Problem 4. Build the program for the PPost machine
that, for any », being applied 1o an arbitrary state from
class D, produces a result halt in a certain state of class
En+1'

This problem can be reduced to problems 2 and 3, i.e. it
can be demonstrated how to obtain a solution of problem 4
from arbitrary solutions of problems 2 and 3. Let us show
how to do it. Let E be an arbitrary list of instructions for
the Post machine and /&, an arbitrary integer. We will
use E [-4-k] for the list, derived from & by adding num-
ber % to all the numbers and 1o all the jumps of the in-
structions from =. 1, [-! 7] is, for example, such a list:

8. <=9
9. V10
10. stop.

Now let IT be an arbitrary program that is a solution of
problem 2, and 111, an arbitrary program that is a solu-
tion of problem 3. Let I be the length of program I1. Now
let us make up the following list of instructions:

WAREIED SN ERY
g L [+ +1].

It can be easily verified that this list of instructions is
a program for the Post machine, that satisfies the gondi-
tions of problem 4. Indeed, every state from clags D), gither,

3-0337 i

belongs to B, or to C,,. List II [--1] works in the first case,
and list III1{} 1 -} 11, in the second case.

The foregoing procedure is, however, not bound to
lead (and, as we will see, does not, in fact, lead) to the
shortest solutions of problem 4 even if to proceed from the
shortest solutions of problems 2 and 3. Let us see what
will come of it if the procedure is applied to programs II,
and ITl. We will obtain such a solution of problem 4:

Program 1V10

1. 3/ 6. =7
g

6

8/

2. <=3 7. '\8
S

9
3. .\2 8. <9

4. \/ D 9. V10
5. stop 10. stop.

It is clear that this program can be shortened, without
affecting its operation, by merging of two half instruc-
tions into one or, as we will say, by absorbing one of those
instructions by the other. To absorb instruction No. 10
by instruction No. 5 is easier. To this end jump 10 should
be replaced by jump 5 in all the instructions where it is
found (in our case in instruction No. 9 only) and then
instruction No. 10 should be deleted from the list*.

We will obtain program IV?®in which instruction No. 9
can be absorbed by instruction No. 4. To do this it is suf-
ficient to replace jump 9 by jump 4 in instruction No. 8,
and then to delete instruction No. 9. After the two absorp-
tions being accomplished we will obtain a solution of
problem 4 in the form of program IVS,

* If we were going to absorb instruction No. 5 by instruction
No. 10, we would have jump 5 replaced by jump 10 in all the in-
structions where it is found (in the given case in instruction No. 4),
then have jump 5 removed from the list; after that we would have
made all the numbers of the instructions, following the removed one,
and all the jumps, coinciding with these numbers, less by one,

34

Program 1V?®
6

1. 3/ 5. stop
N2

2. <=3 6, =7

4 6

3.0/ 7.3/

No N8

4. V5 8. <4

Note. In a general case the absorption (in the given
program) of instruction No. o by instruction No. B con-
sists in a sequential performance of three operations:
(1) jump « is throughout replaced by jump B; (2) instruc-
tion No. a is deleted; (3) numbers a - 1, a + 2, o +
+ 3, ... (that can be both numbers of instructions and
jumps), in all instructions of the list obtained, are
replaced respectively by «, o -+ 1, « -} 2, ... If instrue-
tions No. a and No. p coincided in everything but their
numbers, the program obtained after the absorption of
instruction a by instruction f and the original program
will “operate in quile a similar manner”. The words
taken in quotes are cleared up as follows. Let us take two
samples of the ’ost machine, each set in a certain—the
same for both machines—initial state and make the
first machine work by a certain program A and the second
machine, by a certain program B. Assuming the machines
working synchronously, we will regard in parallel the
states arising in the first and the second machine at the
same time. At the initial moment the states are identical
by the condition of the problem. They may happen to be
identical at all the subsequent moments too, each ma-
chine coming to halt, if at all, at the same time and this
halt being of the same quality (i.e. it is either a result one
or a no-result one in both machines). If the process de-
scribed is characteristic of any initial state, common for
both machines, we will say that programs A and B work
quite in a similar manner. Speaking more roughly, A and B
work quite in a similar way if, for any m, on performing m
steps of program A the same state arises as on performing
m steps of program B on condition it was true for m = 0,
i.e. in the very beginning of operation. ITere are examples

3* 35

ot programs operating in a like manner: (a) I, and I
(b) I; and I,; (c) 1V!® and IVS.

Now let us see whether we can make program [V8 short-
er too. There are no two instructions that are distin-
guished by only their numbers; that is why the manner of
absorption here can, generally speaking, lead to a pro-
gram that will not operate in the same way as the initial
one. Yet program 1V® can be shortened by absorp-
tion.

Let us compare instructions No. 8 and No. 2 with this
purpose. They cannot merge into a single instruction as
they have different jumps. For all that, instruction No. 2
appears 1o be able to take upon itself, in a certain sense,
the functions of instruction No. 8 (and, therefore, to
absorb it).

Suppose we are to execute, at a certain stage of the prog-
ram operation, instruction No. 8. Assume that the cell
immediately to the left of the one examined by the carri-
age at the given moment is blank. Then instruction No. 8
will move the carriage to position it against the blank
cell whereupon instruction No. 4 will print a label onto it.
If instead of instruction No. 8 we execute instruction
No. 2, we will have the following: instruction No. 2 will
move the carriage and position it against the same blank
cell as before, instruction No. 3 will make the machine do
a “do-nothing” step whereupon instruction No. 4 will
operate once more. Let us see what will happen if the
cell immediately to the left of the examined one is not
blank but labelled. If so, a no-result halt will take place
in the former case (i.e. after instruction No. 8 has been
executed) and there will be no no-result halt in the latter
case (i.e. after instruction No. 2 has heen executed).

The above reasoning demonstrates that if executing con-
secutively instructions No. 8 and No. 4 does not cause
a no-result halt, it can be replaced by executing instruc-
tions Nos. 2, 3, 4 (while a reverse replacement can, in
general, essentially change the program operation: execut-
ing instructions Nos. 2, 3, 4 never causes a no-result halt
but replacing these instructions by executing instructions
Nos. 8, 4 may lead to a no-result halt). If, therefore, we
confine ourselves to the initial states for which, on per-
forming program I[V® a no-result halt is impossible
(and such states are known to be all the states of D,

36

where n = 0, 1, 2, ...)¥, program IV? resulting from
absorbing instruction No. 8 by instruction No. 2 will
also be a solution of problem 4. Here is the program:

Program IV7?

1./ 4 Vo
Ng

d5. stop

2. <=3 6, =17

4 6

3.2/ 1.3/

N2 N2

Exercise. Will programs 1V® and 1V7 operate in quile
a similar manner?

Absorbing, instruction No. 7 by instruction No. 1 in
program IV7? we will obtain the following program, IVS:

Program 1V§

2/
1. ', 4 V5
2. <=3 0. stop

//1

? ;=
3. ' 6. =1.

Since programs 1V? and 1V operate in quite a like man
ner, program IVE, as well as IV?, will be a solution of pro-
blem 4. Try to prove that problem 4 has no shorter solu-
tions.

The problem on adding unity for the initial states with
the examined cell being either labelled or being to the
right of the labelled array is solved quite similarly.
The solution of the respective problem—call it problem
4"—can be obtained replacing all the symbols =- by <= and
the symbols < by =-in an arbitrary solution of problem 4.

* For progtam [V8 when applied to thesc states’ causes a
result halt,

37

If we let D, be the totality of all the states from £, in
which the carriage ecither faces the array or is to the
right of it, we can notice that, for any n,class E, isa union
of all classes D, and D, and class B,, an intersection of
these classes. We can represent il in symbols:

DuUDl,l EIH DnnD'Il:Bn'

See. 2.5. Addition of Unity in the Most
General Case

We will now impose no restriction on the relative posi-
tions of the carriage and machine record of the number
in the initial state. A program is, therefore, to be built
that would perform addition of unity provided the record-
ing of the inilial number is found in an arbitrary cell
of the tape and the carriage is also positioned arbitrarily.
The corresponding requirement is stated in problem 5.

Problem 5. Write the programn for the Post machine
that, for any n, being applied to an arbitrary state of
class E, leads Lo a result halt in a certain state of class
E'n+1'

Each program that is a solution of problem 5 will,
obviously at the same time, be a solution of each forego-
ing problem. Neither of the foregoing solutions of prob-
lems 1, 1/, 2, 3, 3’, 4, 4’ is, however, a solution of prob-
lem 5 (verify this).

The initial states for problem 5 are given in Figs. 18,
19 and 20: for any state of E, either belongsto 3, or C,,
or C,,. Now we must build the program leading, for every
type of initial states depicted in Figs. 18, 19, 20, to the
goal. Try to arrive at such a program by yourself and yon
will see it is not so easy. And, perhaps, there is no such
program at all? Then try to prove it. The answer to the
question whether problem 5 has a solution will be given
in the next chapter.

3. ANALYSIS AND SYNTHESIS
OF PROGRAMS FOR THE POST MACHINE

In the previous chapters we have already dealt both
with the program synthesis problem (consisting in build-
ing programs performing the operations specified) and
with the analysis problem (consisting in describing the
conversions performed by programs). This chapter will
handle problems solved for more complicated and more
interesting situations: the analysis of programs will be
discussed in connection with the problem left unsolved in
the preceding chapter and the synthesis, in the problem
on addition of numbers.

See. 3.1. Diagrams and Block Diagrams

The programs we have dealt with in the foregoing two
chapters devoted to the Post machine were simple.

We could, therefore, without much effort analyse the
specified program, i.e. to see how it works, and synthesize
the needed program, i.e. build a program with the specific
properties.

But let us suppose that a more complicated program is
given, such as:

Program V
)
1. 2/ 13. <14
N3
5
2. <4 4. 3/
N3
3. =4 15. =16
5
4. ¥/ 16. =17
N3
23

39

6. <7 18. E16

7. o/ 19. <20

8. =9 20, «2
10 23

\g - No
10. V11 22, E20
11, =12 23. stop.

12. 2/

How shall we analyse this program?

We will do like this: we will partition our program
(the portions will be called blocks) and try to grasp
how each separate block operates and how separate blocks
interact.

In order to come upou a handy partition of program V
into blocks, let us draw a so-called diagram of this
program.

In this diagram instructions are represented by circles
and passages from one instruction to other, by arrows. In
order to draw a diagram of program V we shall draw 23
circles and mark themn by numbers from 1 to 23. Let us
draw an arrow from circle No. i to circle No. j if and only
if the ith instruction (i.e. the instruction with number i)
has a jump equal to j. If the ith instruction is, in par-
ticular, a halt instruction, then no arrow will branch out
from the ith circle, but if the ith instruction is a transfer-
of-control instruction, then two arrows will branch out
from the ith circle: one to the circle corresponding to the
upper jump of the instruction and the other, to the
circle corresponding to the lower jump. The entire pro-
gram will then be represented by a drawing shown in
Fig. 21. We will call this drawing a diagram of program V,
and the circles composing it, units of the diagram.

40

The above method can be used to draw a diagramn for
any program. The succession of the instructions executed
by the given program is graphically illustrated following
the direction of arrows in
the diagram of this pro-
gram.

Now partition program
V into groups of instruc-
tions, i.e. blocks Thereby
the diagram will be parti-
tioned into blocks (groups
of units). Partitioning into
blocks is more vividly
shown as partitioning of a
diagram.

For our purpose of ana-
lysing program V, it is ex-
pedient to partition the
diagram in Fig. 21, and
thereby the program itself,
into the following eight
blocks:

1st block—call it “start
block”—consists of units
(instructions) Nos. 1,2, 3,4;

2nd block—call it “check-
to-the-left block”—consists
of units (instructions) Nos.

5, 6, 7;
3rd block—call it “move-
to-the-right block”—con- Fig. 21,
sists of units (instructions)
Nos. 8, 9;

4th block—call it “check-to-the-right block”-—consists
of units (instructions) Nos. 10, 11, 12;

5th block—call it “move-to-the-left block” —consists
of units (instructions) Nos. 13, 14;

6th block —call it “block of erasing to the right”—con-
sists of units (instructions) Nos. 15, 16, 17, 18;

7th block—call it “block of erasing to the left”—con-
sists of units (instructions) Nos. 19, 20, 21, 22;

8th block—call it “halt block”—consists of unit (in-
struction) No. 23.

44

For cach partitioning of the given program into blocks
we can draw a so-called block diagram of this program.
With this purpose each block must be represented as
a rectangle and we must draw, from a rectangle represent-
ing block a to a rectangle representing block B, as many
arrows as there branch out from the units of block o to
the units of block pB. The block diagram of program V for

the chosen partitioning into

blocks is demonstrated in
Fig. 22 (you will find the

) Chc%k to number and the designation
the left | Erasfng 0 of the respective block in-

* the nght side each rectangle).

3 The block diagram of a
Move to 3 certain program being be-
the nght |_;11l fore our eyes, we can visual-

ly imagine ils operation

4 7 as successive execution of
Check to Lrasing to instructions now of one
the nght the left block, now of another. The

& block containing instruc-

S tion No. 1 will be referred
Move to to as a star! one, and the
the left . .

block containing the halt

instruction, a halt one; we

Fig. 22, will, for simplicity, as-

sume the halt block to con-

tain nothing more. Instead of saying “executing instruc-

tion of the given block” we shall agree, for brevity, to

say merely “executing the given block”. The start block
is sure to be exccuted first.

While executing a nontermination block, one of the
three cases can take place: (1) a no-result halt will occur
when executing the block; (2) executing the block will
never terminate, i.e. every time an instruction is executed
another instruction of the same block will have to be
executed; (3) executing the block will terminate, i.e.
after executing a certain instruction we will go over to
execnting a certain instruction of another block. In short.
getting into the nontermination block, we will either
“get stuck” forever in it or, by one of the arrows branch-
ing out from it, we will escape into another block.

Sometimes we at once, by the diagram form, can single

42

out certain blocks in which it is known that there are
certain ways of gelting out (if the case of a no-result halt
that is possible to occur at any moment is excluded). For
the block diagram in Fig. 22 such blocks are, as follows
fromn the diagram in Fig. 21, the 2nd and the 4th. Execut-
ing program V will, therefore, proceed as follows: block 1
is first executed; its execution either never comes to an
end or if it does block 2 is executed. The execution of
block 2 is sure to come to an end; after that block 3 or
block 6 is executed; after block 3 (in case of its termina-
tion), block 4; after block 4, either block 5 or 7; after the
5th (in case of its termination), the 2nd; after the 2nd
again either the 3rd or the 6th; and so on. Executing the
6th block (as well as the 7th one) may or may not come to
an end; if it does, the 8th block is executed, and the
machine comes to the halt.

Now we can, at last, solve an analysis problem for our
program. We will limit ourselves to the case in which the
initial state belongs (for certain n) to class E,. In the
next section it will be demonstrated, with the aid of the
block diagram, that the program when applied to the ini-
tial state leads to a result halt in a state of class E, ;.

A general problem on addition of unity (posed in
Sec. 2.5) is thereby solved:

Write the program for the Post machine that, for any n,
if applied to an arbitrary state from £, (taken as an ini-
tial one) causes a result halt in a certain state of class
En+1‘

Program V of length 23 appears to be precisely a solu-
tion of this problem. The author has not succeeded in
buiding a shorter program that could be a solution of this
problem. At the same time the author does not know how
to prove that the program developed is the shortest possi-
ble. Perhaps, one of the readers will succeed in doing one or
the other.

Sec. 3.2. Analysis of the Program
of Adding Unity

So, we will pass to analysing program V from Sec. 3.1, i.e. o
looking into its operation. As we have agreed, we choose, as an
initial state, the state belonging to onc of the classes E, (n = 0,
1, 2, ...). Denote by H, the class of the states from E, in which

43

the cell being examined and the cell next to it on the right are
both blank.

We get down to performing program V. The Ist block is executed
first. Now we show that its execution will come to an end (i.c. we
got out of it and to the 2nd block); at the same time we will see
what state the machine will be in after its execution. Let us con-
sider three cases.

Case. 1. In the initial state the cell being examined and the cell
next 1o it on the left are both blank. In this case instructions Nos.
1, 2, 4 will work in succession, whercupon the execution of the
block is accomplished, the machine coming to a state of class #,,.

Case 2. In the initial state the cell being examined is blank but
the cell next to it on the left is labelled. This signifies that the array
of length » -|- 1 we are concerned with
3-2—10 1 2 3 4 istothe left of the cell being examined

and, consequently, all the cells to the
}r I]—[l I “ right of it are blank. In this case in-
structions Nos. 1. 2, 3, 4 will consecu-
. tively be executed, whereupon the
exceution ot the block will be accom-
plished, the machine arriving at a state
Fig. 23. of class H,.

Case 3. In e initial state the cell
being examined is labelled. This
implies that the carriage is positioned just against one of the
cells of the array of length n -} 1; let it face the kth cell to the
right of this array. In this case instructions Nos. 1, 3, 4, 3, 4, 3,
4, . .. will operate, the pair of instructions Nos. 3 and 4 being
exceuted precisely & times until the carriage is against the first blank
cell to the right; after this the execution of this block terminates

and the machine will arrive at a state of class H,.

So, whatever state of class £, program V is applied to, the exe-
cution of the 1st block will come to an end, whereupon the machine
will be in one of the states of class //,,.

To achieve our goal (that is to ascertain that program V is a so-
lution of a general problem on adding unity) it, therefore, suffices
to prove that applying this prograin, beginning with the 2nd block,
to an arbitrary state of class I, we will, sooner or later, get a result
halt in the state of class I, ;. It is this fact that we are going to
prove now.

So, let the machine be in a certain state of class #,. Let us fix
this state and denote it by /.. We know that a whole-numbered coor-
dinate system is introduced onto the tape; according to it the cells
of the tape are numbered by integers. Let us forget this “old” coor-
dinate system and introduce the following, new (also whole-num-
bered), system: the cell being examined in state o will be nuinbered 0;
the cells to the right and to the left of it, 41, +2, 43, . . . (Fig. 23).
Let us emphasize that this coordinate system depends on state k.,
of I, being considered. Then the array that is a record of number »
is found in the cells numbered m, m 4- 1, ..., m 4 n, where m is
any posilive or negative number. The cells numbered 0 and 1 are
known to be blank. Therefore, either m 4+ n << 0 or m << 1.

Let us denote by H} the state of the machine in which the cells
numbered m, m + 1, ..., m 4 n are only labelled (and they only)

44

and the carriage examines cell No. 0. Then class of states /1,
consists of states UM, where cither m 4- n < 0 or m > 1, i.c. of
states

(a) Hz"', Hit-2, Hip8, .,
(by HE, Hy, H, ...

The general view of these states is shown in Fig. 24. The initial
state b we are interested in is one of these states HE.

m+n -2-10 1 2

T VVE VMM T DI L[LT

| S —
k cells (k =0) .

-2-10 1 2 3 m+n

LT 00 IVIVIVIVNIVIV] [®
| —
| RO
Fig. 24. The state HJ: (a)for m -} n << 0, (b) for m > 1.

We are, therefore, to prove that under the program operation,
beginning with the 2nd block, each of the states /7 where either
m -+ n < 0or m>1 converts, with a result halt, into a state of

m+n

VM (VM LT [T VIVT} AL i@

—
k cells (k> 0)

T IVMI (VL LT LT IVVR VNI T

k cells (k =0)

Fig. 25. The state of class W (p, q) is either (a) for m 4 n < p
or (b) for m > q; the carriage can be positioned anywhere.

class £, 4,. That is what we are now going to find by following the
conversions state I/7? undergoes when executing in succession the
blocks of the program.

With this purpose in view we will introduce certain notations.
Let whole numbers m, n, p, ¢ meet the following three stipulations:
1) p<q; () n>=0; (3) either m - n<p or m > q. We will
denote by W7 (p, q) the class of all the states of the Post machine
that meet the following two stipulations: (1) the cells numbered p
and ¢ are blank and all the cells between them, labelled; (2) the
cells numbered (m — 1) and (m 4 n 4 1) are blank and all the
cells between them, labelled.

4

The general view of the states of class W% (p, q) is depicted in
I'ig. 25. We will denole by R (p, ¢) the state of class Wi (p,)
in which the carriage examines the cell numbered p, and by S™ (p,
q) the state of class WP (p, q) in which the carriage faces the cell
numbered gq.

The following assertions can be directly verified:

1°. HT = RM (0, 1).

2°. 1f before the 2nd block began operating the Post machine
state was RY (z, y), with 2 — 1 55 m 4 n, then after the 2nd block
was executed the machine state will be R® (x — 1, y), the next
block to be executed will be the 3rd block.

3°. If before the 3rd block is executed the Post machine state
was R (z, y), the execution of this block will come to an end where-
upon the state of the Post machine will be S™ (x, y).

4°. If before the 4th block is executed the Post machine state
was SB (z, y), with y + 1 5= m, then after executing this block,
the state of the machine will be S7 (z, y 4 1) and the next to be
executed is the 5th block.

5°. If before the 5th block is executed the Post machine state was
S™ (x, y), then the execution of this block will terminate; after that
the state of the machine will be R (z, y).

We will represent the execution of a block by a rectangle with
the block number inside it; the states preceding the execution of
the block and resulting from the execution will be written immedi-
ately to the left and immediately to the right of the respective rec-
tangle. Then, basing ourselves on assertions 1°—5°, the Post machine
operation proceeding from state /™ and performing our program
beginning with the 2nd block, can be represented by the following
sequence:

np =R, 1) [2|Rp(—1,1) [3]sp(—11)
[4]sp(—1,2, [5]RR(-1,2, [2]AP(-22)
[3]sm(—2,2) [4]sm(—2,3), R (—2, 3)

5
2| Rp(—3,3)...

The sequence goes on until one of the following two events occurs,

The first event. At a certain moment of time, before the execu-
tion of the 2nd block began (perhaps, in particular, at the very begin-
ning), such R® (z, y) proves to be the machine state that = — 1 =
= m n.

Th—e}; second event. Al a certain mowmnent of time, before the exe-
cution of the 4th block began, such S (z, y) proves to be the machine
state that y 4- 1 = m.

Note that one of these events will occur without fail (the ques-
tion to the reader: why?)

Let us consider cach of thesc events independently.

The first event. Let, by the time the 2nd black began operating.

the state of the machine be BR% (z, y), where z — 1 = m 4- n. This

46

state is shown in Fig. 26. After the 2nd block is executed, a state
represented in Fig. 27 arises. The last instruction of the 2nd block,

m+nXx y

H_IMIVIN AVIVI IVIVN IVIVT T T}
|

Fig. 26. The state R (for m 4 n 4 1, y) is shown here.

instruction No. 7, “transfers control” to the 6th block, i.e. it is
the 6th block that will have to be executed. That the execution of the

m+n Xx y

TTVIVR INVVVVIVR TNV T T3
n

Fig. 27. Here is the state arising if the 2nd block is applied to the
state depicted in Fig. 26.

6th block will terminate is easily verified and the state shown
in Fig. 28 will arise. The 8th block will he applied to this state
which block causes a result halt in this state.

m+n x

TVMR VM TT TTTTT
|

Fig. 28. Here is the state arising after execution of the 6th block
applied to the state shown in Fig. 27. In this state a result halt
will occur subsequently.

The second event. Let, by the time the 4th block began operat-
ing, the state of the machinc be ST (x, y), where y 4+ 1 = m. This
state is demonstrated in Fig. 29. It is casily verified that the 7th

m+n

TTT VIVR iV VIVR VIV T T
n

Fig. 29. The state S (x, m — 1) is depicted here.

block will be executed after executing the 4th block, then the 8th
one that will lead to a result halt in the state shown in Fig. 30.

47

it remains to note that both the state in Fig. 28 and the state in
Fig. 30 belong to class E,, ;. So, in either of the two possible cases

X v m m+n

dITTTD T IVIVIVN AvM T T
H

Fig. 30. In this state a result halt will occur after execution of the
4th, 7th and 8th blocks (applied to the state depicted in Fig. 29).

the machine operation will end in a result halt with a state of class
E, 4, arising, which was to be proved.

Sec. 3.3. Again on the Problem
on Addition of Unity

So, the general problem on addition of unity has been solved.
Let us analyse its solution. The reader will, of course, admit that
the main difficulty in solving this problem is to find the array of
length n 4- 1 recorded onto the tape rather than to link one more
cell to this array. When solving easier problems on addition of
unity that were discussed in Chap. 2, we knew the direction in
which to look for the array and, corresgondingly, built the program
that began operating with shifting the carriage in the respective
direction (unless at the very beginning the carriage turned out to
face the array sought for). Solving the general problem we do not
know the direction where to move. That was precisely the reason
why this problem must at first seem unsolvable to some readers.

What is the way by which one can hit upon program V or other
similar program that the reader has already built or, perhaps, will
build? Here it is. Imagine we are standing on the l'oaéJ that is infi-
nite both ways, and somewhere on this road there is a nagic stone
we are looking for. We are not aware of the place where it is, we
are only aware of that it is sure to lie somewhere. How shall we act?
Whatever direction we have chosen the magic stone may happen to
lie just in the opposite direction. We should, obviously, walk in
turn now in one direction, now in the other, all the time making
greater the swing of the alternate movement: first take a step in one
direction, then two steps in the other, then again three steps in the
one direction and then four steps in the other direction, and so on
until we stumble across the magic stone.

Here is what we will now think over. How shall we judge the
moment when to turn back, that is to change the/direction of move-
ment? One would think it is very simple: we must only count the
steps and know, at each moment, how many steps we must make
in the given direction and how many steps we have already made.
In fact, this is a matter of some difficulty, that is how to remeiuber
the numbers of steps. If we retain them in our memory, we must be
prepared to remember numbers as large as necessary which is impos-
sible; actually, if the magic stone is quite far away from our start
position, we will have .te.remember numbers whose remembering

48

surpasses our brain capabilitics. We can write down the number of
steps, say, in a notebook carried on ourselves but then we must be
prepared to carry on ourselves as bulky notes as necessary (reading
these notes will become a separate task in that case). If carrying
any notes on ourselves is not allowed, it may seein, at first sight,
impossible to overcome this obstacle. Yet there is a way out of this
difficulty. It is as follows: we can employ the road itself to make
notes. And we will take advantage of it. Following Tom Thumb’s
example, we will inark out steps on the road by crumbs or by little
stones: having made a step, we will put, say, a little stone before
us (unless a little stone is already there). Thus, following the little
stones and reaching the place where there is no stone, we will put
one more little stone and change the direction for the opposite one,
and so until we find the magic stone. This is just the method of
searching for the array that was realized in program V; the role of
little stones was played by labels printed by the carriage to mark
the cells it moved through. Note one more circumstance: in our
case a label also plays tge part of the magic stone; that is why
we should see to it that a litile stone and a magic stone should not
be mixed up (in program V this was done by check blocks). The
Tom Thumb method has a shortcoming consisting iu that we have
to keep in our pocket an unlimited supply of little stones or crumbs
(of course, this shortcoming is not essential for the Post machine).
We can, though, do with two little stones only. For this purpose
we must put one little stone to our left and the other, to our right
and then walk between thein and move them; namely, every time
we reach the little stone we are to carry it one step forward, turn
back and walk backwards until the other little stone is reached that
should be dealt with in exactly the same way.

Exercise. Build the program for the Post machine that realizes
the method just described of searching for the magic stone with
the aid of two little stones. Compare the length of the program built
with that of program V.

Let us turn back to considering program V once again. The rolo
of each block in this program is clear from its designation: the mov-
ing blocks move the carriage along the array of labels, printed by
it before, to the end of the array; the check blocks control whether
or not the carriage approached closely the record of the number
sought; the crasing blocks erase the labels the carriage have printed
throughout its moving. If a state of class H, is first set and the
program is performed beginning with the 2nd block, the required
result will be produced. (So, if the program is required to produce
a result when applied to a state from H,, only, we could have limit-
ed ourselves to the latter 19 instructions, first making, of course, all
the numbers of addresses and jumps less by 4.) The purpose of the
start block is to drive the machine out of an arbitrary state of
class E, into some state of class /f,. We will note that the start
block operates in all the events: even if the carriage in the initial
state is already positioned against the number record sought for, the
start block moves the carriage off this array in order to begin, after
that, searching for the same array. It, obviously, seems senseless. Is
it not easier first to recognize whether or not the carriage is, at the
beginning, against the array (i.c. whether Case 3 on p. 44 takes
place)? If it is, one more label is to be added on (just as was required

&=—=0337 49

in problem 2, Sec. 2.3); if it is not, move one cell to the left and
see whether there is a Jabel there (Case 2 on p. 44); if there is a label,
add one more label on the array sought for (as was required in prob-
lem 1, Sce. 2.2); if no—in this case only, with two no’s—instruc-
tions. Nos. 5-23 of program V are to be included.

Let us build the program realising this scheme. It is expedient
to build a program together with its block diagram. To this end, we
shall refer to any of the programs of length 4 that are the solutions
of problem 2 from Chap. 2 as program II; to any of the programs of
length 3 that are the solution of problem 1’ from Chap. 2—as pro-
gram I’; and the list of instructions from No. 5 to No. 23 from pro-
gram V will be denoted by I'. The block diagram in Fig. 31 repre-
sents the program being sought for. It will be recalled that, accord-
ing to the designation in Sec. 2.4, for any list of instructions &,
& [4 m] denotes the list produced from 2 by increasing the number
of all the instructions and all the jumps by m.

R
\2

I [+1] 6==1

/11
‘— 12, —l

I'[+7] r[+é]

Fig. 31,

The program in Fig. 31, with program II chosen properly (namely,
in case program II contains a move-to-the-right instructions, i.e. is
one of programs I1;, II;, . . ., II;, mentioned in Exercise 3, Sec. 2.3),
leads to a result halt by a procedure that is not longer than pro-
gram V, i.e. in any initial state it does not need more steps than
program V (we recommend that the reader should verify that it
is not so in case when program II contains a move-to-the-left instruc-
tion, i.e. is one of programs II,, II,, ..., II;,). In certain cases
the program in Fig. 31 leads to a result halt even by a shorter
procedure than program V, i.e. requires less number of steps of the
machine operation. We invite the reader to verify this and make
sure that the program in Fig. 31 requires, to lead to a result halt,
either as many steps as program V does (for initial states as in
Case 1 on p. 44), or 6 steps less (for initial states as in Case 2), or 5
steps less (for initial states as in Case 3).

But the program in Fig. 31 contains 29 instructions. Even if the
three halt instructions of this program are merged into one, just
the same it contains 27 instructions, which is more than 23. It is
not strange as here there are actually three different programs for
each of the three possible cases on p. 44 that may arise at the begin-
ning. The role of the start block—somewhat paradoxical at first

50

sight—in program V jusl consists in reducing all the possible
states to one-- the state of class /f,,. Owing to it the gain in the pro-
gram leoglh is achieved. IHere we use, thus, one of the methods
practised in mathematics and consisling in trying to reduce the
solution of all arising problems to the solution of problems alrcady
solved. (In the example discussed, we reduce the solution of prob-
lem on addition of unity for an arbitrary initial state to the solu-
tion of the same problem for states of /1,,.) This standard method
generally results—il applied effectively—in various sorts of gain,
for instance, in gain in the storage capacity needed to memorize the
prograin (and in the general case, the method of solution) of one class
of problems or other. It, thercfore, plays an important role in
mathematics. There is a joke popular, not without reason, with
mathematicians who (at least some of them) take pride in it; the
joke involves two probleins.

Problem One. Given: matches, the stove unlit, the tap turned off,
the empty kettle; required: to boil water. Solution. Sirike a match,
fire the stove, turn on the tap, fill the kettle with water, put it on
the stove, boil the water.

Problem Two. Given: the stove f{ired, the tap turned on, the
kettle filled with water; required: to boil the water. Solution.
Reduce the problem to that already solved (i.e. to Problem One).
With this purpose we quench the stove, pour the water out of the
kettle, turn off the tap, whercupon it remains to act as in the solu-
tion of Problem One.

Note. The amount of actions for reducing Problem Two to Prob-
lem One can be cut down combining quenching of the stove with
pouring water out of the kettle onto the stove.

Sec. 3.4. Addition of Numbers in Simple Cases

Now get down to addition of numbers on the Post ma-
chine. Only nonnegative whole numbers will be consid-
ered as addends. We will, as before, represent nonnegative
whole number m by an array of length m -+ 1. To perform
addition of numbers on the Post machine means to build
the program that, being applied to the tape containing
the record of numbers m,, m,, ..., my (k> 2), would
lead to a result halt, the record of number m,; + m, +
+ ... 4+ m, appearing on the tape after this halt. A num-
ber of specifications are to be made. First of all we will
always assume that the tape contains, at the beginning,
no record but that of numbers my, ..., m, and require
that is should, at the end, contain no record except their
sum; we will impose no restrictions on the position
of the carriage at the end; as to its position at the begin-
ning, we will, for simplicity, believe that in the initial
state the carriage faces the leftmost of the labelled cells.

i 51

Next, various assumptions can be made on the distance
between arrays serving for recording numbers. (The
number of cells between the rightmost cell of the left-
hand array and the leftmost cell of the right-hand array is,
naturally, called the distance between two arrays.) In
the simplest case (that we begin with) the distance between
the neighbouring arrays equals 1. Finally, certain restric-
tions can be imposed on the number of addends believing
their number to be earlier specified or arbitrary.

The simplest case is regarded in problem (a).

Problem (a). Build the program of addition of two
numbers recorded at the distance of 1 from each other.

m; +1 cells m, *+1cells

T TIVIVR IVVIVI IVIVIVR VIV T T3
|

Fig. 32.

In virtue of the assumptions made the initial state for
problem (a) will look as in Fig. 32.

The simplest method of solving this problem is filling
in the empty cell between the arrays putting the label.
Then, if m, and m, are the addends, m, + m, -+ 3 label-
led cells will arise on the tape while there should be
my -+ my + 1 labelled cells. Two unnecessary cells should

be erased. Program A to be found below is the one that
realises the scheme of actions just stated.

Program A

1. =2 4. =5 7. t8

3 6 8 «9
2. v/ 5. 3/ =
N N4 9 E10

3. V4 6. <=7 10. stop.

We will gain in the number of instructions if we erase
two labels not at the end but at the beginning immediately
in the left-hand array. We should be careful here in order
to allow for the case when there is only one label in the
left-hand array. This scheme is realised in program A con-

52

sisting of 8 imstructions only. Instruction No. 3 just
takes into account the case when there is only one label
in the left-hand array.

Program A
.82 4 t5
2. =>3 5. =6 7. V8
7
3. /0 6/ s stop.
N4 N5

Problem (b). Build the program of adding arbitrary
amount of numbers recorded onto the tape at the distance
of 1 from one another.

m, +1 cells m,+1 cells

P
[T IVIVN VIVIVI_IVIVN MVIV] IVIVIX
|

m; +1 cells

"
YIVIVL IVIVIN vivivi (]
Fig 33.

By virtue of the assumptions made the initial state for
problem (b) will be as shown in Fig. 33. It follows that
the program should be made up that, for any number &
and any numbers My, Mg, .« .y My, would lead to a result
halt in the state in which number m; + my + ... +
+ my is recorded on the tape. Here is the shortest (more
precise, one of the shortest) program known to the author:

Program B

/10
1. t2 5 =6 9. ?\8
/7
2. =3 6. ? 10. =11
N8
/4
3 ?\2 7. stop 11. E12

53

We recommend that the reader should verify this pro-
gram (as well as the rest of the programs in this section)
employing a specific example and, thereby, comprehend
the idea underlying its operation. The idea in the given
case is that we split the labels off consecutively, two
at a time, on the left (by instructions Nos. 1 and 11) put-
ting instead one label into the nearest blank cell on the
right (by instruction No. 4); if the cell next to the nea-
rest blank cell on the right is also blank (it is verified by
instructions Nos. 5 and 6) that signifies it is time to have
done with it (transfer of control to imstruction No. 7).

Now let us pass on to adding numbers recorded onto
the tape at an arbitrary distance from one another.

Problem (c). Build the program of adding two numbers
recorded at an arbitrary distance from one another.

m +1cells mﬁlﬁli
LLIVIVN yIVIVE T T T IVIVIM MVIVITT
- T
Fig. 34.

The initial state for problem (c) is shown in Fig. 34.
The program leading to the goal should be built, no
matter what nonnegative whole numbers m;, m,, I are.
Here is one of such programs:

Program B
.82 5 =6 9. =1 13. t 14
7
2. =3 6. ? 10. <11 14 stop.
N0
4 12
3. v/ 7. «8 11 ?<
No 1
/9
4. V5 8. % 12. =13
N7

The idea of this program is that the left-hand array
“shifts” to the right until it merges with the right-hand

54

one. The shifting of the array is efiected by removing
the leftmost cell of the array to the nearest blank cell on
the right (the label is split off by instruction No. 1 and
printed by instruction No. 4). When the arrays become one
array (it is made obvious by instructions Nos. 5 and 6),
m; + my -+ 2 cells prove to be labelled, i.e. one cell more
than needed. Instructions Nos. 10, 11, 12 move the car-
riage to the left-hand end of the array, where the unneces-
sary label is erased (by instruction No. 13). So (it is im-
portant for further discussion), the carriage in the final
position faces the cell immediately to the left of the
resulting sum.

When solving problem (a) we have already seen that
the program length can be shortened if the unnecessary
label is erased at the start of the machine operation
rather than at the end of it. Employing this method, we
obtain the following program B, of length 12 practising
the same method of shifting the left-hand array to the

right and, therefore, greatly resembling program B:

Program B,
10
1.t2 5 =6 9
N2
7
2. =3 6 ¥ 10, «11
N5
12 2
3./ 1.vys 1.
Y/ N0

4. ED 8. =9 12. stop.

The shorter programs than those of 12 instructions
satisfying the conditions of problem (c) are not known to
the author. At the same time many solutions of problem (c)
of length 12 can be arrived at. First of all 111 programs
can be easily built as a result of all kinds of rearrange-
ments formed of all the instructions of program B, except
the first one (each such rearrangement must, of course,
be carried along with the appropriate change in the num-
bers and jumps). Besides, fundamentally different meth-
ods of addition can be sought for. For instance, the

53

method is possible to practise in which the following pro-
cedure is repeated many times: one label is added on the
right to the record of the left-hand number, but instead
one label on the left of the right-hand number is erased,
and so on until the right-hand array is exhausted: an
unnecessary label is erased at the very beginning by
instruction No. 1. Program B, of length 12 found below
realises this method.

Program B,
12
1. 82 5 =6 0. ?<
10
5
9. =3 6. ¥ 10. <11
Y

4
/ /
3. ?\2 7. £8 1. ?

4 V5 8 =9 12. stop.

Sec. 3.5. Addition of Numbers
in More Complicated Cases

Problem (d(k)). Build, for every k&, the program of ad-
ding % numbers recorded with arbitrary distances between
them.

m+1 cells m,+1 cells

N "
(LT IMVIN VIV T8 T IV {IVI T3

N

! +icells

m,_ +1cells my +1cells

(L IVIY AV Tt T IVN VIV T T
Viv
lk_1+lcclls
Fig. 35.

The initial state for problem (d(k)) is shown in Fig. 35.
The program must, therefore, be built, for every &, that

56

leads to the goal with any nonnegative whole numbers m,,
my, ..., Mg, ll! l2a e ey lk—l'

We will devise the program being sought for in the following
way.
Let 2 be a program that is a solution of problemn (c) and pos-
sess the following properties:

(1) when program X is applied to the initial state in problem (c)
(i.c. the state in which there are records of two numbers on the
tape and nothing else and the carriage examines the leftmost of
the labelled cells) the carriage is never positioned to the right of
the rightmost cell labelled in the initial state,

(2) after program X applied to the initial state for problem (c)
has been performed, the carriage appears to face the leftmost
of the labelled cells of the resulting array,

(3) the program contains only one halt instruction and it is
the last instruction of the program.

Let program 2 contain a -}- 4 instructions. We denote a list
of the earlier a instructions from £ by E. Let us build such a pro-
gram:

Program I'* (k)
2

Zltal Bl (& — 2al
8 [424] (& — 1)a 4+ 1. stop.

Let the reader verify that this program is a solution of problem
(d (k) (actually, if s; = m; 4 ... 4- m;, it is easy to observe
that the instructions from list E perform the addition of numbers m;
and m,, the instructions from list E {-a], the addition of nuinbers
sy and mg, and so on; the instructions from list B [4-ia], the addition
o% numbers s;4; and m;4,; finally, the instructions from list
8 [4- (k¢ — 2)a] perform the addition of numbers s,_, and my,
i.e. provide the arrival at the sum sought for.

Exercise. In what way are properties (1)-(3) used if;program I'* (k)
is found out to be a solution of problem (d (k))?

It remained to find program X with the properties required.

Neither of programs B, B; and B, will do. Program B, however,
possesses properties (1) and (3). It is casy to change it slightly so
that property (2) was fulfilled too. It is sufficient to replace the last

instruction of program B by the following two instructions:
14, =15 15. stop.

In view of the comment made (when accounting for program B
operation) on the final position of the carriage after performing pro-

gram B, the resulting 15-instruction program B* will possess not
only properties (1) and (3) but property (2) as well.

Program B3 of length 15, resulting from program B,, can also
be taken s program T as the basis for building of program TI'* (k) if,
instead of the last instruction in this program, we will take the

57

following four:

12. &13 14, =15

13. 15. stop.

Program B} possesses properties (2) and (3) and a certain prop-
erty weaker than (1) (a question to the reader: what property?) but
sufficient for program TI'* (%), based on B, to be a solution of
problem (d (k).

If there are 15 instructions in program 2 there will be
(k—1) 14 4 1 = 14k — 13 instructions in program I'* (k).

The program can, however, be built that meets the requirements
of problem (d (k)) and contains less than 14k—143 instructions.

In view of this we will denote the following list of instructions
by A; (i=0,1, 2, ...):

34-9i. =449 849i, ¢=9-49i
349 849t
449 ¥ 94-9i. ¥/
+ N5 49 O N104-91
54-9i. E 649 10497, = 14-}- i
649 => 749 1149 V349
349G+
7401 K
849

We will denote the following program by T (k):
Program T' (k)

1. =2 A,
3
2 ¥ A
1 :
Ap-g
9k —6. stop.

Let the reader make sure that, first, I' (k) is actually a program
and, second, it is a program meeting the requirements of problem
(d(%)), there being 9% — 6 instructions in the program. Note that
putting & = 2, we get, in the form of I' (2), a new solution of prob-
lem (c), this solution containing 12 instructions, as many as there
are in programs B; and B,. Program I (2) operates by the same meth-
od as program B, which consists in removing labels from the left-
hand array to the right-hand one; unlike B,, however, when per-
forming program TI' (2) the label is first crased in the right-band
array and is then added in the left-hand one, the last label in the
right-hand array being erased without a new label arising in the
left-hand one.

58

Problem (e). Build a program of addition of arbitrary
quantity of numbers recorded at an arbitrary distance
from one another.

Each program which is a solution of problem (e) will,
obviously, at the same time, be a solution of each of the
preceding problems. None of the solutions of problems (a),
(b), (¢), (d(k)) given above is not, however, a solution of
problem (e) (check it).

The initial state for problem (e) is depicted in Fig. 35.
Now a unified program is to be built that leads to the
goal for arbitrary k. Try to build such a program on your
own. You will see it is not easy. And, perhaps, there is
no such a program at all? Then try to prove it. The ques-
tion whether problem (e) has a solution will be answered
in the next chapter.

4. THE POST MACHINE
POTENTIALITIES

In the present chapter we will be engaged in the ques-
tion: what calculations in general can be performed on the
Post machine. In this connection we will have to touch
upon the general notion of algorithm. An effort to com-
pare the Post machine with electronic computers will be
made in the concluding section. The account begins with
analysing the problem left unsolved in Chap. 3.

Seec. 4.1. On the Problem of Addition of Numbers
at Arbitrary Distances

Problem (e), the most general problem of addition of
numbers recorded on the tape of the Post machine, was
raised at the end of Chap. 3. This problem required find-
ing such a common program for the Post machine that
would perform addition of arbitrary quantity of numbers
recorded onto the tape at arbitrary distances between
them. Nothing but these numbers were assumed to be
recorded onto the tape and the carriage was assumed to
be positioned, at the beginning, against the leftmost of
the labelled cells. At the termination of the program oper-
ation a sum of all the initial numbers and nothing else
is to be recorded onto the tape (i.e. the rest of the tape is
to be blank).

It will be recalled that the tape is rigidly linked to
the “constant” coordinate system, in accordance with it
the cells of the tape are numbered by integers from —oo
to +oo. We will regard, for definiteness, that all the ini-
tial numbers are recorded in the right-hand, “nonnega-
tive”, portion of the tape, the leftmost of the labelled
cells being numbered 0. So, the carriage in the initial
state examines cell No. 0.

We will try to analyse the solution of the problem
posed without predicting, for the present, how its solution
looks like.

So, let us assume that a certain program is a solution of
problem (e) and denote it by I5. Let us regard the state of
the Post machine shown in Fig. 36. Two numbers each of

60

which equals O are recorded onto the tape in this state at
the distance of a unity between them. We will take this
state as initial. Then program E is to lead to a result
halt, the number O being recorded in this case. The car-
riage, during the machine operation right up to the result
halt, will only examine a finite number of cells. Let z be

-2-1 012 3 435

OIMMITIR TTITTITD
B

Fig. 36. Here z>> 3.

the greatest number of cells examined by the carriage.
Denote by x the greatest of numbers z and 3. Let us now
regard the state of the Post machine in which the cells
labelled are 0, 2, z -+ 2, while the rest are blank, the
carriage will be positioned against cell No. 0 (Fig. 37).

=2-10 12 3% 4 5 X x+2

OTIMMTITRITT IV T
H

Fig. 37.

We will take this state as initial and apply program E to
it. Let us see how it will work. It is easily seen to work
“in the same way” as when applied to the initial state
in Fig. 36.

“In the same way” taken in quotes is specified as fol-
lows. Let us consider two Post machines. We will say
that a certain state of one machine is equivalent to a cer-
tain state of the other if in these states (1) the carriage of
the first machine faces the same cell number as the carriage
of the second; (2) each cell of the first machine, position-
ed to the left of cell No. (x+1) is labelled or empty
at the same time as the cell with the same number of the
second machine; (3) all the cells of the first machine
positioned to the right of cell No. x are empty; (4) in the
second machine cell No. (z + 1) is empty, cell No. (z + 2)
is labelled, while all the cells to the right of cell No.
(x + 2) are empty. We will assume that both machines
operate by program E synchronously, the initial state of

61

the first machine is that shown in Fig. 36 and of the sec-
ond machine is that shown in Fig. 37. These states are
equivalent. 1t is easily proved by induction in terms of ¢
that at any moment of time ¢ the following assertion holds
true: the states of both machines at this moment are
equivalent and the instruction to be executed by the
first machine coincides with the instruction to be executed
by the second machine. It follows that, operating synchro-
nously, both machines will pass from certain equivalent
states to other equivalent states under the action of the
same instructions. This very thing was meant when the
program applied to the state in Fig. 37 was said to work
in the same way as it does when applied to the state in
Fig. 36. The machines will, synchronously, at a definite
moment, come to a terminal state in which the halt in-
struction will work. Both machines will come to a result
halt at the same time. Number O will be recorded onto
the tape of the first machine, i.e. there will be only one
labelled cell, this cell being to the left of cell No. (z + 1).
Owing to equivalent terminal states, there will, conse-
quently, be one labelled cell on the tape of the second
machine to the left of cell No. (z + 1) and, besides, cell
No. (x + 1) itself will be also labelled; there will be two
labelled cells in all.

We came to the conclusion that program E applied to
the state in Fig. 37 will lead to a result halt in the state
in which precisely two cells will be labelled.

On the other hand, in the state shown in Fig. 37 there
are records of three numbers on the tape each of which
equals zero (the distances between them equal, respec-
tively, 1 and z — 1), while the rest of the tape is empty
and the carriage faces the leftmost of the labelled cells.
Program E is, by assumption, a solution of problem (e).
It is, therefore, to lead, when applied to this initial state,
to a result halt in the state in which the sum of initially
recorded numbers will prove to be recorded onto the
tape while the rest of the tape is to be empty. In the
given case the sum is equal to 0. So, only one cell will be
labelled on the tape in the terminal state. But this is
inconsistent with the above conclusion.

The inconsistence found out makes us certain that there
can be no program which is a solution of problem (e).

The reason why problem (e) has no solution is obvious;

62

however long the carriage has travelled along the tape it,
so to say, “will never know” whether it has already bypassed
the records of all the addends or, perhaps, there is one
more addend far to the right that the carriage is still to
reach. We cannot, therefore, devise the program that would
lead to a result halt, ensuring that all the addends are
taken into account. Such a program can be built only for
particular cases, for instance, when the number of addends
is known beforehand (as in problem (d(k)) from Sec. 3.5)
or when the addends are recorded at the specified (as in
problem (b)) or, at least, at the limited distances between
them.

Exercise. Devise the program, for every g, of adding
an arbitrary quantity of numbers recorded at arbitrary,
but not exceeding ¢, distances between them.

Problem (e) illustrates how important is the method of
recording data on the tape.

Seec. 4.2. Post’s Proposal

In the foregoing chapters the reader gained certain
experience in programming for the Post machine. To con-
firm this experience we recommend doing exercises 1-5.
The reader is supposed to choose on his own the initial
position of the carriage and in exercises 2, 3, 5 the distance
between the records of initial numbers as well. Nonne-
gative integers are implied throughout the given chapter.

Exercise 1. Build program of dividing numbers by 2,
by 3, by 4, . . ., by the assigned number k. Hint. By divi-
sion is understood finding the quotient or the partial
quotient, so that the result of division of 7 by 3 will be 2.

Exercise 2. Devise the program of subtraction of one
number from the other. Hint. If subtraction is impossible
(the subtrahend is greater than the minuend), the program
is not to lead to a result halt.

Exercise 3. Build the program of multiplication of two
numbers.

Exercise 4. Build the program of squaring numbers.

Exercise 5. Build the program of division of one number
by the other. Hint. If the divisor is 0, the program is not
to lead to a result halt.

We will need for further discussion a fundamental,
thoughsimple, concept of an ordered number tuple. Ordered

63

pairs of numbers rather than individual numbers have
often to be dealt with; both terms of the pair may be iden-
tical. We will put down the ordered pair like this: the
first term, then the second, and enclose the pair in angle
brackets. For instance (33, 4) and (2, 2) are ordered pairs.
A notion of ordered three-tuple is introduced in a similar
way. Such three ordered tuples are, for instance, possible:
{2, 5,1); (6,6,6); (4,5, 4). And {3,8,7,8,8,2,5)is
an ordered seven-tuple. An ordered set of numbers of any
length is called a number tuple; the ordered pairs, the
ordered three-tuples and the ordered seven-tuple written
out above are tuples. The number of positions in a tuple
is called its length. Thus (6, 2, 2, 6) is of length 4.

All the problems and the most of exercises in building
programs dealt with so far were of the following type.
A certain class of initial data was recorded: numbers (as
in Exercises 1 and 4 of the present section or in a problem
on addition of unity in Chap. 2), number tuples of the
specified length (of length 2 as in Exercises 2, 3 and 5 in
this section and in problem (a), (c) and (d(2)) in Chap. 3
or of length & as in problem (d(k)) in Chap. 3), number
tuples of arbitrary length (as in problem (b) and (e) in
Chap. 3).

Each initial datum from the chosen class—a number or
a tuple—either was placed in correspondence to a certain
resulting number (the square of the initial number, or the
quotient of the first term of the initial tuple by the second,
or the sum of all the terms of the initial tuple, and so on)
or was not placed in correspondence to anything (for in-
stance, the quotient or the partial quotient only corres-
ponded to the pair whose second term is other than zero).
The program was to be devised that would convert (with
a result halt) any initial datum recorded onto the tape into
a resulting number if any; if, however, being applied to
the record of the initial datum with no resulting number
determined the program is not to lead to a result halt. We
will always imply, for simplicity, that in the initial state
only an initial datum is recorded onto the tape and the
carriage examines the leftmost of the labelled cells and
that in the terminal state a resulting number is also
recorded onto the tape and the carriage is positioned
anywhere. We still have to specify how to record the
number tuples. In Sec. 4.1 we saw that the very existence

64

of the program required depends on the way of recording
the tuple, namely, on the distances between its terms. We
will agree to record the tuple by placing its terms at the
distance of unity between them. With an initial position
of the carriage and the way of recording numbers and tu-
ples so fixed we can speak, for brevity, of applying a pro-
gram to a number or to a tuple and of converting them
into a number or a tuple having actually in mind the re-
cords of numbers and tuples.

Now we will naturally ask the question: In what cases
do the problems of the type just described on building
programs have solutions? In other words, what calculations
can be performed on the Post machine?

The answer to it is as follows. The problem on building
a program leading from the initial datum to the resulting
number has a solution if and only if there is some general
method permitting to write down a resulting number from
an arbitrary initial datum. This assertion which is an
answer to our question will be called Post’s proposal due to
its author. It should be stressed that in Post’s proposal
a certain uniform method (as well as a uniform program)
commeon for all the initial data is meant. In addition, it is
assumed that if there is no resulting number the method
under consideration (as well as the program) does not lead
to a result which, if it had occurred, would have been
known false.

Example 1. Problem “Build the cubing program for the
Post machine” in solvable because there is a general
method permitting to calculate n® by n.

Example 2. For the same reason the program for the
Post machine that converts the record of the tuple (z, y,
z) into the record of the number {z¥ + zy) (22 — y) exists.
This program (as well as the respective method of calcu-
lations) leads to no result for z2<Cy (all the numbers we are
dealing with are nonnegative!).

Example 3. Let it be required to build the program for
the Post machine possessing the following property: if in
the decimal expansion of number 7 there are n 4- 2 deci-
mal digits occurring consecutively with only the first and
the last digits being other than 9 and the rest of n’'s be-
ing 9's, the program converts this number n into 1; if,
however, there is no such sequence of n 4 2 digits in the
expansion of i, the program converts » into 0. In the giv-

1/5 5—0337 65

en case, though certain resulting number §, equal to 0
or 1 corresponds to each n, the general method of calculat-
ing &, for arbitrary n is not known to us. The analysis of
the earlier 800 digits of expansion of n* demonstrates only
that g, = 1 forn = 0,1, 2, 6. In general, however, many
digits of expansion of ;m are written out we can, from the
digit sequence obtained, extract only the information on
equality of €, to unity for definite values of n and no infor-
mation on equality of &, to zero for, at least, some n.
Even if the equality §, = 0, for any n, can be determined,
it is only by an indirect method. The general method of
calculating &, for any n is unknown to us. If there is no
such method, then, on the strength of Post’s proposal,
there can be no program needed. (Note that applying
Post’s proposal in this direction is obvious: if there were
the program needed, the program alone would give a
certain general method of calculating a resulting number
from any n.) If, however, there is such a method, then
owing to Post’s proposal (its application in this direction
is not obvious) the program needed exists.

Example 4. Let us determine number {, for each n by
the following method: {,= 1 if for any k in the decimal
expansion of nn a consecutive run of 9's occurs (just as
there are 0, 1, 2, 3, 4, 5, 6 of such 9's); otherwise {,, = 0,
i.e. if there is the maximum array length of 9's following
one after the other (this maximum length is sure to be
more than 5, if any). The question is whether the program
for the Post machine that converts each n into {, exists.
The answer can seem rather strange: “Yes, it does, although
we cannot demonstrate it”. In fact, either a consecu-
tive run of any number of 9’s occurs in the expansion of n
or it does not. There is the general method of calculating
{, in each of these cases: we must put §, = 1 (for all n)
in the former case and §, = () (for all n) in the latter case.
It is another matter that we do not know which of the
two general methods to choose as we do not know which
of the two cases with regard to the expansion of m actually
takes place. For ecach of these general methods of calculat-
ing ¢, there is a corresponding program performing the
calculation of {, on the Post machine: for the general
method (g, =1)

* They are given in: V. Litsman, Giants and Dwarfs in the
Realm of Figures, Fizmatgiz, Moscow, 1959, p. 63 (in Russian).

66

Program
1. €2 \ 6
2. =3 6. <=7

[B4]

4
3.2/ 7.y8
N

4, <=5 8. stop
and for the other general method (§, = 0)

Program
1. =2 3. 1

4
2. ?<3 4. stop.

We can, with certainty, maintain that one of the pro-
grams presented meets the demands made but the state of
modern knowledge does not let us say which.

That the respective uniform method exists was known
in Examples 1, 2 and 4 and remained unknown in Exam-
ple 3. There are examples which are known to lack such
method but they are too intricate to present them here.

Sec. 4.3. The Post Machine and Algorithms

The notion of a uniform method of calculation common
for the entire class of possible initial data is one of the
most important in mathematics, both “theoretical” and
“everyday”. It is this notion that the teaching of mathe-
matics in the primary school is based on. Numerous exer-
cises in four operations with multi-digit numbers do not
have for an object learning to add, subtract, multiply
and divide the numbers occurring in these exercises. They
are aimed at practising the methods of addition, subtrac-
tion, multiplication and division in columns bearing in
mind, of course, that these methods are applicable to
any ordered pairs of numbers, not only to those occurring
in the book of problems. When the pupil is said to be able
to add it is not implied that sooner or later he will find
the sum of any pair of numbers but it is implied that he
knows the general method of addition.

5% 67

So important a notion needs, of course, a special term to
name it: the word “algorithm” is employed as the term.
We can now say that an algorithm exists in Examples 1, 2
and 4 (although we do not know what it is like for Exam-
ple 4), an algorithm is unknown in Example 3 (it is even
unknown whether or not it exists). As it was noted, there
are cases when an algorithm needed is not known to exist.

Although the idea of algorithm is often encountered in
practice and in science, it is not always taken notice of:
the word “algorithm” itself is not popular enough yet.
Only “Euclidean algorithm” is a generally known word
combination that serves to name one of the algorithms for
finding the greatest common divisor. We, thereby, often
find ourselves in a situation of a character from Moliere’s
Le Bourgeois gentilhomme who discovered, as late as at
a mature age, for the first time that he had been speaking
prose all his life. However that may be, we now know that
what we were taught in school was algorithms.

Each algorithm is assumed to possess a certain set called
the range of its possible initial data and consisting of
all the objects (for instance, numbers or tuples) to which
the algorithm under consideration is worth trying to
apply. When applied to some of its possible initial data
an algorithm either may produce a result (in this case an
algorithm is said to be applicable to this initial datum
and converts it into a result) or may not produce a result
(in this case an algorithm is said to be inapplicable to
this initial datum). For example, the initial data for the
algorithm of subtraction in columns are the ordered pairs
of numbers, the algorithm being applicable only to those
whose second term is not more than the first. To think
that for this algorithm the class of possible initial data
consists only of pairs {(a, b) where @ > b is hardly expedi-
ent. For we can try to subtract the second number from
the first for the pair (1244444445444445,1244444454444445)
as well; simply we will not obtain a result.

Let us see how the idea of algorithm is associated with
the Post machine. We will consider the programs of the
Post machine that being applied to any number either
lead to no result halt at all or again produce an integer as
a result (i.e. if a result halt occurs, an integer and only
this integer appears on the tape). Each program like this
defines the following algorithm whose range of possible

68

initial data is a set of all nonnegative integers and all
the results are also integers: an initial integer is taken,
and recorded onto the tape of the Post machine, the
carriage is positioned against the leftmost of the labelled
cells, the machine is started according to the program
under consideration, a result halt is awaited and the
number that appears recorded onto the tape is read.

Let us fix some number % and consider the programs that
being applied to any tuple of length k either lead to no
result halt at all or produce a number as a result. Each
program like that defines the following algorithm whose
range of possible initial data is a set of all the number
tuples of length & and all the results are integers: an
initial number tuple is taken, it is recorded onto the
tape of the Post machine, the carriage is positioned against
the leftmost of the labelled cells, the machine is started
according to the program under consideration, a result
halt is awaited and the number that will appear recorded
onto the tape after this halt is read.

Each program of the Post machine that when applied to
a number tuple of any length either leads to no result halt
or produces a number as a result analogously defines
a certain algorithm.

Let us denote numbers as /V, the set of all the number
tuplei as N, the set of all the number tuples of length &
as N*.

Now Post’s proposal can, with the aid of the term
“algorithm”, be formulated as follows.

Let a certain class of initial data, N, N* and N
be given. Let each initial datum of this class be not
placed in correspondence to anything or be placed to
a certain resulting number (generally speaking, its own for
each initial datum). We will regard two problems: (P)
“Devise a program of the Post machine converting any
initial datum for which the resulting number exists into
this number and leading to no result for an initial datum
for which the resulting number does not exist”; (A) de-
rived from (P) by replacing the words “the program of
the Post machine” by the word “algorithm”. Then prob-
lems (P) and (A) are simultaneously either have or have
no solutions.

So far we have not in any way substantiated Post’s
proposal but took it on trust. We will see now that it is,

69

to a certain extent, unavoidable. Post’s proposal consists,
in fact, of two assertions: (1) from solvability of prob-
lem (P) follows solvability of problem (A); (2) from solva-
bility of problem (A) follows solvability of problem (P).
The first assertion is obvious as the program being a solu-
tion of problem (P) alone forms an algorithm that is a so-
lution of problem (A); we have mentioned it when analys-
ing Example 3. As for the second assertion, the one that
needs substantiation (and the one Post’s proposal in essence
boils down to), it was stated, in slightly other terms, by
Post in his famous article “Finite Combinatory Pro-
cesses—Formulation 1” as a “working hypothesis”.

This “working hypothesis” that we will also call the
Post hypothesis cannot be proved, at least with the idea
underlying the word “proof” common in mathematics, and
not at all because it is untrue, but because the notion of
algorithm involved in it is not ‘mathematically’ defined.
It should be recalled that on p. 67 we defined algorithm
as “a uniform method of calculation common for the entire
class of possible initial data”. Other similar definitions
are known:

an algorithm is “any system of calculations, performed
by strictly determined rules, that, in a definite number of
steps, is known to lead to the solution of the problem
posed,”*

it is a “calculation process performed by a strict instruc-
tion and leading from variable initial data to the result
sought for,”**

it is a “strict instruction determining the calculation
process and leading from variable initial data to the re-
sult sought for,~***

“by an algorithm is understood every strict instruction,
that specifies the computing process (called in this case
algorithmic) beginning with an arbitrary initial datum
(from a certain range of possible initial data for thegiven

* A. N. Kolmogorov, Algorithm. Great Soviet Encyclopaedia,
2nd ed., vol. 2, Moscow, 1950, p. 65 (in Russian).

** A. A. Markov, The Theory of Algorithms. Proceedings of
the Steklov Mathematics Institute of the USSR Acad. Sci., 38, Izd.
Akad. Nauk SSSR, Moscow, 1951, p. 176 (in Russian).

*** A A, Markov, The Theory of Algorithms. Proceedings of the
Steklov Mathematics Institute of the USSR Acad. Sci., 42, Izd.
Akad. Nauk SSSR, Moscow, 1954, p. 3. (in Russian).

70

algorithm) and aimed at producing the result that is
fully defined by this initial datum”*.

All these are not, of course, mathematical definitions
but rather descriptions of the notion of algorithm. (In
regard Lo the absence of an exhaustive “strict "definition
the notion of algorithm resembles the notion of proof;
the notion of proof, though, not only has no definition,
neither has it a satisfactory description.**

The present-day advancement of mathematics does not
permit to “prove rigorously” Post’s hypothesis relying
on such kind of algorithm descriptions.

The substantiation of Post’'s “working hypothesis” took
some other path which is more traditional for a naturalist
than for a mathematician, that is an experimental path
supported by conceptial arguments. It is experimentally
demonstrated that actually every time an algorithm is
indicated it can be lent the form of the Post machine
program leading to the same result. The conceptual argu-
ment—we will not present it here—corroborates that the
views, held now by mathematicians, on the notion of the
technique of calculation, that is an algorithm, do not
enable one to synthesize an algorithm that could not be
replaced by the Post machine program. Post himself saw
the success of his ideas in changing the “working hypothe-
sis” into a natural law. This can be thought to have
come true.

In conclusion we will give another statement of the
Post hypothesis. Let us consider any two algorithms whose
ranges of possible initial data are identical. We will call

* V. A. Uspensky, Algorithm. Great Soviet Encyclopaedia,
3rd ed., vol. 1, 1978, p. 400 (in Russian).

** Now, in the latter half of the 20th century, as in the time of
Euclid, proof still remains no more than a convincing argument
that can convince us so that we are ready, using it, to convince
others. Formal characterization of the notion of proof with the aid
of mathematical logic, for all its importance, does not permit to
avoid entirely using this notion in its intuitive sense just described.
The great discovery made in the thirties by Kurt Godel, an
outstanding mathematician and logician of our time, consists in
that the attempt to specify formally the notion of proof proves
inevitably incomplete: the truths are found out that are proved by
intuition but do not permit constructing the proof within the limits
of specification made. (See V. A. Uspensky, “The Godel incomplete-
ness theorem in elementary presentation”. Advances in Mathe-
matical Sciences, 29, No. 1, 1974, pp. 3-47 (in Russian)).

71

such two algorithms equivalent as they are either both
applicable or both inapplicable to any initial datum of
the common set of these data; and if applicable, they give
the same result. The notion of equivalence enables us to
state Post’s hypothesis as follows: each algorithm whose
result are numbers and the set of possible initial data are

N, N* or N® is equivalent to an algorithm with the
same range of possible initial data defined by a certain
Post machine program (defined as it was being accounted
for on pp. 68 and 69).

Sec. 4.4. Additional Comments
on Post’s Hypothesis (Post’s Thesis
and Post’s Principle)

The aim of this section is to formulate certain statements which
are corollaries or variations of Post’s hypothesis and to place the
hypothesis among other similar hypotheses of the theory of algo-
ritgms. This section requires, however, a little better background
than the previous and the next ones, at least, being acquainted
with the general notions of a set, a subset, a function.

1. Our first comment will be about functions whose values can
be computed on the Post machine. We limit ourselves, for simplic-
ity, to the functions, whose arguments and values are nonnegative
integers. Such functions will be referred to as numerical. Numeri-
cal function % of arguments will be treated as a function of a number
tuple of length k. We will not here distinguish between the set of
nonnegative integers N and set of N! number tuples of length 1.
The function defined on arbitrary subset M of set Nk will be said
to be defined in Nk, Function f defined in Nk is called computable
if such an algorithm exists that (1) is applicable to any number tuple

(a3, ..., ay) entering in the domain of function f and converts
this tuple into f (a5, . . ., ap); (2) is inap%licable to any tuple not
entering in the domain of function f. The above notions are of

quite a general character. Let us now introduce more particular
notions concerning computability on the Post machine. Numerical
function f defined in N* will be referred to as ap-computable on the
Post machine (or simply af-computable) as there is a Post machine
program possessing the following property: if arbitrary number
tuple (ay, . . ., a;) (and nothing else is recorded onto the tape, the
carriage is positioned against the leftmost labelled cell and the
machine is started, then a result halt will occur if f is defined on
a tuple {a,, . . ., ap); in this case, after the halt, number f (a,, . . .,
ap) (and this number only) will appear to be recorded onto the tape.
On the strength of Post’s hypotﬁesis every computable numerical
function is af-computable on the Post machine (the reverse is evi-
dent in view of that the Post machine program itself is an algorithm).
It is no use trying to prove this statement (at the level of rigour
common in mathematics) without making use of Post’s hypothesis.
For reasons that will be given below the statement that every com-
putable function is af-computable is naturally called Post’s thesis.

72

2. The restrictions on the computability of functions on the
Post machine can be made stronger. I'unction f defined in Nk will
be called ff-computable on the Postfmachine (or, in_brief, simply
fp-computable) as there is a program for the Post machine possess-
ing the following property: if arbitrary number tuple {a, . . ., a)
(and nothing else) is recorded onto the tape, the carriage is posi-
tioned anywhere and the machinegis started,jthen a result halt will
occur if and only if f is defined on tuple {(g;, . ."., a;) and in this
latter case, after the halt, the record of number f (g, ..., a)
(and only this number) will appear on the tapc. Every 1bﬁ-comput-
able function is, obviously ap-computable. Since the notions of an
ap-computable function and of a BE-computable function are
strictly defined we can try to prove (at the level of rigour common in
mathematics) tho identity of these notions. Such an attempt is
successful: we can prove that every af-computable function is Bp-
computable and, hence, due to Post’s proposal every computable
numerical function is ff-computable.

The definitions of af-computability and BP-computahility
differ in the restrictions imposed on the position of the carriage at
the beginning of computations. The position of the carriage at the
end of computations can likewise be of interest. Let us add on to
the definitions of af- and pB-computability after the words “(and
only this number) will appear on the tape” the phrase: “the carriage
facing the leftmost cell of this record.” We will get the definitions of
aa-computability and Pa-computability accordingly. We can
prove that both the class of pa-computable functions and the class
of PB-computable functions are identical with the class of afi-
computable functions.

To prove the identity of all the four classes is not difficult. It
is even more simple to prove that the definitions differing only in
restrictions imposed on the carriage position at the end are equi-
valent. To this end, we must turn to the program performing the
search for an array on the tape (as it was pointed out in Sec. 3.3,
such a programn had, as a matter of fact, been built) and change
it into the program searching not only for the array but its left-
most cell. A little more cumbersome is the proof of equivalence of
definitions differing in the initial position of the carriage; here
we have to devise the program enabling us to find the leftmost la-
belled cell of this record as the tuple is recorded onto the tape.

3. Thus, we have four definitions of the same family of numer-
ical functions. The functions of this family will be, naturally, re-
ferred to as computable on the Post machine or, shorter, computable
according to Post. Post’s thesis can now be stated like this: every
computable function is computable according to Post.

Here weo facoe the following general situation: a certain accurate-
ly defined class of numerical functions is given which is specified
by a definite mathematical definition (the class of functions comput-
able according to Post in the given case); it is asserted that every
computable (in the intuitive sense) function belongs to this class.
This kind of assertion was first made by A. Church in 1936 and was
called Church’s thesis. True, Church did not examine all the comput-
able functions but total functions alone (defined everywhere on
the respective interval Nk®). Church’s thesis has stated that every
function of this kind is general recursive. The notion of a genera]

6—0337 73

recursive function had, however, “a rigorous mathematical” defini-
tion. Later S. Kleene, having generalized this thesis, declared that
any computable function (not only a total function) is a partial
recursive function*. This statement referred to by Kleene himself as
a thesis is naturally called Kleene's thesis or Kleene-Church’s thesis**.
The term “thesis” should be naturally applied to all the statements
of the type considered. The assertion that every computable function
is computable according to Post is, therefore, called Post’s the-
sis by us.

None of these theses can be proved (in the usual mathematical
meaning of the word) as they are an attempt to replace an intuitive
notion by a formal one; but admitting one of them, we can derive
any other.

4. Let ap arbitrary set and two arbitrary algorithms be given.
We say that these two algorithms are equivalent relative to this set
as soon as they are both applicable or both inapplicable to any
element of this set, and if applicable, lead to the same result. For
instance, two algorithms that have a common range X of possible
initial data and are equivalent in the sense of Sec. 3 can be said to
be equivalent relative to X. The algorithms of conversion of num-
bers and number tuples specified by the Post machine programs will
be called Post’s algorithms. In the previous chapters we came more
than once across a few programs existing for the solution of the same
problem; each such program led to Post’s algorithm of its own,
nevertheless, all these algorithms were equivalent relative to the
set of initial data contemplated in the problem under consideration.

We can suggest the following statement of Post’s hypothesis
which is equivalent to the previous one: let X be one of the sets N,

Nk, N* and let be given such an algorithm (with an arbitrary
range of possible initial data) that the result of its application to
any element of X, if this result does exist, is an integer; then this
algorithm is equivalent, relative to X, to certain Post algorithm.

It is clear that having admitted the new statement of Post’s
hypothesis, we derive the earlier one as a corollary. That the new
statement can be derived from the earlier one is substantiated by
a more detailed analysis of the notion of algorithm which is beyond
the scope of this book.

5. Now we will pass on to another slightly more general con-
ception of Post’s algorithm and, hence, more general statement of
Post’s proposal. Let us begin with agreeing on what objects we
will consider possible initial data for Post’s algorithms in a new,

* The numerical function is called partial recursive if it can
be derived starting from y = z 4- 1 and y = 0 by performing, in
any number, the following operations enabling one to derive new
functions from those already derived: (1) to substitute functions
into the function; (2) to define a new function by induction; (3) to
define the function implicitly. For more details see “Recursive
Functions” in Great Soviet Encyclopaedia, 2nd ed., vol. 36 or 3rd
ed., vol. 21 (in Russian).

*s For the statement of Church’'s and Kleene's theses see
S. C. Kleene, Introduction to Mctamathematics, D. Van Nostrand
Company, Inc., Princeton, N.Y., 1952.

74

broader sense (before we have regarded only numbers and number
tuples as initial data).

We will consider all possible chains made up of digits 0 and
1:01ov110f, 1, 001000, 1001, and so on.

All such chains—a so-called “empty” chain containing no digits
at all is also included lLiere— are also referred to as “words in {0, 1}
alphabet”. We will pick out the chains that begin with and end in 1;
such chains will be called Post’s words. Only the second and the
fourth word in {0, 1} alphabet out of the four given above are Post’s.
The sct of all Post’s words will be denoted as P.

Let us agree to represent Post’s word on the tape by labelled
(for 1) and blank (for () cells. The word 10011 is, for instance, re-
presented as shown in Fig. 38.

If, in turn, there arc only a finite number of labelled cells on the
tape, Post’s word can be believed to be represented on it, belween

LIV T IVM T T T T

Fig. 38, The Post word 10041 is represented here.

the leftmost and the rightmost labelled cell including these cells. It
is patural to identify Post’s words with their representations on the
tape. The record of an arbitrary number or a number tuple is, in
particular, Post’s word: number 2 will be represented as 111, num-
ber tuple (3, 2) will be represented as 11110111, and 110101 is the
representation of number tuple (1,0, 0); it will be noted, too, that
number 0 will be represented as 4 and number 1, as the word 11.

If the Post machine program is applied to the state in which
only a finite number of cells is labelled (i.e. Post’s word is represent-
ed on the tape) and leads to a result halt, then only a finite number
of cells will again be labelled on the tape (i.e. a certain Post word
will again be represented). Let us fix the initial position of the
carriagerelative to the representation of the initial Post word on the
tape—for definiteness we will, at the beginning, position it against
the leftmost labelled cell. ‘Then the program, if it leads to a result
halt at all, will lead from the tape with the initial Post word repre-
sented on it to the tape containing a certain new Post word. Hence,
the program can be regarded to convert Post’s words into Post’s
words, i.e. specify a certain algorithm of converting Post's words: it
is every algorithm of this kind that we will call now Post’s algorithm.
Thus, possible initial data (as well as possible results) of arbitrary
Post algorithm (in new broad sense) are Post’s words; only num-
bers and number tuples or, in our present terms, Post's words in
which po consecutive run of two zeroes occurs were previously
admitted as possible initial data for Post’s algorithms.

6. Many problems dealt with in the foregoing chapters can be
interpreted in terms of Post’s algorithms. (Many, but not all as,
by virtue of our agreements, 'ost’s algorithms presuppose the
carriage positioned, al the beginning, against the leftmost labelled
cell. Only the first of the prohlemns in Chap. 2 can, therefore, be
stated in the language of Post’s algorithms.) The problemn on addi-

8% 75

tion of two numbers at the distance 1—problem (a) from Chap. 3—is,
for instance, interpreted as a problem on synthesizing Post’s algo-
rithm converting any Post’s word of the form

11...1 o 11...1
— S
(m;+1) times {(m,+1) times
into the word
1 1 ...1;
e e e’
(my+m,y+1) times

the problem on addition of two numbers at arbitrary distances—
problem (¢) from Chap. 3—as a problem on synthesizing Post’s
algorithm converting any Post word of the form

1 1...14 0 0...0 11...1
S —
(my+1) times (I+1) times (m,+1) times

into word 1 1 ... 1. For the given Post word, we will call

N————— e S]

(my+mo+1) times
any chain of consecutively running 1's of this word bordering on
zeroes its array. Thus, there are three arrays (1, 111 and 111) in the
word 101410111, The problem on addition of k¥ numbers at arbi-
trary distances (with fixed k) — problem (d (%)) from Chap. 3—can
be interpreted as a problem on synthesizing Post’s algorithm con-
verting any Post word, containing exactly k arrays, into the word
made up of & unities where k is the number of unities in the initial
word less by (k — 1). All these problem, as we saw, are solvable.

7. Is it possible to synthesize, for every algorithm performing
conversions of Post’s words, Post's algorithm equivalent to it
(relative to P)? No, not for everyone. As we saw in Sec. 4.1, the
problem on addition of arbitrary quantity of numbers recorded at
arbitrary distances cannot, actually, be solved on the Post machine.
It means, in our new terms, the following: there is no Post algo-
ritbm converting any Post word into the word1 1 ... 1 , where

N r——, s

[t—(k—1)] times
i is the number of unities, and % is the number of arrays in the ini-
tial word. At the same time it is clear that there is an algorithm
(in the intuitive sense) performing such a conversion; thereby we
arrive, as an example, at an algorithm which is equivalent to no
Post algorithm. Other, simpler algorithns which are not equiva-
lent to any Post algorithms can be cited as examples: such are, in
particular, the algorithm calculating the overall number of uni-
ties in Post’s word and the algorithm calculating the overall num-
ber of arrays.

8. In Sec. 4.1 there was pointed out the reason why for certain
simple, one would think, problems there were no corresponding
Post algorithms. Speaking in terms of Post's words, the reason is
too long chainsjof zeroes in these words. This reason is exhaustive
in the following precise sense. We will denote by PV the set of
all Post’s words in each of which no more than r consecutively
runring zeroes occur. We will be concerned with algorithms whose
possible initial data and possible results are Post’s words. For

76

every algorithm of this kind and for every r there is a Post algorithm
equivalent to the initial algorithm relative to P(™. We will call
this assertion the Post principle. The statement of Post’s proposal
cited at the end of Scc. 4.3 is an application of this principle to
algorithms of the particular kind for which the range of possible
initial data is P1 and the set of possible results, I, We can make
the same comments on the possibility of “proving mathematically”
the Post principle as we have made on Post’s proposal: the Post
principle as well as Post’s proposal and Post’s thesis is a natural law
rather than a mathematical theorem.

There are known other similar assertions. They are all natural
laws supported both by experience and speculative conceptions on
the structure of conceivable algorithms. In each of these assertions
class B of algorithms of its own is present which claims to nanage
with algorithms of B. This class B is accurately defined (just as
accurately as the class of the Post algorithms), the notion of an
algorithm of class B is, therefore, said to be a refinement of a gen-
eral notion of algorithm; here, however, the word “refinement”
should not be attached more importance than it is attached in the
given case. A number of such refinements, apart from the Post algo-
rithms, are known: these are the Turing algorithms, the Markov
normal algorithms, the Kolmogorov algorithms*, The natural law
of its own similar to the Post principle holds for each of them. It is
of great significance that these laws can all be derived one from
another. So, once one of these laws is admitted, all the others can
lbe proved then. This fact justifies once again the validity of these
aws.

For one of these laws A. A. Markov suggested the name of the
normalization principle. The term “principle” can be, naturally,
applied to all such laws. Hence the name Post’s principle.

Sec. 4.5. The Post Machine
and Electronic Computers

What are the similarity of and the difference between
the Post machine and the modern electronic computer?

First, we will be concerned with the similarity that is
revealed at least in the following three aspects:

1. Just like in the Post machine, elementary, (i.e. fur-
ther indivisible) inforrnation media can be singled out in
the electronic computer (in the Post machine such mon-
atomic media are cells of the tape): just like in the Post
machine each elementary medium of this kind can be in
one of the two states (blank or labelled in the Post ma-
chine); all the information stored in the machine at the mo-

* A. N. Kolmogorov, V. A. Uspensky, “On the definition of
algorithm”, Advances in Mathematical Sciences, 13, No. 4, 1958,
pp. 3-28 (in Russian).

7

ment is presented as the distribution of these two states
over the elementary media.

2. Just like for the Post machine, a certain limited set
of clementary actions is specified for the electronic com-
puter that can, just like the Post machine, perform an
action from this set in one step.

3. Just like the Post machine, the clectronic computer
opetates on the basis of a speeial instruction, i.e. a pro-
gram that prescribes what elementary actions should be
performed and in what order.

Ilence, in order to record information in the machine,
it is necessary to identify it with a certain combination
of states of elementary media. ln turn, in order to realize
an algorithm in the machine it must be presented as
a sequence of definite elementary actions. This is what
we call the skill of a prograinmer. And the skill of a design-
er is, in particular, in supplying the machine with such
a set of elementary actions that the algorithms intended
for realization in this machine were casily breakable into
these actions.

At the same time we are going to draw the reader’s atten-
tion to the following essential features of electronic com-
puters that the Post machine either absolutely lacks or
does not show duly.

1. The information stored in the Post machine isarranged
in the storage (i.e. the device intended for storing data;
in the Post machine such a device is a tape) linearly. This
implies that each cell of the tape hasonly two “neighbours”
which the machine can process after the given cell has
been processed. In an electronic computer one arca or
other of the storage can, generally speaking, Lave much
more neighbouring areas, “neighbouring” in the sense that
the machine can pass on to processing any of them after
processing of the initial area. The benefit of such organiza-
tion of the storage is obvious if only Lo reduce the number
of steps in the machine operation—for in the ost machine
the carriage, in order to pass from examining one cell
on to examining another, is bound to move through all
the cells between them. The storage of the electronic
compuler usually consists, speaking in more detail, of
two devices: an “external” storage of greal capacity,
storing information linearly similar to the Post machine
tape, and an “internal” storage of relatively little capacity

78

but with more extensive “linkages between neighbours”,
i.e. individual areas of this device.

2. In the case of the Post machine we have not spoken
of how exactly the program performance proceeds. We can
imagine, for instance, a man near the Post machine who
is reading a program written on the paper and, following
it, moves the carriage, prints and erases the label. It is
essential to emphasize that in the electronic computer the
program is performed automatically. The program for the
electronic computer is specially coded and recorded so that
it is easy for “perception” by the computer. Such an easy
way of recording is most often realised as a system of holes
punched on the tape (a punched tape) or on the cards
(punched cards). After the punched tape (or the punched
cards) with the program has been made the electronic
computer controlled by this punched tape (or punched
cards) operates without human intervention. (Of course,
it is not difficult to produce a device providing for auto-
matic, without human intervention, operation of the
Post machine.) In a first approximation the operation of
an electronic computer can be compared with that of a me-
chanical piano in which keys are depressed in a sequence
precisely determined by a program recorded onto the
punched tape and it is performed without the participa-
tion of man.

Note. The electronic computer and a mechanical piano
are, however, analogous only in a first approximation. As
a matter of fact, the operation of a mechanical piano differs
but little from that of a street-organ. In a street-organ
projections and recesses on the roller open, on rotation,
the passages of sounding pipes; each opening (i.e. the
opening of the passage of the given pipe at the given mo-
ment) is controlled by its own projection or recess on the
roller surface; the number of sounds in a melody is equal
to the number of irregularities: the longer is the melody,
the bigger should be the roller. In a mechanical piano
each depression of a key is caused by a certain section of
a punched tape and each such a section causes only one
depression of only one key; hence, the longer is the melody,
the longer should be the program recorded onto a punched
tape. Roller record in a street-organ (by means of projec-
tions and recesses on its surface) and tape record in a me-
chanical piano (by means of holes) are, in some way, a note

79

record. The electronic computer is another matter. Here,
as in the Post machine, the same instruction of a program
can be executed many times. The number of steps of the
machine operation is, therefore, independent of the pro-
gram length: the same program can supply any number of
steps which is necessary for achieving the result. (For
instance, the program devised as a solution of problem
2 from Chap. 2 is of length 4, while the number of steps
needed to produce the result required in this problem de-
pends on the position of the carriage at the beginning.)
This property is of great importance and makes it possible
to realize algorithms, namely, to build urified programs
leading to a result for the whole class of possible initial
data. This property results from the possibility of going
over from executing one instruction to executing any
other, whereas in a mechanical piano or a street-organ an
“instruction” to depress the key or to open the sounding
passages can only be followed by an immediate “instruc-
tion” recorded on the roller or on the tape.

3. The most essential, fundamental difference of the
electronic computer from the Post machine consists in
the following. The initial datum (for instance, the tuple
of numbers that are to be added) is recorded in the stor-
age, onto the tape of the Post machine before the opera-
tion began. The program that must be applied to this
initial datum and by which the machine operates is sort
of being aside. In the electronic computer the program is
put in thestorage together with the initial datum before the
operation began. (This is, by the way, another difference
between the elecironic computer and a mechanical piano:
in a mechanical piano the program recorded onto the
punched tape is “read” by a special device and the playing
takes place as the reading goes on; so, this device plays the
part of a pianist who plays from the notes laid out before
him. In the electronic machine the punched tape with the
program and the initial datum recorded onto it is processed,
before the operation began, by a special device, i.e. an
“input”, that reads the information on the punched tape
and puts it in the storage; in this respect the machine
resembles the pianist who first learns the notes and then
plays from memory without looking at the notes.) We will
call what is contained in the storage of the machine at
a certain moment (before the operation began) an initial

30

information. In the Post machine the initial information
consists of an initial datum alone. In the electronic com-
puter the initial information consists of an initial datum
and a program. It is important to emphasize that the
initial information is divided into an initial datum and
a program only conventionally in the electronic computer.
All the information, including the portion which is
called “a program”, can undergo various conversions in the
process of machine operation. The possibility of chang-
ing the instructions themselves during operation, which
the Post machine does not display, is a very significant
feature of modern electronic com puters. On the other hand,
what is contained in any area of the storage can more
or less often be interpreted as an instruction. That is why
the division of the information contained in the storage
into a program and an initial datum, in general, makes
sense only at the initial moment; afterwards at every step
the whole information is processed.

The question can naturally be asked: by what law is the
information contained in the storage processed? This
processing is, in turn, based on a certain rule that we will
call the Universal Program. The Universal Program can-
not, in any event, be confused with a particular program
which is meant for the solution of one or other specific
problem and is applicable to the initial data. The parti-
cular program depends on the problem being solved while
the Universal Program is common for all the problems; in
practical electronic computers it is provided for by the
machine design (such machines are, therefore, often called
universal). Let us sum up what has been said. In the Post
machine an initial datum is put in the storage, where-
upon the machine operates by the program which is not
contained in the storage. In the storage of the electronic
computers” there is put an initial information, at the
beginning, that is made up of a particular program of
solving the given problem and an initial datum, after this
the operation (namely, processing of the storage contents)
proceeds by the Universal Program realized in the ma-
chine design.*

* The Universal Program can, though, be devised for the Post
machine too, namely, each Post machine program can be coded
as a Post word and then this program (i.e. the corresponding word)
can be recorded onto the tape next to the initial datum to which it

81

Another, one would think, very cssential feature dis-
tinguishing an electronic computer from the Post ma-
chine can be indicated: the tape, that serves as the storage
in the Post machine, is of an infinite capacity which is
impossible in practical computers. Nevertheless, even
in the Post machine an infinite tape can be replaced by
a finite tape that can be pasted on as the necessity arises
(for only a finite length of the tape will just the same be
used up by every moment of the Post machine operation):
when the carriage reaches the end of the tape another few
cells are pasted on to it. On the other hand, the capacity
of an external storage of the electronic computer can also,
in principle, grow infinitely by adding on new areas to
it (say, new magnetic tapes). So, both the Post machine
and the electronic computer can be treated as having a stor-
age which is finite at each given moment but of infinitely
growing capacity. It is this circumstance making these
machines fit for realizing any algorithm on them that main-
ly makes related the Post machine and the electronic
computer and makes it possible to regard the Post ma-
chine as a simplified model of the electronic computer.

SUPPLEMENT

As a supplement we present Emil Post’s article “Finite
combinatory processes—formulation 1”. This article was
published in the quarterly The Journal of Symbolic
Logic*, in September, 1936. It was furnished with the
following editorial note: “Received October 7, 1936.
The reader should compare an article by A. M. Turing
“On computable numbers” shortly forthcoming in the
Proceedings of the London Mathematical Society. The

should apply. Further, the Universal Program can be built that,
being applied to the record which consists of the record of a certain
program P and the record of a certain initial datwn z, would lead
to the same result as the direct application of P’ to the record .
Still, in this case the Universal Program will be merely one of the
Eossible Post machine programs; in case of the electronic computer,

owever, the Universal I'rogram is not at all one of the particular
programs admissible for the clectronic computer but is realized by
the very design of a computer.

* The Journal of Symbolic Logic., vol. 1, No. 3, 1936.

82

present article, however, although bearing a later date,
was written, entirely independently of Turing’s.” Turing’s
article appeared in 1936 too.*

* A, M. Turing “On compulable numbers, with an application
to the Entscheidungsproblem”, Proc. London Math. Soc., ser. 2,
42, Nos. 3, 4, 1936, pp. 230-265. A correction—ibid., 43, No. 7,
1937, pp. 5%1-546.

FINITE COMBINATORY PROCESSES—
FORMULATION 1

FEmil L. Post

The present formulation should prove significantin the
development of symbolic logic along the lines of Godel's
theorem on the incompleteness of symbolic logics! and
Church’s results concerning absolutely unsolvable
problems.?

We have in mind a general problem consisting of a class
of specific problems. A solution of the general problem will
then be one which furnishes an answer to each specific
problem.

In the following formulation of such a solution two
concepts are involved: that of a symbol space in which the
work leading from problem to answer is to be carried out,®
and a fixed unalterable set of directions* which will both
direct operations in the symbol space and determine the
order in which those directions are to be applied.

In the present formulation the symbol space is to con-
sist of a two way infinite sequence of spaces or boxes,**
i.e., ordinally similar to the series of integers ..., —3,
—-2,—1,0,1, 2,3, The problem solver or worker is
to move and work in this symbol space, being capable of
being in, and operating in but one box at a time. And
apart from the presence of the worker, a box is to admit
of but two possible conditions, i.e., being empty or un-
marked, and having a single mark*** in it, say, a verti-
cal stroke.

One box is to be singled out and called the starting
point. We now further assume that a specific problem is

1 Kurt Godel, Uber formal unentscheidbare Sdtze der Principia
Mathematica und verwandter Systeme I, Monatshefte fiir Mathema-
tik und Physik, vol. 38, 1931, pp. 173-198.

2 Alonzo Church, “An unsolvable problem of clementary num-
ber theory”, American Journal of Mathemalics, vol. 58, 1936,
pp. 345-363.

3 Symbol space, and time.

* The ferm now in current use is a set of instructions.—Fd.
** These arc referred to as cells in this work.—Fd.
*** The term commonly used now is a label.—Ed.

84

to be given in symbolic form by a finite number of boxes
beiug marked with a stroke. Likewise the answer is to be
given in symbolic form by such a configuration of marked
boxes. To be specific, the answer is to be the configu-
ration of marked boxes left at the conclusion of the solving
process.

The worker is assumed to be capable of performing the
following primitive acts: *

(a) Marking the box he is in (assumed empty),

(b) Erasing the mark in the box he is in (assumed marked),

(c) Moving to the box on his right,

(d) Moving to the box on his left,

(e) Determining whether the box he is in, is or is not
marked.

The sct of directions which, be it noted, is the same for
all specific problems and thus corresponds to the general
problem, is to be of the following form. It is to be headed:

Start at the starting point and follow direction 1. It is
then to consict of a finite number of directions to be
numbered 1, 2, 3, ..., n. The ith direction is then to
have ore of the following forms:

(A) Perform operation O; [0, = (a), (b), (c), or (d)]
and then follow direction j;,

(B) Per form operation (e) and according as the answer is
yes or no correspordingly follow direction ji or ji,

(C) Stop.

Clearly but one direction need be of type (C). Note also
that the state of the symbol space directly affects the
process only through directions of type (B).

A set of directions will be said to be applicable to a given
general problem if in its application to each specific
problem it never orders operation (a) when the box the
worker is in is marked, or (b) when it is unmarked.® A set
of directions applicable to a general problem sets up a de-
terministic process when applied to each specific problem.
This process will terminate when and only when it comes
to the direction of type (C). The set of directions will then
be said to set up a finife I-process in connection with the

4 As well as otherwise following the direclions described below.

5 While our formulation of the set of directions could casily
have been so framed that applicability would immediately be
assured it scems undesirable to do so for a variety of rcasons.

85

general problem if it is applicable to the problem and
if the process it delermines terminates for each specific prob-
lem. A finite 1-process associated with a general problem
will be said to be a I-solution of the problem if the answer
it thus yiclds for cach specitic problem is always correct.

We do not concern ourselves here with how the configu-
ration of marked boxes corresponding to a specific problem
and that corresponding to its answer, symbolize the mean-
ingful problem and answer. In fact the above assumes
the specific problem to be given in symbolized form by an
outside agency and, presumably, the symbolic answer like-
wise to be received. A more self-contained development
ensues as follows. The gencral problem clearly consists of
at most an enumerable infinity of specific problems. We
need not consider the finite case. Imagine then a one-to-one
correspondence set up between the class of positive in-
tegers and the class of specific problems. We can, rather
arbitrary, represent the positive integer n by marking
the first » boxes to the right of the starting point. The
general problem will then be said to be I-given if a finite
1-process is set up which, when applied to the class of
positive integers as thus symbolized, yields in one-to-one
fashion the class of specific problems constituting the
general problem. It is convenient further to assume that
when the general problem is thus 1-given each specific
process at its termination leaves the worker at the starting
point. If then a general problem is 1-given and 1-solved,
with some obvious changes we can combine the two sets of
directions to yield a finite 1-process which gives the an-
swer to each specific problem when the latter is merely
given by its number in symbolic form.

With some modification the above formulation is also
applicable to symbolic logics. We do not now have a class
of specific problems but a single initial finite marking of
the symbol space to symbolize the primitive formal
assertions of the logic. On the other hand, there will now
be no direction of type (C). Consequently assuming appli-
cability, a deterministic process will be set up which is
unending. We further assume that in the course of this
process certain recognizable symbol groups, i.e., finite
sequences of marked and unmarked boxes, will appear
which are not furthier altered in the course of the process.
These will be the derived assertions of the logic. Of

86

course the set of directions corresponds to the deductive
processes of the logic. The logic may then be said to be
1-generated.

An alternative procedure, less in keeping, lhowever,
with the spirit of symbolic logic, would be to set up
a finite 1-process which would yield the nth theorem or
formal assertion of the logic given r, again symbolized
as above.

Our initial concept of a given specific problem involves
a difficulty which shounld be mentioned. To wit, if an
outside agency gives the initial finite marking of the
symbol space there is no way for us to determine, for
example, which is the first and which the last marked
box. This difficulty is completely avoided when the gener-
al problem is 1-given. It has also been successfully avoid-
ed whenever a finite 1-process has been set up. In practice
the meaningful specific problems would be so symbolized
that the bounds of such a symbolization would be recog-
nizable by characieristic groups of marked and unmarked
boxes.

The root of our difficulty however, probably lies in
our assumption of an infinite symbol space. In the present
formulation the boxes are conceptually at least physical
entities, e.g., contiguous squares. Our outside agency
could no more give us an infinite number of these boxes
than he could mark an infinity of them assumed given. If
then he presents us with the specific problem in a finite
strip of such a symbol space the difficulty vanishes. Of
course this would require an extension of the primitive
operations to allow for the necessary extension of the
given finite symbol space as the process proceeds. A final
version of a formulation of the present type would there-
fore also set up directions for generating the symbol
space.®

¢ The development of formulation 1 tends in its initial stages to
be rather tricky. As this is not in keeping with the spirit of such
a formulation the definitive form of this formulation may relin-
quish some of its present simplicity to achieve greater flexibility.
Having more than one way of marking a box is one possibility.
The desired naturalness of development may perhaps better be
achieved by allowing a finite number, perhaps two, of physical
objects to serve as pointers, which the worker can identify and
move from hox to box.

87

The writer expects the present formulation to turn out
to be logically equivalent to recursiveness in the sense of
the Godel-Church development?. Its purpose, however, is
not only to present a system of a certain logical potency
but also, in its restricted field, of psychological fidelity.
In the latter sense wider and wider formulations are
contemplated. On the other hand, our aim will be to
show that all such are logically reducible to formulation 1.
We offer this conclusion at the present moment as
a working hypothesis. And to our mind such is Church’s
identification of effective calculability with recursiveness®.
Out of this hypothesis, and because of its apparent con-
tradiction to all mathematical development starting with
Cantor’s proof of the non-enumerability of the points of
a line, independently flows a Godel-Church development.
The success of the above program would, for us, change
this hypothesis not so much to a definition or to an axiom
but to a ratural law. Only so, it seems to the writer, can
Godel’s theorem concerning the incompleteness of sym-
bolic logics of a certain general type and Church's results
on the recursive unsolvability of certain problems be
transformed into conclusions concerning all symbolie
logics and all methods of solvability.

College of the City of New York

? The comparison can perhaps most easily be made by defining
a {-function and proving the definition equivalent to that of
recursive function. (See Church, loc. cit., p. 350). A {-function
/ (n) in the field of positive integers would be one for which a finite
1-process can be set up which for each positive integer n as problem
would yield f (n) as answer, n and f (n) symbolized as above.

8 Cf. Church, loc. cit., pp. 346, 356-358. Actually the work
already done by Church and others carries this identification con-
siderably beyond the working hypothesis stage. But to mask this
identification under a definition hides the fact that a fundamental
discovery in the limitations of the mathematicizing power of Homo
Sapiens has been made and blinds us to the nced of its continual
verification.

Printed in the Union of Soviet Socialist Republics

88

