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• Match the pairs 

1 Association A 

2 Aggregation B 

3 Composition C 

4 Implementation D 

5 Generalization E 

6 Dependency F 



Before we start 

/ SET / W&I PAGE 2 24-2-2014 

• Match the pairs 

1 Association A 

2 Aggregation B 

3 Composition C 

4 Implementation D 

5 Generalization E 

6 Dependency F 

1E 2C 3F 4A 5D 6B 



Before we start 
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• A patient must be assigned to only one doctor, and a 

doctor can have one or more patients. 

 

Patient 
x y 

Doctor 

Determine x and y 
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Recall 

 

Structural diagram is a diagram that identifies modules, 

activities, or other entities in a system or computer program 

and shows how larger or more general entities break down 

into smaller, more specific entities.  

 

IEEE Standard Glossary of Software Engineering 

Terminology 610.12 1990 
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UML structure diagrams 
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Class diagram 

Composite structure diagram 

Packages diagram 

Component diagram 

Object diagram 

Deployment diagram 



Between specification and architecture 

• Packages diagram and deployment diagram: the 

closest UML diagrams come to architecture 

• more about architecture: second half of the quartile 
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Packages diagram 

• Represents the system at a higher abstraction level 

• Android SDK – 69 packages vs. 1231 classes 

• less prone to change, ergo better suited for evolution, than 

lower level representations 

 

 

• NB: Packages diagram (UML standard) is frequently 

called package diagram 
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Packages diagram: Packages and Relations 

• Packages 

• groups of “basic elements”, e.g., classes or use cases 

• namespaces, i.e., all members should have unique names 

• represented as file folders  

• can contain other packages, creating hierarchy 

 

• Relations 

• dependencies, implementations, … 

• imports and merges 
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Package representations 
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Types 

Package Types, 

members not shown 

Types 

Time 

Date 

Package Types, some members 

within the borders of the package 

Types 

 

Shape Point 

Package Types, some members 

shown using -notation 

Types 

Temporal 

Nested packages 



Relations 

• Dependency 

• Implementation 

• Import / access 

• Merge 
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Relations: Dependencies 

• Package A depends on package B if A contains a class 

which depends on a class in B 

• Summarise dependencies between classes 

 

• Graphic representation: 

 

                                     or 

 

 

<<use>> 



Relations: Dependencies 

• Package A depends on package B if A contains a class 

which depends on a class in B 

• Summarise dependencies between classes 

• Typical 3-tier application (sketch): 

 

 
Presentation layer 

Business layer 

Data layer 

UI, web-interface, 

services to other 

systems 

Core calculations, 

operations, etc 

Data storage (DB) 



Relations: Dependencies 

• Package A depends on package B if A contains a class 

which depends on a class in B 

• Summarise dependencies between classes 

 

• Martin’s Acyclic Dependency Principle  

 there should be no cycles in the dependencies 

 

• Fowler: 

If there are cycles in dependencies, these cycles should be 

localized, and, in particular, should not cross the tiers 

 

 

 

 



Relations: Implementations 

• Meaningful if multiple variants are present 
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Database 

Gateway 

MySQL Gateway Oracle Gateway 
SQL Server 

Gateway 



Relations: Import / access 

• To understand the import / access relation between 

packages 

• We need to know how elements can reference each other 

• What does an element import / access mean 

• How this notion can be generalized to packages 
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17 

How elements can reference each other? (1) 

• Element can refer to other elements that are in its 

own package and in enclosing packages without 

using fully qualified names 

p 

q 

E s D 

r 

B C A 
foo 



Do you remember? 

• Fully qualified name: a globally unique identifier of a 

package, class, attribute, method. 

 

• Fully qualified name is composed of 

• qualifier: all names in the hierarchic sequence above the 

given element  

• the name of the given element itself 

 

• Notation 

• UML, C++, Perl, Ruby p::A::foo, p::r::C  

• Java, C# p.A.foo, p.r.C 
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p 

A 
foo 

r 

C 



19 

How elements can reference each other? (2) 

• Element can refer to other elements that are in its 

own package and in enclosing packages without 

using fully qualified names 

p 

q 

E s D 

r 

B C A 
foo 



Element Import (1) 

• Element import allows an element in another package to 

be referenced using its name without a qualifier 

• <<import>> imported element within importing package is public  

• <<access>> imported element within importing package is private  
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Element Import (2) 

• Element import allows an element in another package to 

be referenced using its name without a qualifier 

• <<import>> imported element within importing package is public  

• <<access>> imported element within importing package is private  
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h 

e 

a 

C 

F 

b 

F 

C 

D 

<<import>> 



Element Import (3) 

• Element import allows an element in another package to 

be referenced using its name without a qualifier 

• <<import>> imported element within importing package is public  

• <<access>> imported element within importing package is private  

 

/ SET / W&I PAGE 22 24-2-2014 

h 

e 

a 

C 

F 

b 

F 

C 

D 

<<import>> 
C 

or 



Element Import (4) 

• Element import allows an element in another package to 

be referenced using its name without a qualifier 

• <<import>> imported element within importing package is public  

• <<access>> imported element within importing package is private  
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h 

e 

a 

C 

F 

b 

F 

C 

D 

<<import>> 
C 

should be 

referred as e::C 

in a 



Element Import (5) 

• Element import allows an element in another package to 

be referenced using its name without a qualifier 

• <<import>> imported element within importing package is public  

• <<access>> imported element within importing package is private  
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h 

e 

a 

C 

F 

b 

F 

C 

D 

<<import>> 

F cannot be imported to a since 

there is already an F in a. Hence, 

we need to rename b::F to G in a.  



Element Import (6) 

• Element import allows an element in another package to 

be referenced using its name without a qualifier 

• <<import>> imported element within importing package is public  

• <<access>> imported element within importing package is private  
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h 

e 

a 

C 

F 

b 

F 

C 

D 

<<import>> 

b::F is accessible as G in h, b::C is 

accessible as C in h, b::D is not 

accessible in h (private visibility of 

b::D in a due to <<access>>).  



Package import (1) 

• A package import identifies a package whose members 

are to be imported  

• Conceptually equivalent to having an element import to 

each individual member of the imported package 

• <<import>> if package import is public  

• <<access>> if package import is private 

 

/ SET / W&I PAGE 26 24-2-2014 



Package import (2) 

• A package import is a directed relationship  that 

identifies a package whose members are to be imported  

• Conceptually equivalent to having an element import to 

each individual member of the imported package 

• <<import>> if package import is public  

• <<access>> if package import is private 
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auxiliary 

shoppingCart 

types 

webShop <<import>> 

Are elements of types accessible from webShop? 

Are elements of auxiliary accessible from webShop?  

Are elements of types accessible from shoppingCart? 

Are elements of auxiliary accessible from shoppingCart?  



Package import (2) 

• A package import is a directed relationship  that 

identifies a package whose members are to be imported  

• Conceptually equivalent to having an element import to 

each individual member of the imported package 

• <<import>> if package import is public  

• <<access>> if package import is private 
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auxiliary 

shoppingCart 

types 

webShop <<import>> 

Are elements of types accessible from webShop? YES 

Are elements of auxiliary accessible from webShop? NO 

Are elements of types accessible from shoppingCart? YES 

Are elements of auxiliary accessible from shoppingCart? YES 



Relations: Recap 

Dependency 

 Implementation 

 Import / access 

• Merge 
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Package merge 

• A package merge indicates that the contents of the two 

packages are to be combined. 

• A (merged package) is merged into B (receiving package) 

that becomes B’ (resulting package) 

 

 

/ SET / W&I PAGE 30 24-2-2014 



Package merge 

• A package merge indicates that the contents of the two 

packages are to be combined. 

• A (merged package) is merged into B (receiving package) 

that becomes B’ (resulting package) 

 

• Merge is possible only if 

• There is no cycle on “merge” dependencies 

• Receiving package does not contain the merged package 

• Receiving package is not contained in the merged package 

• Receiving element cannot have references to the merged 

element 

• Matching typed elements should have the same type (class) 

or a common supertype (superclass) 
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Merge rules 

UML 2.5 Beta 2, pp. 252-262 

http://www.omg.org/spec/UML/2.5/Beta2/ 
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s 

D 

B A 

q 

C A 
<<merge>> 

merged package 
receiving package 

s 

D 

B A 

C 

resulting package 

Merge of s::A 

and q::A 

Copied 

from s 

Copied 

from s 

Copied 

from q 

http://www.omg.org/spec/UML/2.5/Beta2/
http://www.omg.org/spec/UML/2.5/Beta2/


Merge rules 

UML 2.5 Beta 2, pp. 252-262 

http://www.omg.org/spec/UML/2.5/Beta2/ 
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s 

A 

B 

q 

B A 
<<merge>> 

merged package 

receiving  

package 

s 

A 

B 

resulting 

package 

Merge of s::B 

and q::B 

Merge of s::A 

and q::A 

http://www.omg.org/spec/UML/2.5/Beta2/
http://www.omg.org/spec/UML/2.5/Beta2/


Summary: UML package diagrams 
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http://www.uml-diagrams.org/package-diagrams-overview.html 



How do we organize classes/use-cases in 

packages? 

• General: try to give packages meaningful names 

 

• Two special cases: 

• Class package diagrams  

− “basic elements” are class diagrams 

− The most popular special case 

• Use-case package diagrams 

− “basic elements” are use-case diagrams 

− Useful for larger projects to organize requirements 
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Class Package Diagrams 

 

• Heuristics to organize classes into packages: 

• Classes of a framework belong in the same package. 

• Classes in the same inheritance hierarchy typically belong 

in the same package. 

• Classes related to one another via aggregation or 

composition often belong in the same package. 

• Classes that collaborate with each other a lot often belong 

in the same package. 
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How would you organize into 2 packages? 

• Car, Cylinder, Driver, Driving License, Engine, Person, 

Wheel 
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How would you organize into 2 packages? 

• Car, Cylinder, Driver, Driving License, Engine, Person, 

Wheel 
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Car 

Wheel Engine 

Cylinder 

Person 

Driver 

Driving License 
4 1 

2,4,6,8,10,12 



How would you organize into 2 packages? 

• Car, Cylinder, Driver, Driving License, Engine, Person, 

Wheel 
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Car 

Wheel Engine 

Cylinder 

Person 

Driver 

Driving License 
4 1 

2,4,6,8,10,12 

Vehicle 

Individual 



How would you organize into 2 packages? 

• Car, Cylinder, Driver, Driving License, Engine, Person, 

Wheel 
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Vehicle 

Individual 



Use-Case Package Diagrams 

 

• Heuristics to organize use cases into packages: 

• Keep associated use cases together: included, extending 

and inheriting use cases belong in the same package. 

• Group use cases on the basis of the needs of the main 

actors. 
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Use-Case Package Diagram Example 
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http://www.students.tut.fi/~kontrom/files/Lecture6.pdf 

http://www.students.tut.fi/~kontrom/files/Lecture6.pdf


UML structure diagrams 
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Class diagram 

Composite structure diagram 

Packages diagram 

Component diagram 

Object diagram 

Deployment diagram 



Component diagrams 

• Component: a modular unit with well-defined interfaces 

that is replaceable within its environment (UML Superstructure 

Specification, v.2.0, Chapter 8) 

• fosters reuse 

• stresses interfaces 

 

• Graphical representation: special kind of class  
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<<component>> 

 

Account 

 

 

Account 

 

 

Account 

 

UML 1 UML 2 



Component diagrams 

• Component: a modular unit with well-defined interfaces 

that is replaceable within its environment (UML Superstructure 

Specification, v.2.0, Chapter 8) 

• fosters reuse 

• stresses interfaces 

 

• Two views: black-box and white-box 

• Black-box view: interfaces provided and required only 
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Component diagrams 

• Component: a modular unit with well-defined interfaces 

that is replaceable within its environment (UML Superstructure 

Specification, v.2.0, Chapter 8) 

• fosters reuse 

• stresses interfaces 

 

• Two views: black-box and white-box 

• Black-box view: interfaces provided and required only 

• White-box view: structure of interfaces and/or internal 

structure  
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provided 

interface 

required 

interface 



Component diagrams 

• Component: a modular unit with well-defined interfaces 

that is replaceable within its environment (UML Superstructure 

Specification, v.2.0, Chapter 8) 

• fosters reuse 

• stresses interfaces 

 

• Two views: black-box and white-box 

• Black-box view: interfaces provided and required only 

• White-box view: structure of interfaces and/or internal 

structure  
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Nested components 

• Components can be contained in other components 

• Interfaces can then be delegated through ports 
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Summary: UML component diagrams 
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http://www.uml-diagrams.org/component-diagrams.html 



UML structure diagrams 
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Class diagram 

Composite structure diagram 

Packages diagram 

Component diagram 

Object diagram 

Deployment diagram 



Deployment 

• Deployment: relationship between logical and/or 

physical elements of systems (Nodes) and information 

technology assets assigned to them (Artefacts). 
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Deployment 

• Deployment: relationship between logical and/or 

physical elements of systems (Nodes) and information 

technology assets assigned to them (Artefacts). 

 

• Nodes 

• devices:  application server, client workstation, … 

• execution environments: DB system, J2EE container, … 

• Graphical representation: box 
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DBServer 



Deployment 

• Deployment: relationship between logical and/or 

physical elements of systems (Nodes) and information 

technology assets assigned to them (Artefacts). 

 

• Nodes 

• devices:  application server, client workstation, … 

• execution environments: DB system, J2EE container, … 

• Graphical representation: box 

• Nodes can be physically connected (e.g., via cables or 

wireless) 

• UML-parlance: CommunicationPath 

• Graphical representation: as an association 
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DBServer 



Deployment 

• Deployment: relationship between logical and/or 

physical elements of systems (Nodes) and information 

technology assets assigned to them (Artefacts). 

 

• Artefacts: information items produced during software 

development or when operating the system 

• model files, source files, scripts, executable files, database 

tables, word-processing documents, mail messages, … 

• Graphical representation: “class-like” 

 

• Relations: dependencies 
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<<artifact>> 

 

ShoppingCart.jar 

 



Deployment 

• Deployment: relationship between logical and/or 

physical elements of systems (Nodes) and information 

technology assets assigned to them (Artefacts). 

 

• Deployment: three equally valid representations 
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Deployment: missing piece 

• How do we know where a given use case, class, 

component, or package is deployed? 

• Use case / class / component / packages diagrams do not 

discuss deployment 

• Deployment diagrams do not discuss use cases / classes / 

components / packages but only artifacts 
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Deployment: missing piece 

• How do we know where a given use case, class, 

component, or package is deployed? 

• Use case / class / component / packages diagrams do not 

discuss deployment 

• Deployment diagrams do not discuss use cases / classes / 

components / packages but only artifacts 

 

• Manifestation maps artifacts to use  

   cases / classes / components /  

   packages 
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Summary: deployment diagrams 
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Conclusions 
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