Errata and Addenda for “On Abstraction and Informatics” [16]

Tom Verhoeff

October 2011, August 2013, October 2014, April 2016

p.7, below (5) The definition of morphism composition \(\circ \) should read

\[
(f \circ g)(x) = f(g(x))
\]

Note that the definition as was given (i.e., \((g \circ f)(x) = f(g(x))\)), is indeed used by some mathematicians. Also see [6]. Traditional notation for functions is inherently confusing, because the implicit “directions” in the signature descriptor \(f : A \rightarrow B \) (left to right) and function application \(f(x) \) (argument comes from the right) are in conflict.

For signature composition, it makes sense to write the composition of \(f : A \rightarrow B \) with \(g : B \rightarrow C \) as \(f \circ g : A \rightarrow C \), preserving the order \((A \leftarrow f B \rightarrow g C)\); and taking for granted that then \((f \circ g)(x) = g(f(x))\), where the order switches).

For function application, it makes sense to write the composition of these same \(f \) and \(g \) as \((g \circ f)(x) = g(f(x))\), maintaining the order of the functions on the left and right, but their signatures do “match” in the opposite order \((A \leftarrow f B \rightarrow g C)\).

All this can easily be resolved by writing function application in the reverse order: \(x.f = f(x) \). In that case, we could define \(x.(f \circ g) = (x.f).g \), and everything would be “in order”. It seems less “natural” to reverse the order in the signature, and write \(f : B \rightarrow A \). However, in some programming languages (C, C++, Java), that order is used in definitions of functions/methods: \texttt{double sqrt(double x)}.

p.10, line 3 below §6 Change ‘Others textbooks’ into ‘Other textbooks’.
It is worth-while to mention that a computational formalism can be universal even if it lacks both iteration and recursion. Examples are Untyped Lambda Calculus and Combinatory Logic, but also in JavaScript, iteration and recursion are not needed. These formalisms offer mechanisms to abstract from functions and do self application, to obtain the same looping effect as iteration or recursion. For instance, the recursive definition of the factorial function

\[
\text{fac}(n) := \begin{cases}
1 & \text{if } n = 0 \\
\text{else} & n \times \text{fac}(n)
\end{cases}
\]

can be de-recursified by abstracting from the function \(\text{fac}\) in the function body, replacing it by a parameter \(g\), which itself is a function:

\[
\text{FAC}(g)(n) := \begin{cases}
1 & \text{if } n = 0 \\
\text{else} & n \times g(n)
\end{cases}
\]

Note that \(\text{FAC}\) is neither recursive, nor iterative, and that \(\text{fac}\) is a fixed point of \(\text{FAC}\):

\[
\text{FAC}(\text{fac}) = \text{fac}
\]

However, to calculate \(\text{fac}(n)\), the \(g\) in \((\text{FAC}(g))(n)\) need not be (a completely defined) \(\text{fac}\), but could be an ‘approximation’ of \(\text{fac}\) that only works correctly for arguments less than \(n\). In particular, for \(n = 0\), we could take any \(g\), because \(g\) is then basically ignored.

Generalizing parameter \(g\) further to \(g'\), so that \(g'\) takes an additional parameter of the same type as \(g'\), we can define

\[
\text{FAC}'(g')(n) := \begin{cases}
1 & \text{if } n = 0 \\
\text{else} & n \times g'(g')(n)
\end{cases}
\]

Note the self application of \(g'\) to \(g'\). We now have (by induction on \(n\))

\[
\text{fac}(n) = \text{FAC}'(\text{FAC}') (n)
\]

or more concisely

\[
\text{fac} = \text{FAC}'(\text{FAC}')
\]

This de-recursification can even be mechanized through a fixed-point combinator \(Y\) with the property

\[
Y(F) = F(Y(F))
\]
i.e., $Y(F)$ is a fixed point of F. We then have (by induction on n)

$$Y(FAC)(n) = fac(n)$$

Thus, we can define

$$fac = Y(FAC)$$

All we now need is a non-recursive, non-iterative definition of Y. This exists for the formalisms mentioned above (see \[14, 17\]). The key is self-application, as in the (non-recursive, non-iterative) definition $\omega(f) := f(f)$. Note that $\omega(\omega)$ does not terminate, in spite of the absence of recursion and iteration.

p.5, “The biggest danger of axiomatic definitions is inconsistency”

Inconsistency can be the result of over-specification, by imposing too many constraints, which turn out to be contradictory. Another danger is under-specification, by imposing too few constraints, thereby allowing unintended ‘solutions’ to the axioms.

Quotes From [5, p.4]:

The result of being more abstract is not being more vague, on the contrary: the purpose of abstraction is the creation of a new semantic level at which one can again be absolutely precise, but with less commitment. The virtue of the new theory is that one can work in it, unburdened by the irrelevant details of the model that inspired it. Experience has shown that people’s first confrontation with mathematical abstraction is often emotionally disturbing; the rest of the educational process hardly teaches the potential intellectual advantages of ignoring available knowledge and the manifest freedom of creating one’s own universe of discourse could very well be frightening.

References Inexcusably missed references: [4, 10, 11, 13]. Possibly excusably missed references: [1, 2, 3, 7, 9], [8, Ch.2]; newer material: [12] (especially Ch.1, “The Many Faces of Complexity in Software Design” by José Luiz Fiadeiro), [15].
References

[15] Alexander A. Stepanov, Daniel E. Rose. *From Mathematics to Generic Programming*. Addison-Wesley, 2015. Blurb: “In this substantive yet accessible book, pioneering software designer Alexander Stepanov and his colleague Daniel Rose illuminate the principles of generic programming and the mathematical concept of abstraction on which it is based, helping you write code that is both simpler and more powerful.”
