
Button Madness

(aeb, following notes by Aart Blokhuis)

1 The game

Let Γ be a graph with a light bulb and a button at each vertex. Suppose that
pushing the button at vertex x switches the state (on/off) of x and each of its
neighbours. For which starting positions is it possible to switch all lights off?
For which graphs is it possible to switch all lights off for each starting position?

Let Γ have adjacency matrix A. Our questions are equivalent to: Which
vectors are in the row span of I + A over F2? Does I + A have full 2-rank?

Concerning the former, the all-1 vector 1 is always in the row span.

Lemma 1.1 The diagonal of a symmetric binary matrix lies in its row span.

Proof. Let d be the diagonal of the matrix M defined over F2. If Mu = 0, then
u>Mu = 0 and hence d>u = 0 (since all non-diagonal contributions cancel by
symmetry). Thus, if u is orthogonal to the row space of M , it is also orthogonal
to its diagonal. 2

Concerning the latter, we have

Lemma 1.2 The matrix I+A has full 2-rank if and only if Γ has an odd number
of matchings.

Proof. The matrix I + A has full 2-rank precisely when its determinant is
nonzero (mod 2). All terms in the expansion of the determinant cancel by sym-
metry except for those that are their own mirror image. And these correspond
precisely to the matchings of Γ. 2

We may group matchings in orbits under some group of automorphisms of
Γ, and only count the number of orbits of odd size. For example, if Γ is the
m-cube (of valency m, on 2m vertices), then consider the translation group of
order 2m. All orbits have even size except for the the orbits of size 1, which are
the empty matching and m complete matchings. It follows that I + A has full
2-rank precisely when m is even.

2 Button Madness

Let Γ = Cn ×Cn, the n× n torus on n2 vertices. The valency is 4, each button
press switches 5 lights. The number n is called mad when I + A does not have
full 2-rank, or, equivalently, when there exist nonempty sets of buttons such
that pushing all of them does leaves the state unchanged.

For n = 4 this is the 4-cube, so 4 is not mad.

1



Lemma 2.1 If m is mad, and m|n, then n is mad.

Proof. Repeat a pattern in the kernel of I +Am periodically to find a pattern
in the kernel of I + An. 2

Lemma 2.2 If m is not mad, then neither is 2m.

Proof. If we push a button and its four neighbours, the effect is a ‘double’
cross. This means that we can play the 2m-game as four disjoint copies of the
m-game. 2

Let us call a number MAD when it is mad, but not a proper multiple of a
mad number. MAD numbers are 3, 5, 17, 31, 127, 257, 511, 683, 2047, 2731, ...
The number 1 is not mad, but 3 is, because pressing all buttons on two rows
(or all buttons on a row and then all on a column) leaves the position invariant.

3 Algebraic formulation

Let the vertex (i, j) correspond to the monomial XiY j . A position corresponds
to a polynomial f(X,Y ) in the ring R = Rn = F2[X,Y ]/(Xn − 1, Y n − 1).
Pressing some buttons means adding a multiple of i(X,Y ) := 1 + X + X−1 +
Y + Y −1, where X−1 = Xn−1, Y −1 = Y n−1. So, n is mad precisely when the
ideal I = (i(X,Y )) is proper in R, that is, when i(X,Y ) is not a unit.

In this formulation, the proof of Lemma 2.2 becomes the observation that
i(X,Y )2 = i(X2, Y 2), so that 1 + X + X−1 + Y + Y −1 is a unit iff 1 + X2 +
X−2 + Y 2 + Y −2 is.

Proposition 3.1 Let F = Fq be the finite field of order q = 2φ(n). The number
n is mad iff the equation i(X,Y ) = 0 has a solution in F consisting of n-th roots
of unity.

Proof. Since squaring is a field automorphism, we may suppose that n is odd.
Since i(X,Y )2 = i(X2, Y 2) and 2φ(n) = 1 (mod n), we have i(X,Y )q = i(X,Y ),
and i(X,Y ) is invertible in R iff i(X,Y )q−1 = 1. If i(a, b) = 0 for certain a, b ∈ F
with an = bn = 1, then i(X,Y ) is contained in the kernel of the homomorphism
R → F defined by f(X,Y ) 7→ f(a, b), while 1 is not, so (i(X,Y )) is a proper
ideal in R. Conversely, if i(a, b) 6= 0 for all n-th roots of unity a, b ∈ F, then
the polynomial f(X,Y ) := i(X,Y )q−1−1 satisfies f(a, b) = 0 for these a, b, and
hence f(X,Y ) ∈ (Xn − 1, Y n − 1), i.e., f(X,Y ) = 0 in R. 2

The following theorem shows that there are infinitely many MAD numbers.

Theorem 3.2 2k − 1 is mad for all k 6= 1, 3.

Proof. It suffices to show that 1 + X + X−1 + Y + Y −1 = 0 has a solution
in Fq for q = 2k, since all nonzero elements of this field are n-th roots of unity
for n = 2k − 1. We have to show that the cubic curve X2Y + XY 2 + XY Z +
XZ2 +Y Z2 = 0 has a point over Fq with XY Z 6= 0. This curve is nonsingular,
and hence has at least q + 1− 2

√
q rational points, of which 4 have XY Z = 0,

so at least q − 3− 2
√
q with XY Z 6= 0. For k ≥ 4 we have q − 3− 2

√
q > 0. 2
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Theorem 3.3 (2k − 1)/d is mad for (3d)4 ≤ 2k.

Proof. Consider the curve 1 + Xd + X−d + Y d + Y −d = 0 over Fq for q =
2k. After multiplication by XdY d and homogeneization this becomes X2dY d +
XdY 2d+XdY dZd+XdZ2d+Y dZ2d = 0. This curve is singular, but absolutely
irreducible, and has at least q + 1 − (3d − 1)(3d − 2)

√
q points, of which d + 3

have XY Z = 0, so at least q−d−2− (3d−1)(3d−2)
√
q points with XY Z 6= 0.

The hypothesis of the theorem suffices to guarantee that this is positive. 2

On the negative side, 73 = 511/7 and 9709 = (218 − 1)/27 and 3848537 =
(230 − 1)/279 are not mad.

Theorem 3.4 2k + 1 is mad for all k > 0.

Proof. The 2k + 1 elements x of F22k satisfying x2k+1 = 1 have x2k = x−1, so
that 1 + x + x−1 + y + y−1 = 1 + trx + tr y, where tr : F22k → F2k is the trace.
Each trace value occurs twice, except for 0 = tr 1, so that the set T of elements

of F2k of the form x + x−1 where x2k+1 = 1 has size 2k−1 + 1. But then the
equation a + b = 1 has a solution in T . 2

Lemma 3.5 The 2k−1 nonzero values z in F2k of the form x + x−1 for some

x in F22k with x2k+1 = 1 are precisely the values with Tr z−1 = 1, where Tr :
F2k → F2 is the trace.

Proof. Consider S =
∑k−1
i=0 (x + x−1)2

k−1−2i . By Lucas, the expansion of

(x + x−1)2
k−1−2i contains precisely those terms xm where −2k−1 < m < 2k−1

and m ≡ 2k−1 − 2i (mod 2i+1). So each m is seen precisely once, and S =∑2k−1
j=1 x2k−1−j . For x2k+1 = 1, x 6= 1 and z = x + x−1 we find S + z2

k−1

=∑2k

j=0 x
2k−1−j = 0 and hence Tr z−1 =

∑k−1
i=0 z−2

i

= z−2
k−1

S = 1. 2

Theorem 3.6 (2k + 1)/d is mad for (4d)4 ≤ 2k.

Proof. Consider the curve F (X,Y ) = 1 + Xd + X−d + Y d + Y −d = 0 over
F22k and seek solutions where X and Y are (2k + 1)-st roots of unity. Since
{1, X + X−1, . . . , Xm + X−m} and {(X + X−1)h | h = 0, 1, . . . ,m}, span the
same space, we may rewrite F (X,Y ) as a polynomial G(Z,W ) of degree d in
Z = X + X−1 and W = Y + Y −1 and seek solutions over F2k where Z and W
have inverses of trace 1.

Now the elements of F2k of trace 1 have the form u2 + u + a, where a is
a fixed element of trace 1. So, we can substitute Z = 1/(U2 + U + a) and
W = 1/(V 2 + V + a) and find a polynomial H(U, V ) = Z−dW−dG(Z,W ) of
degree 4d in U and V . The result follows. 2

On the negative side, 43 = 129/3 and 241 = 4097/17 and 4033 = (218+1)/65
are not mad.
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4 2-order

Examples seem to show that MAD numbers have small 2-order. We give some
resuls in this direction.

For odd n, let ord(n) denote the multiplicative order of 2 mod n, and let
pmord(n) denote the smallest k > 0 with 2k = ±1 (mod n). (So pmord(n) =
ord(n) or pmord(n) = ord(n)/2. We are in the first case for n = 15, ord(n) = 4.)

Lemma 4.1 Let n be odd, and let g be a primitive n-th root of unity (in a
suitable extension of F2). Then the minimal polynomial of g over F2 has degree
ord(n). Any polynomial with roots both g and g−1 has degree at least 2 pmord(n).

Proof. The conjugates of g are the powers g2
m

, and there are ord(n) of them.
If these are also the conjugates of g−1, then pmord(n) = ord(n)/2. 2

Theorem 4.2 If p is an odd prime, and p is mad, then

pmord(p) ≤ √p.

Proof. Let i(x, y) = 0 for some x and y that are p-th roots of unity. In terms
of a fixed primitive p-th root of unity g we have for certain a and b:

1 + g−a + ga + g−b + gb = 0.

Let Λ be the sublattice of Z × Z spanned by the vectors (a, b), (p, 0), (0, p).
Since Λ has index p, a fundamental domain for Λ has area p. By Minkowski’s
theorem Λ has a nonzero point (c, d) in the bounded symmetric convex set
K = {(x, y) | |x|, |y| ≤ √p}. If (c, d) = s(a, b) + t(p, 0) + u(0, p), then s 6= 0
(mod p). Let rs = 1 (mod p) and put h = gr, so that g = hs. Now

1 + h−c + hc + h−d + hd = 0.

We see that h and h−1 satisfy the same equation of degree 2 max(|c|, |d|) ≤ 2
√
p

and the above lemma yields the required inequality. 2

5 Computer search

In this section we describe how the algebraic condition for a number n to be
mad can be translated into a reasonably fast algorithm to test for madness.

Define polynomials fm(U) in F2[U ] by

f0(U) = 0, f1(U) = 1, fm(U) = U fm−1(U) + fm−2(U) for m > 1.

Theorem 5.1 Let gn(U) = U fn(U). The number n is mad if and only if

gcd(gn(U), gn(U + 1)) 6= 1.

Proof. Note that gn(X + X−1) = Xn + X−n. The number n is mad if and
only if 1 + X + X−1 + Y + Y −1 = 0 has a solution in n-th roots of unity. Put
U = X + X−1 and Y = Y + Y −1. Then n is mad if and only if 1 + U + V = 0
has a solution in roots of gn. 2
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Theorem 5.2 Let hm(U) = gm(U) + gm+1(U). The number n = 2m + 1 is
mad if and only if

gcd(hm(U), hm(U + 1)) 6= 1.

Proof. Note that hm(X + X−1) = Xm+1 + Xm + X−m + X−m−1 = (Xn +
1)(X + 1)X−m−1. The number n = 2m+ 1 is mad if and only if 1 +X +X−1 +
Y + Y −1 = 0 has a solution in n-th roots of unity. Put U = X + X−1 and
V = Y + Y −1. Then n is mad if and only if 1 + U + V = 0 has a solution in
roots of hm. 2

Using this condition we used the Mathematica package to test some small
numbers, and the first interesting MAD number (that is not of the form 2k ± 1
was found: 683 = (211 + 1)/3. Motivated by this we wrote a little C program to
check all numbers up to 105 (this took approximately 100 hours of CPU-time)
and all numbers n < 106 with ord(n) ≤ 100. The fact that all numbers that
turned out to be MAD had 2-order at most 30 indicated that the list is probably
complete. Later Andries tested his new computer and checked all n up to 107,
and those of pmord(n) ≤ 200 up to 109, finding a total of 62 mad numbers, all
with pmord(n) ≤ 54.

6 Table

Table 1 below gives all known MAD numbers less than 109. It is complete up to
107 and also contains all MAD numbers n with n < 109 and pmord(n) < 200.

3 5 17 31 127
257 511 683 2047 2731

3277 3641 8191 43691 52429
61681 65537 85489 131071 174763

178481 233017 253241 256999 486737
524287 704093 838861 1016801 1082401

1657009 1838599 1965379 2304167 2796203
3033169 3303821 3605429 3705353 6700417
8727391 9335617 13788017 15790321 19173961

21225581 24214051 25080101 25781083 53353631
102964687 120296677 164511353 207207011 240068041
256957153 464955857 598781009 616318177 715827883
905040953 993089953

Table 1: The 62 known MAD numbers less than 109

7 Historical remarks

Most of the above was found by Aart Blokhuis in 1994 or 1995 and lived in old
preprints and on web pages. This old material was revived in 2015 when the
table was extended.
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