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Abstract

We consider the variance of the reward until absorption in a Markov
chain. This variance is usually calculated from the second moment (ex-
pectation of the square). We present a direct system of equations for
the variance, involving the first moment (expectation) but not the second
moment. This method is numerically superior to the calculation from the
second moment.

1 Introduction

Consider the following problem. A spider is located on the ceiling of a cubic
room. Each day it travels from one face to a neighboring face, crossing a single
edge. The spider randomly chooses among the four neighboring faces, with
uniform probability. Successive choices are independent. What is the expected
number of days for the spider to reach the floor? And, in particular, what is
the corresponding variance?

This problem can be modeled as a Markov chain, where each transition
contributes a fixed ‘reward’ of one day. The ceiling is the initial state, the walls
are other transient states, and the floor is an absorbing state. The problem can
then be reformulated as finding the expected reward until absorption, and its
variance.

We present, what we believe to be, a new method for calculating the vari-
ance in the reward until absorption. We came to this method when analyzing
strategies for playing a solitaire version of the dice game Yahtzee.

Markov chains are not only useful for analyzing puzzles and games of chance,
but also play a prominent role in economics and engineering. Attention is often
focused on the expected reward (or cost). However, in practice, the variance is
also important, because it relates to risk and buffer capacity needed for handling
the swings around the expected value. For instance, it can be more economical
to aim for a suboptimal expected value in favor of a lower variance, because this
improves the predictability of a budget. The Dutch government only recently
decided [1] that its goal in addressing the traffic jam problem would no longer be
a reduction of the expected travel time, but rather a reduction in the variability
of travel time to improve predictability even if that means longer travel times.
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In the remainder of this section, we explain some general concepts and results
from probability theory and our notations. In Section 2, we do the same for
Markov chains. Section 3 contains our new result. The spider in the cubic room
is a running example. Finally, Section 4 concludes the article.

1.1 Probability Theory

For an introduction to probability theory see for instance [2]. We summarize
the concepts needed for understanding this article.

A sample space is a set Ω of (mutually exclusive) sample points or outcomes.
To model a stochastic experiment, each outcome s ∈ Ω is assigned a probabil-
ity P.s, measuring the likelihood that s occurs. We have 0 ≤ P.s ≤ 1 and∑

s∈Ω P.s = 1. The pair (Ω, P ) is also called a probability space.
For example, the set of six faces (ceiling, four walls, and floor) of the cubic

room forms a sample space. Assuming the spider is on the ceiling, let P.s be
the probability that the spider will be on face s the next day. We then have
P.s = 1

4 if s is one of the four walls, and P.s = 0 if s is the ceiling or the floor.
Given a probability space (Ω, P ), a random variable X is a function Ω → R,

where X.s is the value of s ∈ Ω. The expectation (first moment) E [X] of this
random variable X is given by

E [X] =
∑
s∈Ω

P.s ∗X.s . (1)

It is also called the mean, and it captures the central tendency of the random
variable. More generally, E

[
Xk

]
is the k-th moment of X. We will write

EΩ[X], EΩ,P [X], Es[X.s], or Es∈Ω[X.s] to make the relevant probability space
and random variable more explicit.

For example, a roll of a fair die can be modeled by

• the sample space Ω consisting of the six faces of a cube,

• the probability P.s = 1
6 for each face s to appear on top, and

• a function D associating a unique value in the range 1 through 6 with
each face.

For the expectation of D we have E [D] =
∑

s∈Ω
1
6 ∗D.s =

∑6
k=1

1
6 ∗ k = 3.5.

An important property of the expectation is its linearity. For constants c
and d (whose value does not depend on the sample space) and random vari-
ables X and Y on the same probability space, X + cY + d is also a random
variable on that probability space, having expectation

E [X + cY + d] = E [X] + cE [Y ] + d . (2)

Note that, in general, E [X ∗ Y ] = E [X] ∗ E [Y ] does not hold, but it does hold if
X and Y are independent. In particular, E

[
X2

]
and E [X]2 are not necessarily

equal. For instance, for the fair die we have E
[
D2

]
=

∑6
k=1

1
6 ∗ k2 = 15 1

6 ,
whereas E [D]2 = 3.52 = 12 1

4 .
The amount of variability of a random variable X around its mean can be

measured by its variance V[X], defined by

V[X] = E
[
(X − E [X])2

]
. (3)
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The variance can be expressed in terms of the first and second moment, as the
following calculation1 shows:

V[X]
= { definition of V }

E
[
(X − E [X])2

]
= { algebra }

E
[
X2 − 2XE [X] + E [X]2

]
= { linearity of E , observing that E [X] is a constant }

E
[
X2

]
− 2E [X]E [X] + E [X]2

= { algebra }
E

[
X2

]
− E [X]2 (4)

Numerically, however, the expression E
[
X2

]
− E [X]2 is inferior to (3), because

of the risk of cancelation as illustrated by the following example. Consider a
random variable X which takes on one of two values a = 999 and b = 1001
with probabilities p = 0.1 and q = 0.9 respectively. We then have V[X] =
pq(a − b)2 = 0.36. When evaluating (3) and (4) using the IEEE-754 single
format for floating-point numbers, the following dramatic results are obtained

E
[
(X − E [X])2

]
= 0.36000 · · ·

E
[
X2

]
− E [X]2 = 0.50660 · · ·

The latter value is 40% too high!
Note that V[X] is expressed in the square of the units of X. If X is expressed

in m/s, then V[X] is expressed in m2/s2. The standard deviation σ measures
the variability in the same units as the random variable by taking the square
root of the variance:

σ[X] =
√
V[X] . (5)

In general, the variance does not satisfy a linearity property like (2), but we do
have:

V [ cX + d ]
= { definition of V }

E
[
(cX + d− E [cX + d])2

]
= { linearity of E }

E
[
(cX + d− (cE [X] + d))2

]
= { algebra }

E
[
c2(X − E [X])2

]
= { linearity of E , definition of V }

c2V [X] (6)

1This way of recording calculations is due to Feijen, see [3]. The hint in braces explains
why the relationship shown on the left holds between the expressions above and below it.
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2 Markov Chains

For an introduction to Markov chains see for instance [4, 5, 6]. We summarize
the concepts needed for understanding this article.

A Markov chain models a stochastic process, where an experiment with
outcomes in a sample space Ω is repeated and where the probability distribution
for the outcome of each experiment can depend on the outcome of the preceding
experiment.

It is often more convenient to view the sample space Ω of a Markov chain as
a state space. At each time step, the system is in a state s ∈ Ω. The transition
from state s to state t in the next time step occurs with probability p.s.t. For
all s ∈ Ω, the transition probabilities p.s.t satisfy∑

t∈Ω

p.s.t = 1 . (7)

Let us define a Markov chain for the spider in the cubic room. The state
space consists of the six faces where the spider can be located. We abbreviate
them as C (Ceiling), Wi (Wall, 0 ≤ i < 4), and F (Floor). The initial state is C.
The transition probabilities are given by

p.s.t C W0 W1 W2 W3 F
C 0 1/4 1/4 1/4 1/4 0

W0 1/4 0 1/4 0 1/4 1/4
W1 1/4 1/4 0 1/4 0 1/4
W2 1/4 0 1/4 0 1/4 1/4
W3 1/4 1/4 0 1/4 0 1/4
F 0 1/4 1/4 1/4 1/4 0

(8)

Note that the matrix of transition probabilities is symmetric. However, this is
not generally the case.

We are interested only in the spider’s behavior until it reaches the floor.
Therefore, the transition probabilities from the floor, given in the last row of (8),
are irrelevant. We might as well make the spider stay on the floor: p.F.F = 1
and p.F.s = 0 for s 6= F.

Furthermore, the four states Wi are equivalent in view of what they offer
for the future. We can collapse them into a single state W. This yields the
following simplified Markov chain, which is also pictured in Fig. 1.

p.s.t C W F
C 0 1 0
W 1/4 1/2 1/4
F 0 0 1

(9)

2.1 Walks

We now turn to sequences of successive state transitions. A nonempty sequence
s0s1 · · · sn of n+1 states si ∈ Ω is called a walk of length n from s0 to sn. This
sequence represents n successive state transitions si−1 → si. The length of a
walk is the number of state transitions it involves. Note that for a walk w of
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Figure 1: Simplified Markov chain for spider in cubic room (transitions with
probability 0 not drawn)

length zero we have w = s0. We denote catenation of sequences by juxtaposi-
tion. Variables s and t range over states, whereas variables v and w range over
sequences of states.

The successive experiments in a Markov chain are independent and, hence,
the transition probabilities can be multiplied. Thus, the probability P.sw of a
walk sw, given that it starts in s, satisfies the recurrence:

P.s = 1 , (10)
P.stv = p.s.t ∗ P.tv . (11)

We are interested in the analysis of walks until their first arrival in some
nonempty subset A ⊆ Ω. In the example of the spider, our observation of
the walk ends when the spider arrives at the floor for the first time, that is,
A = {F }. In this article, we will use ‘first arrival in A’ and ‘absorption in A’
interchangeably.2

For nonempty A ⊆ Ω, let WA.s be the set of walks starting in s ∈ Ω until
first arrival in A. We will leave out the subscript A, because A will not vary.
If s ∈ A, then the walk ends immediately. If s 6∈ A, then such walks involve
at least one transition to some state t, from where the walk proceeds until first
arrival in A. Formally:

W.s = { s } if s ∈ A , (12)

W.s =
⊎
t∈Ω

{ stv | tv ∈ W.t } if s 6∈ A . (13)

For this article, we make one important assumption about A: starting in
state s, the probability that a walk eventually ends in A is 1. That is, for all s,
we have∑

sw∈W.s

P.sw = 1 . (14)

Hence, W.s is a sample space, and P.sw for w ∈ W.s is a probability function
on it.

2.2 Rewards

In the example of the spider, we are interested in the expected length of a walk
until absorption. More generally, we associate with each transition s → t a

2Strictly speaking, the transition probabilities should be redefined to make states s ∈ A
truly absorbing: p.s.s = 1 and p.s.t = 0 for t 6= s.
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reward r.s.t. If we are only interested in the walk length, then we take r.s.t = 1.
The (total) reward R.sw of walk sw is defined inductively by

R.s = 0 , (15)
R.stv = r.s.t + R.tv . (16)

That is, successive rewards are independent and, hence, are simply added.
The reward R.sw obtained when starting in state s and walking until first

arrival in A is a random variable on the probability space (W.s, P.sw). In the
remainder of this section, we deal with the expectation EW.s[R.sw]. Even though
this is a well-known result, we have included it here in detail for two reasons:

• We have not seen it treated in this way elsewhere.

• The treatment of the variance follows the same pattern.

First, however, we derive a pair of convenient properties for the expectation
EW.s[X] of an arbitrary random variable X on walks from s until first arrival
in A.

Property For s ∈ A:

EW.s[X]
= { definition of E }∑

w∈W.s

P.w ∗X.w

= { W.s = { s }, because s ∈ A }
P.s ∗X.s

= { by definition P.s = 1 }
X.s

Property (conditioning on the first step toward absorption) For s 6∈ A:

EW.s[X]
= { definition of E }∑

w∈W.s

P.w ∗X.w

= { write w = sv for v ∈ W.t, because s 6∈ A, cf. (13) }∑
t∈Ω

∑
v∈W.t

P.sv ∗X.sv

= { recurrence for walk probability: P.sv = p.s.t ∗ P.v for v ∈ W.t }∑
t∈Ω

∑
v∈W.t

p.s.t ∗ P.v ∗X.sv

= { distribute p.s.t ∗ outside
∑

v, using that p.s.t does not depend on v }∑
t∈Ω

p.s.t ∗
∑

v∈W.t

P.v ∗X.sv

= { definition of E }∑
t∈Ω

p.s.t ∗ Ev∈W.t[X.sv]

= { definition of E }
Et∈Ω [ Ev∈W.t[X.sv] ]
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Concerning the expected reward EW.s[R] on a walk from state s until ab-
sorption in A, we can now calculate the following (well-known) result.

For s ∈ A:

EW.s[R]
= { property above, using s ∈ A }

R.s

= { definition of R }
0

For s 6∈ A:

EW.s[R]
= { conditioning on first state t after state s, using s 6∈ A }

Et∈Ω [ Ev∈W.t[R.sv] ]
= { recurrence for walk reward: R.sv = r.s.t + R.v for v ∈ W.t }

Et∈Ω [ Ev∈W.t[ r.s.t + R.v ] ]
= { linearity of expectation, using that r.s.t is independent of v }

Et∈Ω [ r.s.t + Ev∈W.t[R.v] ]
= { simplify notation }

Et∈Ω [ r.s.t + EW.t[R] ]

This gives us a system of linear equations with as unknowns µs = EW.s[R] for
each s ∈ Ω:

µs =
∑
t∈Ω

p.s.t ∗ (r.s.t + µt) . (17)

If r.s.t = 1 (measuring the length of a walk), then this can be simplified to

µs = 1 +
∑
t∈Ω

p.s.t ∗ µt . (18)

Consider the three-state Markov chain (9) for the spider in the cubic room.
We take A = {F }. According to (18), the system of equations for the expected
walk lengths µs = EW.s[R] from face s to absorption on the floor is:

µC = 1 + µW

µW = 1 +
(

1
4
µC +

1
2
µW +

1
4
µF

)
µF = 0

This has as solution:

µC = 6
µW = 5
µF = 0

Thus, when starting on the ceiling, the expected duration for the spider to hit
the floor is exactly 6 days.
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3 Reward Variance

We now turn to the variance VW.s[R] in the reward on a walk from state s to
absorption in A. For s ∈ A, we calculate

VW.s[R]
= { definition of V }

EW.s

[
(R− EW.s[R])2

]
= { EW.s[R] = 0, because s ∈ A and R.s = 0 }

EW.s

[
R2

]
= { property of EW.s, using s ∈ A and R.s = 0 }

0

Before tackling s 6∈ A, we observe that for constant c and random variable X:

V[X] = V[c + X] = E [(c + X)2]− E [c + X]2 = E [(c + X)2]− (c + E [X])2 .

And, hence,

E [(c + X)2] = (c + E [X])2 + V[X] . (19)

Finally, for s 6∈ A, we calculate

VW.s[R]
= { definition of V }

EW.s

[
(R− EW.s[R])2

]
= { conditioning on first state t after state s, using s 6∈ A }

Et∈Ω

[
Ev∈W.t

[
(R.sv − EW.s[R])2

] ]
= { recurrence for reward: R.sv = r.s.t + R.v for v ∈ W.t }

Et∈Ω

[
Ev∈W.t

[
(r.s.t + R.v − EW.s[R])2

] ]
= { (19), using that r.s.t− EW.s[R] does not depend on v }

Et∈Ω

[
(r.s.t + EW.t[R]− EW.s[R])2 + VW.t[R]

]
This yields a system of linear equations with as unknowns σ2

s = VW.s[R] for
each s ∈ Ω, involving µs = EW.s[R] as parameters:

σ2
s =

∑
t∈Ω

p.s.t ∗
(
(r.s.t + µt − µs)2 + σ2

t

)
. (20)

My earlier derivations of this result were quite messy. The derivation pre-
sented here is kept simple by using (19).

When applying (20) to the example of the spider, we obtain as system of
equations for the variance in walk length σ2

s = VW.s[R] from face s to absorption
on the floor:

σ2
C =

(
1 + µW − µC

)2 + σ2
W

σ2
W =

1
4

((
1 + µC − µW

)2 + σ2
C

)
+

1
2

((
1 + µW − µW

)2 + σ2
W

)
+

1
4

((
1 + µF − µW

)2 + σ2
F

)
σ2
F = 0
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The first equation yields σ2
C = σ2

W, because µC = 1 + µW. This is understand-
able, since the probability for a transition from Ceiling to Wall equals 1 and,
hence, there is no variability on this part of the walk.

The solution to the equation system is:

σ2
C = 22

σ2
W = 22

σ2
F = 0

Hence, the standard deviation in the walk length from the ceiling to the floor
is
√

22 ≈ 4.69. This is considerable compared to the expectation µC = 6.
It means3 that almost two million simulation runs are needed to estimate the
expectation with an accuracy of 0.01 and a confidence level within 3σ.

The equations (20) can be generalized for covariance. Given two random
variables X and Y on the same probability space, their covariance Cov.X.Y is
defined by

Cov.X.Y = E [ (X − E [X])(Y − E [Y ]) ] . (21)

Note that Cov.X.X = V[X]. Similar to (4), one can derive

Cov.X.Y = E [XY ]− E [X]E [Y ] (22)

Hence, we have (compare this to (2))

V[X + cY + d] = V[X] + c2V[Y ] + 2cCov.X.Y (23)

Now consider two reward functions r and q on the same Markov chain. These
induce the reward functions R and Q on walks. The covariances zs between R
and Q on walks starting in state s until absorption in A satisfy

zs =
∑
t∈Ω

p.s.t ∗ ((r.s.t + µt − µs)(q.s.t + νt − νs) + zt) . (24)

where µs = EW.s[R] and νs = EW.s[Q].

4 Conclusion

We have presented a new system of equations (20) for determining the variance
of the reward until absorption in a Markov chain. Compared to the standard
approach using the second moment, these equations have a lower risk of cance-
lation when solved numerically.

We applied this technique in our analysis of the dice game Yahtzee [7, 8].
The Markov chain for solitaire Yahtzee involves close to 109 states. Because
it has no cycles, the resulting equations for expectation and variance are re-
currence equations. These can be solved simply by backward substitution and
dynamic programming. The analysis yields the optimal expected final score and
its variance, also broken down by the individual scoring categories and their co-
variances. Cremers [9] extended the analysis to the beating of high scores.

I would like to acknowledge the helpful comments from Onno Boxma and
Ivo Adan on an earlier version of this article.

3The variance in the average taken over n simulation runs equals the variance in a single
run divided by n, and hence, the standard deviation in the average taken over n simulation

runs equals σ/
√

n. The number of runs needs to be at least
“
3
√

22/0.01
”2

.

9



References

[1] Karla Peijs. Nota Mobiliteit. Ministerie van Verkeer en Waterstaat, 2004.
On-line: http://www.notamobiliteit.nl/.

[2] W. Feller. Introduction to Probability Theory and Its Applications, volume 1.
Wiley, London, third edition, 1970.

[3] E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program Seman-
tics. Springer, Berlin, 1990.

[4] John G. Kemeny and J. Laurie Snell. Finite Markov Chains. Springer,
Berlin, 1976.

[5] Edward P. C. Kao. An Introduction to Stochastic Processes. Duxbury Press,
Bonn, 1997.

[6] Sheldon M. Ross. Introduction to Probability Models. Academic Press, San
Diego, eigth edition, 2003.

[7] T. Verhoeff. Optimal solitaire Yahtzee advisor and
Yahtzee proficiency test, 1999. On-line since July 1999:
http://www.win.tue.nl/~wstomv/misc/yahtzee/.

[8] H. van Maanen. Ook Yahtzee bezwijkt (Eng.: “Also Yahtzee succumbs”).
Het Parool, 1999. Dutch daily newspaper, 9 oktober 1999.

[9] C. Cremers. How best to beat high scores in Yahtzee: A caching structure
for evaluating large recurrent functions. Master’s thesis, Fac. of Math. and
CS, Technische Universiteit Eindhoven, The Netherlands, 2002.

10


