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Abstract

This note describes how the simple idea of function-as-parameter, also
known as callback, leads to a number of well-known design patterns. In par-
ticular, the following design patterns appear: Strategy, Adapter, Composite,
Decorator, and Observer. Conciseness of presentation was a major goal.

Each pattern emerges from explicit design considerations and is illus-
trated with UML class diagrams and (separately available) Java code. The
relation to listeners in a Java GUI is explained. Also, push-pull and update-
query variations are considered. Testing is addressed in a separate note.

The Observer design pattern emerges here in a way that I have not seen
before. An observer is just a strategy, in the sense of the Strategy pattern.
A Composite pattern is used to take observer management and notification
distribution out of the observable subject. This has as side-benefit that ob-
servers can be organized hierarchically in separately manageable observer
groups, which can be reused on other observable subjects as well. The re-
sulting concrete subjects are simpler as well, because they need not duplicate
code for observer management and notification distribution.

The Adapter pattern can be used to construct observers from other (non-
observer) functionality, and the Decorator pattern is used to modify existing
observers.

1 Introduction

Nowadays, there are numerous references for design patterns, for example, the
original book that popularized design patterns [3], the funny explanation-through-
example and consideration-filled book [2], the recent compact book [1], and, not
to forget, Wikipedia [7].
This note shows how one can discover some design patterns starting from the no-
tion of a callback [6]. The resulting Observer pattern deviates from standard pre-
sentations, offering more flexibility and less code duplication.
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2 Callbacks

Suppose you have some (complicated, tested, and approved) functionality A, say
a simulation or generation algorithm, and you want to incorporate some further
functionality B, say to process data as it gets produced by A. Note that data items
are produced one by one inside A as a stream, and not bundled in a single result
when A returns. Processing could simply consist of printing or counting, or be
more advanced, like collecting statistics, showing animated graphics, etc.
One way to accomplish this is to merge the code for the processing (B) into the
code for the simulator or generator (A). This approach has major disadvantages:

1. While merging code, you may break functionality in A, or B.

2. It makes testing of A and B harder.

3. It makes reuse of A or B harder.

4. It will not be easy to choose or even vary B at run time.

In software engineering jargon, we say that this approach introduces a hard (strong)
coupling between A and B.
Applying the technique of Divide and Conquer, the functionality in A and in B
should be encapsulated as functions, or (if also some global variables are needed)
as classes containing appropriate processing methods. We will name these func-
tions doA and doB. That way, all we need to merge into doA is a call of doB
(see Figure 1, left). Using a switch statement in B, we could even vary function-
ality in B at run time. This looks more decent, and offers some improvement, but
basically has the same disadvantages, though testing and reusing B may be easier.
Ideally, we would like to generalize A by abstracting from the processing in B.
That would loosen the coupling. This can be accomplished by parameterizing A,
and passing B as parameter in the invocation of A. In languages like C/C++ and
Object Pascal (Delphi), you can pass a function as parameter1 to another func-
tion. A function passed as parameter is also known as a callback. The caller of A
provides A with a function through which A can invoke externally defined func-
tionality (B). In a sense, A calls back to the environment from which it was called.

3 Callbacks in Java

The Java2 programming language does not support function parameters. But we
can accomplish the same thing by putting the function as a method inside a class,
and passing an object of that class as parameter. For even more flexibility, we
typically define an interface that contains the signature of the callback method.

1Often, what is actually passed is a pointer to a function.
2Java 8 has functional interfaces, lambda expressions, and method references to remedy this; see

Appendix B.
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In our example, the interface for functionality B could be defined as follows3.

1 public interface FunctionalityB {
2 void doB(String data);
3 }

Functionality A is now set up in the following way.

1 public class FunctionalityA {
2 public static void doA(int n, FunctionalityB b) {
3 for (int i = 0; i < n; ++ i) {
4 final String data; // data item produced
5 data = i + " produced by A"; // "complex" computation
6 b.doB(data);
7 }
8 }
9 }

Functionality B can be defined in different ways, for instance, to print the data:

1 public class DataPrinter implements FunctionalityB {
2 private final String name;
3 public DataPrinter(String name) {
4 this.name = name;
5 }
6 public void doB(String data) {
7 System.out.println(name + " processed " + data);
8 }
9 }

The main environment couples functionality A with functionality B at runtime:

1 public class Main {
2 public static void main(String[] args) {
3 final int n = Integer.parseInt(args[1]);
4 final FunctionalityB printer = new DataPrinter(args[2]);
5 FunctionalityA.doA(n, printer);
6 }
7 }

In DrJava4, you can invoke the example by typing in the Interactions panel

> run Main a 3 B1
B1 processed 0 produced by A
B1 processed 1 produced by A
B1 processed 2 produced by A

3We violated some good coding standards to show all the code on a single page.
4See www.drjava.org. Try out the code while studying the examples; see Exercise 1.
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Invoke it with different parameters for functionality A and B by typing

> run Main a 5 B2
B2 processed 0 produced by A
B2 processed 1 produced by A
B2 processed 2 produced by A
B2 processed 3 produced by A
B2 processed 4 produced by A

<<uses>>

<<uses>>

Main

doA(…)
FunctionalityA

doB(data: String)
FunctionalityB

<<implements>>

<<implements>>

<<uses>>

doB(data: String)
DataCounter

<<uses>><<uses>>

<<uses>>

Main

doA(…; b: FunctionalityB)
FunctionalityA

doB(data: String)
DataPrinter

doB(data: String)

«interface»
FunctionalityB

Figure 1: UML class diagram of hard coupling (left) and the basic callback (right)

Figure 1 (right) shows a UML class diagram of this approach with callbacks. The
dashed arrows represent static dependencies. That is, X 99K Y means that X
depends on Y , and X cannot be compiled/deployed without Y .

Note that functionality A and concrete functionality B are independent: neither de-
pends on the other. Both depend on the, quite general, interface FunctionalityB.
This is an example of the Dependency Inversion Principle (DIP): depend on ab-
stractions (interfaces), not on concrete implementations.

At run time, functionality A gets coupled to specific functionality B by Main.
However, A only requires that this B implements FunctionalityB. A does
not need to know more details. Hence, it can invoke only operation doB on b, and
nothing else, even if b has other methods. This run-time configuring of functional-
ity A is known as Dependency Injection (DI).

It is also an example of the Strategy Design Pattern. Each way of processing the
data items (functionality B) is referred to as a strategy. This design pattern makes
it easy to vary the strategy used by functionality A at run time.
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4 Defining an Anonymous Callback on the Fly

You can use an anonymous callback, that is, a nameless class that implements
FunctionalityB. Here is an example that counts out the data items on standard
output.

1 FunctionalityA.doA(n, new FunctionalityB() {
2 int count;
3 public void doB(String data) {
4 ++ count;
5 System.out.println("Item " + count + " counted");
6 }
7 });

There is no way to retrieve the count (that is why we print each count). However,
it is advisable at least to assign the anonymous callback to a local variable:

1 FunctionalityB adhocCounter = new FunctionalityB() {
2 ...
3 };
4 FunctionalityA.doA(n, adhocCounter);

Even though the callback itself now has a name, the class of which it is an instance
still does not have a name. Consequently, it is still impossible to retrieve the count
afterwards. The type of adhocCounter is FunctionalityB, and that only
provides access to doB and not to count.

It might be clearer to give that ad hoc class a name, in a local class definition,
nested inside the main class. You can then also retrieve the count afterwards:

1 class AdhocCounter implements FunctionalityB {
2 ...
3 };
4 AdhocCounter adhocCounter = new AdhocCounter();
5 FunctionalityA.doA(n, adhocCounter);
6 System.out.println(adhocCounter.count + " items seen");

Note that we now typed adhocCounter as an AdhocCounter, to allow access
to the (non-private) instance variable count.
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5 Wrapping a Class to Provide a Callback

Suppose we already have a nice Abstract Data Type for counting:

1 public class Counter {
2 private long count;
3 public long getCount() {
4 return count;
5 }
6 public void count() {
7 ++ count;
8 }
9 }

Unfortunately, this class does not implement interface FunctionalityB, so it
cannot be passed to functionality A. A bad solution is to ‘hack’ the Counter and
turn it (also) into FunctionalityB. A better solution is to wrap it, so that it
becomes a FunctionalityB (an example of the Adapter Design Pattern):

1 class DataCounter extends Counter implements FunctionalityB {
2 public void doB(String data) {
3 count();
4 }
5 }

The main environment can use this wrapped version as follows.

1 final DataCounter counter = new DataCounter();
2 FunctionalityA.doA(n, counter);
3 System.out.println("Counter received " + counter.getCount()
4 + " items from A");

Figure 2 shows a UML class diagram for the wrapping technique. A DataCounter
is (behaves as) both a Counter and a FunctionalityB.
For more flexibility, keep the counter external to the adapter, and use composition
instead of inheritance (see Figure 3). The main application then uses the adapter as
callback, and uses the separate counter to retrieve its state. The adapter’s construc-
tor stores a reference to the counter to be used (also see Exercise 1d):

1 class CounterAdapter implements FunctionalityB {
2 private final Counter counter;
3 public CounterAdapter(Counter counter) {
4 this.counter = counter;
5 }
6 public void doB(String data) {
7 counter.count();
8 }
9 }
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<<uses>>

Main

doB(data: String)
DataCounter

doB(data: String)

«interface»
FunctionalityB

<<implements>>

getCount(): int
count()

Counter

<<extends>>

Figure 2: UML class diagram for wrapping to define a callback, with inheritance

1

<<uses>>

Main

doB(data: String)
CounterAdapter

doB(data: String)

«interface»
FunctionalityB

<<implements>>

getCount(): int
count()

Counter

counter

<<uses>>

Figure 3: UML class diagram for adapter to define a callback, with composition
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6 Distributing a Callback to Other Callbacks

What if you want to print the data items and also count them? It would be nice if
you could combine the existing data processors, without modifying them (you do
not want to break them, now that they have been tested and are working well).

You could combine them in an ad hoc (hard-coded) way, by defining a class that
implements FunctionalityB and passes the data on to a data printer and a data
counter.

Instead of this rather inflexible solution, it is nicer to define a generic data distrib-
utor that distributes one callback to multiple other callbacks:

1 public class CompositeFunctionalityB implements FunctionalityB {
2 private final List<FunctionalityB> parts;
3 public CompositeFunctionalityB() {
4 parts = new ArrayList<FunctionalityB>();
5 }
6 public void add(FunctionalityB b) {
7 parts.add(b);
8 }
9 public void doB(String data) {

10 for (FunctionalityB b : parts) {
11 b.doB(data);
12 }
13 }
14 }

The main environment can configure a distributor (the ‘plumbing’) at run time as
follows, to print and count in a single run of functionality A.

1 final FunctionalityB printer = new DataPrinter(args[2]);
2 final DataCounter counter = new DataCounter();
3 final CompositeFunctionalityB printer_counter
4 = new CompositeFunctionalityB();
5 printer_counter.add(printer);
6 printer_counter.add(counter);
7 FunctionalityA.doA(n, printer_counter);
8 System.out.println("Counter received " + counter.getCount()
9 + " items from A");

By extending CompositeFunctionalityB with a method to unregister call-
backs, you obtain a very flexible infrastructure:

1 public void remove(FunctionalityB b) {
2 parts.remove(b);
3 }
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You can register a CompositeFunctionalityBwith another CompositeFunctionalityB
to create a hierarchic distribution network (also see the Composite Design Pattern).

0..*

<<uses>>

Main

add(b: FunctionalityB)
doB(data: String)

CompositeFunctionalityB

doB(data: String)

«interface»
FunctionalityB

<<implements>>

parts

doB(data: String)
…

<<implements>>

<<uses>>

Figure 4: UML class diagram for a composite callback

Figure 4 shows a UML class diagram for the composite callback. An instance of a
CompositeFunctionalityB is (behaves as) a FunctionalityB, and also
contains a set of FunctionalityBs. Each of these parts could be a specific
callback for functionality B, such as a DataPrinter or DataCounter, or in
turn another composite callback.

Why would you use a hierarchy, rather than a flat structure? Because certain com-
binations of callbacks are also used in other places, and can be set up once, to
be coupled later as one group to various functionalities A. If such a group needs
to be combined with another callback or group of callbacks, you get a hierarchy.
Furthermore, you can unregister such a group as a whole in one action, without
affecting other registered callbacks.
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7 Modifying and Filtering Data as It Is Transferred

When there is a need to vary the processing of the data items in functionality B,
you can modify an existing callback or copy-and-edit it. Alternatively, you can
extend (subclass) an existing callback.

Neither of these solutions is flexible. Imagine that you want other variations, and
also of other callbacks. The number of possible combinations grows fast: m vari-
ations of n callbacks would give rise to m× n new callbacks. And then we do not
even consider the desire of combining multiple variations applied to a callback.

A better approach is to put each variation in a separate method, that can be applied
to data items before they are passed on to the callback to be varied. So, the vari-
ation behaves like a FunctionalityB, that passes modified data on to another
FunctionalityB.

A variation in our example could be to put quotes around the data item. This is
accomplished with a DataQuoter:

1 class DataQuoter implements FunctionalityB {
2 private FunctionalityB destination;
3 public DataQuoter(FunctionalityB destination) {
4 this.destination = destination;
5 }
6 public void doB(String data) {
7 destination.doB(’"’ + data + ’"’);
8 }
9 }

You might even suppress some calls depending on a condition, as in this DataFilter:

1 class DataFilter implements FunctionalityB {
2 private FunctionalityB destination;
3 private String pattern;
4 public DataFilter(FunctionalityB destination, String pattern) {
5 this.destination = destination;
6 this.pattern = pattern;
7 }
8 public void doB(String data) {
9 if (data.contains(pattern)) {

10 destination.doB(data);
11 }
12 }
13 }

We now only need m+ n callbacks, and can also combine variations easily:

new DataFilter(new DataQuoter(new DataPrinter("PQF")), "1")
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destination

1

<<uses>>

Main

doB(data: String)
DataFilter

doB(data: String)

«interface»
FunctionalityB

<<implements>>

destination

1

<<uses>>

doB(data: String)
DataQuoter

<<implements>>

Figure 5: UML class diagram for a callback modifier or filter

This is an example of the Decorator Design Pattern. Figure 5 shows a UML class
diagram for the callback modifier or filter. An instance of a DataFilter is
(behaves as) a FunctionalityB, but also uses another FunctionalityB to
complete the processing. In case of multiple modified callbacks, the duplicate code
of the various decorators can be moved to a common base class (see Figure 6).

destination

1

doB(data: String)
DataFilter

doB(data: String)

«interface»
FunctionalityB

doB(data: String)
DataQuoter

<<implements>>

doB(data: String)
DataDecorator

Figure 6: UML class diagram for a callback decorator base class
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8 Data Processing Toolkit and Trade-offs

With all these techniques (callback interface, composite, adapter, decorator) you
can construct an elegant and flexible toolkit for the processing of data items in
callbacks. But this flexibility does have a price:

• there is a performance penalty because of all indirections and data transfers;

• the configuration needs to be programmed out and is created at run time.

The latter invites the introduction of a Domain Specific Language to describe con-
figurations (but that is a more advanced topic).

Some further variations are discussed in Sections 10 through 12. Also see Exer-
cises 3 and 6.

9 Listeners

You can also look at all this in a slightly different way. And that is exactly what is
done in Java when coupling a graphical user interface (GUI) to the actual function-
ality of an application.

The graphical user interface is driven by the user via the hardware (keyboard,
mouse, touch screen, microphone, etc.). The user serves as functionality A; the
hardware details are hidden from the application. The actual processing can be
compared to functionality B, which is all you need to program for the application.

Each user action is the source of an event, produced in the (hidden) main event loop
(functionality A). The occurrence of an event results in the call of a method that
handles the event. A class that provides such event handler methods is referred to
as an event listener, or listener for short (functionality B).

Thus, the applications becomes a collection of event listeners driven from the (in-
visible) main event loop. Event handling methods are nothing more than callbacks
of the application.

The signatures of event handling methods are defined in appropriate interfaces. For
example5:

ActionListener
KeyListener
MouseListener
MouseMotionListener

In the MouseListener interface, there is, among others, a method

void mouseClicked(MouseEvent e)

5See docs.oracle.com/javase/tutorial/uiswing/events/api.html
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which is called in response to the user clicking the mouse button. The parameter
MouseEvent e communicates information about the location of the pointer and
which mouse button was clicked, and how often it was clicked.

Any source of events and corresponding event handlers can be coupled by call-
backs. The terminology is different, but the technique is the same.

10 Observers

Yet another —more general way— to describe this, involves the following ter-
minology. We have a subject or observable (compare this to functionality A) of
which certain state changes require external processing, done by observers (func-
tionality B). To that end, the subject notifies or updates the observers, by calling
an agreed callback. Different terminology, same technique.

For performance reasons, it can be useful to avoid passing the observer (callback)
to the subject (functionality A) with every invocation of doA. Moreover, it can be
useful to have the ability to change the observer dynamically (at run time). This
can be achieved by storing the observer in the subject in a private instance variable,
which can be set in the constructor, and/or via a separate setter method. To support
multiple observers, we could use a composite observer:

1 CompositeObserverB cob = new CompositeObserverB();
2 cob.add(new PrintingObserverB("B1"));
3 cob.add(new PrintingObserverB("B2"));
4 SubjectA generator1 = new SubjectA("A1");
5 generator1.setObserver(cob);
6 generator1.doA(3);

In practice, observer management is often built into the subject. This is less flexi-
ble, because you cannot reuse a distribution network across multiple subjects. And
it gives rise to unnecessary code duplication. Therefore, we recommend composite
observers as external observer managers.

The terminology for managing the collection of observers varies:

• add, remove;

• attach, detach;

• register, unregister;

• subscribe, unsubscribe;

• connect, disconnect.

This view on callbacks is also known as the Observer Design Pattern.
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11 Push to Observer, or Pull from Subject, or Both

So far, we let the subject push data to the observer directly. However, not every
observer has the same interests. For instance, the data counters in Sections 4 and 5
ignored the content of the data completely.

Rather than letting the subject decide what data to communicate to observers, that
decision can be left to the individual observers. The subject only has to notify the
observer and can leave it to each observer to pull relevant data from the subject
(using other methods), if so needed.

However, if all observers basically need the same data, then the pulling strategy
introduces unnecessary duplication of work, because all observers will query the
subject in the same way. In the push strategy, there is one query, executed by the
subject itself, and pushed to all observers.

Here is an example where the subject notifies, and the observers pull.

The subject with functionality A implements the interface ObservableB, so that
it can be observed by observers with functionality B.

1 public interface ObservableB {
2 void setObserver(ObserverB observer);
3 String getData();
4 }

An observer with functionality B implements interface ObserverB, so that it can
be notified by subjects:

1 public interface ObserverB {
2 void notifyB(ObservableB subject);
3 }

The observer needs to know the identity of the subject that sent the notification, in
order to pull data from that subject. Therefore, the notifying subject is a parameter
to notifyB. This parameter can also be useful when observing multiple subjects.

Here is a concrete subject that produces n data items:

1 public class SubjectA implements ObservableB {
2 private final String name;
3 private ObserverB observer;
4 private String data;
5 public SubjectA(String name) {
6 this.name = name;
7 }
8 public void setObserver(ObserverB observer) {
9 this.observer = observer;

10 }
11 public String getData() {
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12 return data;
13 }
14 public void doA(int n) {
15 for (int i = 0; i < n; ++ i) {
16 data = i + " produced by " + name; // "complex" computation
17 observer.notifyB(this);
18 }
19 }
20 }

Note that the observer should not be null when doA is called with n > 0. This
is a precondition to be ensured by proper configuration of SubjectA. If you want
to execute doA without observer, you need to set the observer, for example, to an
empty CompositeObserverB or to EmptyObserverB:

1 public class EmptyObserverB implements ObserverB {
2 public void notifyB(ObservableB subject) {
3 // empty implementation, doing nothing
4 }
5 }

A concrete observer that retrieves the data and prints it is defined as follows:

1 public class PrintingObserverB implements ObserverB {
2 private final String name;
3 public PrintingObserverB(String name) {
4 this.name = name;
5 }
6 public void notifyB(ObservableB subject) {
7 final String data = subject.getData();
8 System.out.println(name + " processed " + data);
9 }

10 }

Figure 7 shows a UML class diagram for the example above with pulling observers.
EmptyObserverB is not shown.
It is also possible to combine push and pull.
In this example, we have used data of type String. It is possible to define the
observer structure generically, and abstract from the specific data involved.

12 Update or Query the Observers, or Both

Pushing of data to observers is also said to update the observers. Instead of up-
dating the observer, the subject might want to query the observer and pull data
from it. Or, the subject could notify the observer, which then can decide to push
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observer

<<uses>><<uses>>

0..1

Main

doA(…)
SubjectA

 
PrintingObserverB

notifyB(ObservableB)

«interface»
ObserverB

<<implements>>

<<uses>>

setObserver(ObserverB)
getData(): String

«interface»
ObservableB

<<implements>>

Figure 7: UML class diagram for observers that pull

some data to the subject (using other methods). In case of querying, ‘observer’ is
a misnomer, since it now acts as a source.

Again, it is also possible to have a combination of communicating data to and from
observers. With a little more thought, you can turn this into a generic multi-party
communication facility (a bit like the internet, with addressable parties and data
packages).

13 Testing

In a full-blown application, all these facilities need to be tested. Testing of call-
backs, listeners, and observers, and related adapters, composites, and decorators,
requires some ingenuity. Such testing is beyond the scope of this note, and will be
presented in another note. Because of the separation of concerns, all these facilities
are independently testable.

14 Concluding Remarks

All the mechanisms discussed here, that is, callbacks, functions-as-parameter, lis-
teners, and observers, aim to accomplish the same thing. It is not about how to
name it, who takes the initiative, or in what direction the data travels. In the end,
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it is all about decoupling, that is, reducing dependencies, and about avoiding code
duplication. Decoupling makes it easier to test and to change things, for instance,
when fixing defects, when creating a new version or variant, or when re-configuring
a system at run time.
Which approach is to be favored depends on what data is needed when and where.
Design patterns need to be applied with consideration, taking the specific problem
context into account.
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A EventListener Interface

In Java, callback signatures are often defined as extension of the predefined inter-
face EventListener. This interface is known as a marker interface, that is, an
empty interface used to mark callbacks. That way, they can easily be recognized
as such, for example by the compiler or by using instanceOf(). Since Java 5,
marking can also be done through annotations (also see Appendix B).

B Java 8

Java 8 has improved support for functional programming, including functions as
parameters (callbacks). In a way, it works through some abbreviations. An inter-

c© 2013–2016, TUE.NL v1.7 17/23



Programming Methods (2IPC0) From Callbacks to Design Patterns

face is called a functional interface when it defines exactly one abstract method.
Such a functional interface serves as a type for ‘pure’ functions, viz. functions
that implement its (one and only) abstract method. So, FunctionalityB is a
functional interface, and it is a type of void functions that apply to one String
argument.

A lambda expression [4] defines an anonymous ‘pure’ function using the syntax

(param_1, param_2, ..., param_N) -> body

where each param_i defines a typed and named positional parameter (as with
traditional methods), and body is either a statement (for a void function) or an
expression of some type T (for a function that returns a result of type T). The pa-
rameter types often can be omitted, since they can be inferred from the context of
usage in the body. When there is exactly one parameter, the surrounding parenthe-
ses can be omitted as well (in that case the type must be omitted).

Wherever an object that implements a functional interface F is expected, one can
substitute a lambda expression that matches F. The lambda expression above
matches any functional interace that defines an abstract method of the form

T m(param_1, param_2, ..., param_N);

where T is the type of expression body, or void if body is a statement. If the
abstract method of F is named m, then the lambda expression above is (almost)
equivalent to the following anonymous (local) class instantiation:

1 new F() {
2 @Override
3 public void m(param_1, param_2, ..., param_N) {
4 body; // when body is a statement
5 }
6 }

or

1 new F() {
2 @Override
3 public T m(param_1, param_2, ..., param_N) {
4 return body; // when body is an expression
5 }
6 }

where the parameter types and return type are inferred from F as needed. Thus, we
can invoke FunctionalityA.doA() with a lambda expression as callback:

1 doA(n, (String data) -> System.out.println(data));
2 doA(n, (data) -> System.out.println(data));
3 doA(n, data -> System.out.println(data));
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A lambda expression is not fully equivalent to an anonymous class instantiation.
For instance, there is a difference in scope of local variables. A lambda expression
does not introduce a new scope local to that expression; instead, it ‘lives’ in the
enclosing scope. This also affects the interpretation of the keyword this.
In Java 8, a functional interface can be marked by a new predefined annotation
@FunctionalInterface, rather than by extending the EventListener in-
terface (Appendx A). With such an annotation, the compiler will check that the
annotated interface indeed qualifies as a functional interface.
The new package java.util.function defines several generic functional in-
terfaces, including Consumer<T>, Supplier<T>, Function<T, R> and
Predicate<T>. In essence, these are defined as

1 @FunctionalInterface
2 public interface Consumer<T> {
3 public void accept(T t);
4 }
5

6 @FunctionalInterface
7 public interface Supplier<T> {
8 public T get();
9 }

10

11 @FunctionalInterface
12 public interface Function<T, R> {
13 public R apply(T t);
14 }
15

16 @FunctionalInterface
17 public interface Predicate<T> {
18 public boolean test(T t);
19 }

Thus, the callback in functionality A does not need the application-specific type
FunctionalityB, but could be using the type Consumer<String>.
Any implemented method or constructor can serve as a ‘pure’ function via a method
reference [5]. The general syntax is

qualifier :: methodName

where the qualifier is either a class type or an expression evaluating to an object,
and where the keyword new serves as ‘method name’ for a constructor. You can
also view this syntax as an abbreviation for some common lambda expressions.
Given the class C and object obj defined by

1 public class C {
2 public C(U arg, ...) { ... } // constructor
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3 public static T s(U arg, ...) { ... } // static method
4 public T m(U arg, ...) { ... } // instance method
5 }
6

7 C obj = new C(...);

we have these relationships:

Method reference Lambda expression
C :: s (U arg, ...) -> C.s(arg, ...)
obj :: m (U arg, ...) -> obj.m(arg, ...)
C :: m (C o, U arg, ...) -> o.m(arg, ...)
C :: new (U arg, ...) -> C(arg, ...)
int[] :: new n -> new int[n]

In Java 8, the interface Iterable<T> now has a default method forEach(),
whose definition is equivalent to:

1 void forEach(Consumer<? super T> action) {
2 for (T t : this) {
3 action.accept(t);
4 }
5 }

For example, if we have a variable Set<String> set, then

set.forEach( s -> System.out.print(s + " ") );

will print all elements in the set. And if you just want to print the items, you can
use a method reference:

set.forEach( System.out :: println );

Finally, the new package java.util.stream provides support for streams6 of
elements with numerous predefined functional operators for sequential and parallel
aggregation. For instance, a Collection can be turned into a stream by the
new method stream(). Here is code that takes the set of String from above,
converting it into a stream, keeping strings whose length exceeds 2, converting it
into a stream of int, and finally summing this stream:

1 int result = set.stream()
2 .filter( s -> s.length() > 2 )
3 .mapToInt( String :: length )
4 .sum();

A stream builder can be used to convert data items, that are generated one by one
via a Consumer<T>, into a Stream<T> as follows:

6In functional programming better known as lists or sequences.
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1 Stream.Builder<String> builder = Stream.builder(); // step 1
2 FunctionalityA.doA(n, builder :: accept); // step 2
3 // doA(n, builder), if FunctionalityB = Consumer<String>
4 Stream<String> stream = builder.build(); // step 3
5 stream.filter( s -> s.contains(pattern) )
6 .map( s -> ’"’ + s + ’"’ )
7 .forEach( System.out :: println );

Notes:

• A stream builder operates in three sequential steps:

1. An empty builder is created via Stream.builder().

2. The builder is filled via zero or more calls of accept(t), or add(t).

3. The builder is converted to a stream via build().

• A stream can be processed only once, and cannot be reused.

C Exercises

1. Using the example code from CallbackExamples.zip, run the vari-
ous examples to understand better how the proposed solutions work. The
following entities are relevant, ordered from abstract to concrete:

• interface FunctionalityB with method doB

• class FunctionalityA with method doA

• class DataPrinter implements FunctionalityB

• class Counter with methods count and getCount

• class DataCounter extends Counter implements FunctionalityB

• class CounterAdapter implements FunctionalityB us-
ing a Counter

• class CompositeFunctionalityB implements FunctionalityB
with List<FunctionalityB> parts and method add

• class DataQuoter implements FunctionalityB

• class DataFilter implements FunctionalityB

• class Main with method main

The following experiments are supported in Main.main().

(a) Stateless callback in §3: run Main a 3 B1

(b) Anonymous stateless callback in §4: run Main b 3

(c) Callback with state, using an adapter via inheritance in §5: run Main c 3
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(d) Callback with state, using an adapter via composition in §5: run Main d 3

(e) Composite callback in §6: run Main e 3 B2

(f) Decorator callback in §7: run Main f 3

(g) Decorator callback that filters in §7: run Main g 12 1

You can also try other parameters in the experiments.

2. Incorporate the code of the ad hoc counter AdHocCounter from §4 in a
new method Main.main2(), and run it.

3. Implement the callback distribution network of Figure 8 in a new method
Main.main3(), and run it.

::CompositeFunctionalityB

::FunctionalityA

::CompositeFunctionalityB

::DataPrinter("Y")

::CounterAdapter

::Counter ::DataPrinter("X")

Figure 8: Callback network with multiple composite callbacks

4. Incorporate the code with the combined decorators of §7 in a new method
Main.main4(), and run it:

new DataFilter(new DataQuoter(new DataPrinter("PQF")), "1")

5. Move the duplicate code in DataQuoter and DataFilter to a common
base class DataDecorator (also see Figure 6).

6. Implement the callback distribution network of Figure 9 in a new method
Main.main5(), and run it.

7. Implement and use a new adapter StatisticsAdapter for given non-
callback class Statistics with a method void update(int). Use
the approach via composition. Let FunctionalityA produce a given
number of random numbers from a given range, and obtain the mean and
standard deviation of the generated numbers through the adapted Statistics.
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::CompositeFunctionalityB

::FunctionalityA("1")

::DataFilter("a") ::DataFilter("b")

::CompositeFunctionalityB

::DataPrinter("Y")

::CounterAdapter

::Counter ::DataQuoter

::DataPrinter("X")

::FunctionalityA("0") ::FunctionalityA("2")

Figure 9: Callback network with multiple composite callbacks and sources

8. Implement and use a new callback decorator RepeatFunctionalityB
that repeats each received call a given number of times. The repeat count is
set in the constructor of the decorator.

9. Implement and use a variant of functionality A (a subject) with a stored and
settable callback (observer).

10. Implement code to use SubjectA, which is a variant of FunctionalityA,
where callbacks (observers) pull data. That is, using an ObserverB inter-
face. See §11. Note

• that SubjectA offers a method to pull data by implementing the in-
terface ObservableB.

• that callbacks need to know the actual subject; the identity is passed as
parameter in the callback.
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