A lower bound for the Laplacian eigenvalues of a graph - proof of a conjecture by Guo

A. E. Brouwer \& W. H. Haemers

2008-02-28

Abstract

We show that if μ_{j} is the j-th largest Laplacian eigenvalue, and d_{j} is the j-th largest degree $(1 \leq j \leq n)$ of a connected graph Γ on n vertices, then $\mu_{j} \geq d_{j}-j+2(1 \leq j \leq n-1)$. This settles a conjecture due to Guo.

1 Introduction

Let Γ be a finite simple (undirected, without loops) graph on n vertices. Let $X=V \Gamma$ be the vertex set of Γ. Write $x \sim y$ to denote that the vertices x and y are adjacent. Let d_{x} be the degree (number of neighbors) of x.

The adjacency matrix A of Γ is the $0-1$ matrix indexed by X with $A_{x y}=1$ when $x \sim y$ and $A_{x y}=0$ otherwise. The Laplacian matrix of Γ is $L=D-A$, where D is the diagonal matrix given by $D_{x x}=d_{x}$, so that L has zero row and column sums.

The eigenvalues of A are called eigenvalues of Γ. The eigenvalues of L are called Laplacian eigenvalues of Γ. Since A and L are symmetric, these eigenvalues are real. Since L is positive semidefinite (indeed, for any vector u indexed by X one has $u^{\top} L u=\sum\left(u_{x}-u_{y}\right)^{2}$ where the sum is over all edges $x y$), it follows that the Laplacian eigenvalues are nonnegative. Since L has zero row sums, 0 is a Laplacian eigenvalue. In fact the multiplicity of 0 as eigenvalue of L equals the number of connected components of Γ.

Let $\mu_{1} \geq \mu_{2} \geq \ldots \geq \mu_{n}=0$ be the Laplacian eigenvalues. Let $d_{1} \geq d_{2} \geq \ldots \geq d_{n}$ be the degrees, ordered nonincreasingly. We will prove that $\mu_{i} \geq d_{i}-i+2$ with basically one exception.

2 Exception

Suppose $\mu_{m}=0<d_{m}-m+2$. Then $d_{m} \geq m-1$, and we find a connected component with at least m vertices, hence with at least $m-1$ nonzero Laplacian eigenvalues. It follows that this component has size precisely m, and hence $d_{1}=\ldots=d_{m}=m-1$, and the component is K_{m}. Now $\Gamma=K_{m}+(n-m) K_{1}$ is the disjoint union of a complete graph on m vertices and $n-m$ isolated points. We'll see that this is the only exception.

3 Interlacing

Suppose M and N are real symmetric matrices of order m and n with eigenvalues $\lambda_{1}(M) \geq \ldots \geq \lambda_{m}(M)$ and $\lambda_{1}(N) \geq \ldots \geq \lambda_{n}(N)$, respectively. If M is a principal submatrix of N, then it is well known that the eigenvalues of M interlace those of N, that is,

$$
\lambda_{i}(N) \geq \lambda_{i}(M) \geq \lambda_{n-m+i}(N) \text { for } i=1, \ldots, m .
$$

Less well-known, (see for example [3]) is that these inequalities also hold if M is the quotient matrix of N with respect to some partition X_{1}, \ldots, X_{m} of $\{1, \ldots, n\}$. This means that $\left(M_{i, j}\right)$ equals the average row sum of the block of N with rows indexed by X_{i} and columns indexed by X_{j}.

Let K be the point-line incidence matrix of a graph Γ. Then the Laplacian of Γ is $L=K K^{\top}$. But $K K^{\top}$ has the same nonzero eigenvalues as $K^{\top} K$, and interlacing for that latter matrix implies that the eigenvalues of L do not increase when an edge of Γ is deleted.

4 The lower bound

Theorem 1 Let Γ be a finite simple graph on n vertices, with vertex degrees $d_{1} \geq d_{2} \geq \ldots \geq d_{n}$, and Laplacian eigenvalues $\mu_{1} \geq \mu_{2} \geq \ldots \geq$ μ_{n}. If Γ is not $K_{m}+(n-m) K_{1}$, then $\mu_{m} \geq d_{m}-m+2$.

For the union of K_{m} and some isolated points we have $\mu_{m}=0$ and $d_{m}=m-1$.

The case $m=1$ of this theorem ($\mu_{1} \geq d_{1}+1$ if there is an edge) is due to Grone \& Merris [1]. The case $m=2\left(\mu_{2} \geq d_{2}\right.$ if the number of edges is not 1) is due to Li \& Pan [4]. The case $m=3$ is due to Guo [2], and he also conjectured the general result.

Let us separate out part of the proof as a lemma.
Lemma 2 Let S be a set of vertices in the graph Γ such that each vertex in S has at least e neighbors outside S. Let $m=|S|, m>0$. Then $\mu_{m} \geq e$. If S contains a vertex adjacent to all other vertices of S, and $e>0$, then $\mu_{m} \geq e+1$.

Proof Consider the principal submatrix L_{S} of L with rows and columns indexed by S. Let $L(S)$ be the Laplacian of the subgraph induced on S. Then $L_{S}=L(S)+D$ where D is the diagonal matrix such that $D_{s s}$ is the number of neighbors of s outside S. Since $L(S)$ is positive semidefinite and $D \geq e I$, all eigenvalues of L_{S} are not smaller than e, and by interlacing $\mu_{m} \geq e$.

Now suppose that $S=\left\{s_{0}\right\} \cup T$, where s_{0} is adjacent to all vertices of T. Throw away all edges entirely outside S, and possibly also some edges leaving S, so that each vertex of S has precisely e neighbours outside S. Also throw away all vertices outside S that now are isolated. Since these operations do not increase μ_{m}, it suffices to prove the claim for the resulting situation.

Consider the quotient matrix Q of L for the partition of the vertex set X into the $m+1$ parts $\{s\}$ for $s \in S$ and $X \backslash S$. We find, with $r=|X \backslash S|$,

$$
Q=\left(\begin{array}{ccc}
e+m-1 & -1 \ldots-1 & -e \\
-1 & & -e \\
\vdots & L_{T} & \vdots \\
-1 & & -e \\
-e / r & -e / r \ldots-e / r & e m / r
\end{array}\right)
$$

Consider the quotient matrix R of L for the partition of the vertex set X into the 3 parts $\left\{s_{0}\right\}, T, X \backslash S$. Then

$$
R=\left(\begin{array}{ccc}
e+m-1 & 1-m & -e \\
-1 & e+1 & -e \\
-e / r & -e(m-1) / r & e m / r
\end{array}\right) .
$$

The eigenvalues of R are $0, e+m$, and $e+m e / r$, and these three numbers are also the eigenvalues of Q for (right) eigenvectors that are constant on the three sets $\left\{s_{0}\right\}, T, X \backslash S$. The remaining eigenvalues θ of Q belong to (left) eigenvectors perpendicular to these, so of the form $\left(0, u^{\top}, 0\right)$ with $\sum u=0$. Now $L_{T} u=\theta u$, but $L_{T}=L(T)+(e+1) I$ and $L(T)$ is positive semidefinite, so $\theta \geq e+1$.

Since $m e / r \geq 1$ (each vertex in S has e neighbors outside S and $|S|=m$, so at most $m e$ vertices in $X \backslash S$ have a neighbor in S), it follows that all eigenvalues of Q except for the smallest are not less than $e+1$. By interlacing, $\mu_{m} \geq e+1$.

Proof (of the theorem). Since $\mu_{m} \geq 0$ we are done if $d_{m} \leq m-2$. So, suppose that $d_{m} \geq m-1$.

Let Γ have vertex set X, and let x_{i} have degree $d_{i}(1 \leq i \leq n)$. Put $S=\left\{x_{1}, \ldots, x_{m}\right\}$. Put $e=d_{m}-m+1$, then we have to show $\mu_{m} \geq e+1$.

Each point of S has at least e neighbours outside. If each point of S has at least $e+1$ neighbours outside, then we are done by the lemma. And if not, then a point in S with only e neighbours outside is adjacent to all other vertices in S, and we are done by the lemma, unless $e=0$.

Suppose first that Γ is K_{m} with a pending edge attached, possibly together with some isolated vertices. Then Γ has Laplacian spectrum $m+$ $1, m^{m-2}, 1,0^{n-m}$, with exponents denoting multiplicities, and equality holds. And if Γ is $K_{m}+K_{2}+(n-m-2) K_{1}$, it has spectrum $m^{m-1}, 2$, 0^{n-m}, and the inequality holds.

Let T be the set of vertices of S with at most $m-2$ neighbours in S. The case $T=\emptyset$ has been treated above. For each vertex $s \in T$ delete all edges except one between s and $X \backslash S$. Now the row of L_{S} indexed by s gets row sum 1. Since $d_{m}=m-1$ we can always do so. Also delete all edges inside $X \backslash S$, and possible isolated vertices. By interlacing, μ_{i} has not been increased, so it suffices to show that for the remaining graph $\mu_{m} \geq 1$.

Again consider the partition of X into $m+1$ parts consisting of $\{s\}$ for each $s \in S$, and $X \backslash S$, and let Q be the corresponding quotient matrix of L. By interlacing it suffices to show that the second smallest eigenvalue of Q is at least 1. Put $r=|X \backslash S|$ and $t=|T|$, then $0<r \leq t$, and

$$
Q=\left(\begin{array}{ccc}
m I-J & -J & \mathbf{0} \\
-J & L_{T} & -\mathbf{1} \\
\mathbf{0}^{\top} & -\mathbf{1}^{\top} / r & t / r
\end{array}\right)
$$

(J is the all-ones matrix, and $\mathbf{0}$ and $\mathbf{1}$ denote the all-zeros and the all-ones vector, respectively). Now Q has a 3×3 quotient matrix

$$
R=\left(\begin{array}{ccc}
t & -t & 0 \\
t-m & m-t+1 & -1 \\
0 & -t / r & t / r
\end{array}\right)
$$

The three eigenvalues of R are $0 \leq x \leq y$ (say). We easily have that

$$
(1-x)(1-y)=\operatorname{det}(I-R)=t-1+(m-1)(t / r-1) \geq 0,
$$

which implies that $x \geq 1$ (since $x \leq y \leq 1$ contradicts $x+y=$ trace $R>$ $m+1$). These three values are also eigenvalues of Q with (right) eigenvectors constant over the partition. The remaining eigenvalues have (left) eigenvectors that are orthogonal to the characteristic vectors of the partition, and these eigenvalues remain unchanged if a multiple of J is added to a block of the partition of Q. So they are also eigenvalues of

$$
Q^{\prime}=\left(\begin{array}{ccc}
m I & O & \mathbf{0} \\
O & L_{T} & \mathbf{0} \\
\mathbf{0}^{\top} & \mathbf{0}^{\top} & 1
\end{array}\right),
$$

which are at least 1 since $L_{T}=L(T)+(m-t+1) I$ and $L(T)$ is positive semidefinite. So we can conclude that $\mu_{m} \geq 1$.

5 Equality

There are many cases of equality (that is, $\mu_{m}=d_{m}-m+2$), and we do not have a complete description.

For $m=1$ we have equality, i.e., $\mu_{1}=d_{1}+1$, if and only if Γ has a vertex adjacent to all other vertices.

For $m=n$ we have equality, i.e., $0=\mu_{n}=d_{m}-m+2$, if and only if the complement of Γ has maximum degree 1 .

The path $P_{3}=K_{1,2}$ has Laplace eigenvalues 3, 1, 0 and degrees $2,1,1$ with equality for $m=0,1,2$, and is the only graph with equality for all m.

The complete graph K_{m} with a pending edges attached at the same vertex has spectrum $a+m, m^{m-2}, 1^{a}, 0$, with exponents denoting multiplicities. Here $d_{m}=m-1$, with equality for m (and also for $m=1$).

The complete graph K_{m} with a pending edges attached at each vertex has spectrum $\frac{1}{2}\left(m+a+1 \pm \sqrt{(m+a+1)^{2}-4 m}\right)^{m-1}, a+1,1^{m(a-1)}, 0$, with $\mu_{m}=a+1=d_{m}-m+2$.

The complete bipartite graph $K_{a, b}$ has spectrum $a+b, a^{b-1}, b^{a-1}, 0$. For ($a=1$ or $a \geq b$) and $b \geq 2$ we have $d_{2}=a=\mu_{2}$. This means that all graphs $K_{1, b}$, and all graphs between $K_{2, a}$ and $K_{a, a}$ have equality for $m=2$.

The following describes the edge-minimal cases of equality.
Proposition 3 Let Γ be a graph satisfying $\mu_{m}=d_{m}-m+2$ for some m, and such that for each edge e the graph $\Gamma \backslash e$ has a different m-th largest degree or a different m-th largest eigenvalue. Then one of the following holds.
(i) Γ is a complete graph K_{m} with a single pending edge.
(ii) $m=2$ and Γ is a complete bipartite graph $K_{2, d}$.
(iii) Γ is a complete graph K_{m} with a pending edges attached at each vertex. Here $d_{m}=m+a-1$.

Proof This is a direct consequence of the proof of the main result.
Many further examples arise in the following way. Any eigenvector u of $L=L(\Gamma)$ remains eigenvector with the same eigenvalue if one adds an edge between two vertices x and y for which $u_{x}=u_{y}$. If Γ had equality, and adding the edge does not change d_{m} or the index of the eigenvalue μ_{m}, then the graph Γ^{\prime} obtained by adding the edge has equality again.

The eigenvector for the eigenvalue $a+1$ for K_{m} with a pending edges attached at each vertex, is given by: 1 on the vertices of degree 1 , and $-a$ on the vertices in the K_{m}. So, equality will persist when arbitrary edges between the outside vertices are added to this graph, as long as the eigenvalue keeps its index and d_{m} does not change.

The eigenspace of $K_{a, b}$ for the eigenvalue a is given by: values summing to 0 on the b-side, and 0 on the a-side. Again we can add edges.

For example, the graphs $K_{2, d}$ with $d \geq 2$ have $d_{2}=d=\mu_{2}$ with equality for $m=2$. Adding an edge on the 3 -side of $K_{2,3}$ gives a graph with spectrum $5,4,3,2,0$, and the eigenvalue 3 is no longer 2nd largest. Adding an edge on the 4 -side of $K_{2,4}$ gives a graph with spectrum 6, 4, $4,2,2,0$, and adding two disjoint edges gives $6,4,4,4,2,0$, and in both cases we still have equality for $m=2$.

References

[1] R. Grone \& R. Merris, The Laplacian spectrum of a graph II, SIAM J. Discr. Math. 7 (1994) 221-229.
[2] Ji-Ming Guo, On the third largest Laplacian eigenvalue of a graph, Lin. Multilin. Alg. 55 (2007) 93-102.
[3] W. H. Haemers, Interlacing eigenvalues and graphs, Linear Alg. Appl. 226-228 (1995) 593-616.
[4] Jiong-Sheng Li \& Yong-Liang Pan, A note on the second largest eigenvalue of the Laplacian matrix of a graph, Lin. Multilin. Alg. 48 (2000) 117-121.

