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Structure-preserving Spatial Discretization of a Two-Fluid Model*

H. Bansal', S. Weiland*, L. Tapichino', W.H.A. Schilders®, N. van de Wouw??3

Abstract— We present a structure-preserving spatial dis-
cretization method for infinite-dimensional non-linear port-
Hamiltonian representations of a commonly used one-
dimensional two-phase flow model: the Two-Fluid Model. We
introduce the port-Hamiltonian representation of this two-
phase flow model and then invoke a mixed-finite-element
method to perform a structure-preserving spatial discretization.
Consequently, we obtain a finite-dimensional realization of a
recently proposed novel Stokes-Dirac structure for this model.
The properties of the resulting finite-dimensional realization
are assessed and the conditions under which it is known to
respect the properties of a finite-dimensional Dirac structure are
discussed. Moreover, we derive the complete finite-dimensional
interconnected port-Hamiltonian model by invoking the notion
of power-preserving interconnection.

I. INTRODUCTION

Structure preservation in models involving differential
equations arising in different domains of science and en-
gineering has received considerable attention, see [1], [2].
Structure-preserving numerical methods are crucial for sim-
ulation purposes and design of passivity-based and energy
shaping control techniques [3]. Such numerical methods
include geometric or symplectic integration of ordinary dif-
ferential equations. It is well known that discretization tech-
niques or model reduction methods can destroy, for instance,
the Hamiltonian structure of the model [4]. The focus of this
work is to obtain structure-preserving numerical methods for
infinite-dimensional port-Hamiltonian (pH) representations
of non-linear partial differential equations. In particular,
we are interested in developing numerical methods for pH
representations of a commonly used one-dimensional multi-
phase flow model, namely, the Two-Fluid Model (TFM) [5].

Several methodologies exist for structure-preserving dis-
cretization of finite-dimensional pH systems, i.e., explicit
discrete-time pH systems [6] and discrete-time pH descrip-
tor systems [7]. In the scope of structure-preserving dis-
cretization of infinite-dimensional pH systems, the spatial
discretization of the underlying geometry of the model
forms a key step. Such a spatial discretization essentially
reduces the infinite-dimensional pH representation to a finite-
dimensional pH system described by ordinary differential

*The first author has been funded by the Shell NWO/FOM PhD Pro-
gramme in Computational Sciences for Energy Research.

IDepartment of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands,
{h .bansal,l.iapichino,w.h.a. schilders}@tue .nl

2Department of Mechanical Engineering, Eindhoven University of Tech-
nology, The Netherlands, n.v.d.wouw@tue.nl

3Department of Civil, Environmental and Geo-Engineering, University
of Minnesota, U.S.A., nvandewo@umn .edu

4Department of Electrical Engineering, Eindhoven University of Tech-
nology, The Netherlands, s .weiland@tue.nl

978-1-7281-7446-4/20/$31.00 ©2020 IEEE

equations (ODEs). The latter can be effectively dealt with
by using existing (time) integration methods.

In the past, spatial discretization methods preserving the
pH structure have been proposed in the scope of one- and
multi-dimensional problems [8]-[18]. Several well-known
spatial discretization methods include pseudo-spectral meth-
ods [8], mixed-finite-element methods [9], [11], partitioned
finite-element methods [15], [16], staggered finite-difference
and finite-volume methods [17], and explicit simplicial dis-
cretization methods [10].

However, most of these existing works on structure-
preserving spatial discretization of infinite-dimensional pH
representations have focused on the approximation of a con-
stant Stokes-Dirac structure arising from a state-independent
(and extended) skew-adjoint Hamiltonian operator. For in-
stance, in [19], non-canonical but physically relevant Hamil-
tonian functionals lead to non-linear pH systems with an un-
derlying constant and an extended state-independent Stokes-
Dirac structure. Such a geometric structure has subsequently
been discretized in a structure-preserving manner using par-
titioned finite-element method in [18]. Structure-preserving
spatial discretization has also been performed for first- and
higher-order state-independent Hamiltonian operators with
distributed inputs, see [20]. However, for these methods,
the Hamiltonian operators were again state-independent.
As for applications, the (lossless) transmission line, wave
equations, Maxwell’s equations, rendering state-independent
Hamiltonian operators, have generally been used as test-
beds for the numerical validation of the structure-preserving
discretization framework [9]. Additionally, most of the exist-
ing spatial discretization methods have been developed and
tested for models with quadratic Hamiltonian functionals.

Non-quadratic Hamiltonian functionals and state-
dependent skew-adjoint Hamiltonian operators (under a
certain choice of the state-variables) are specific features of
the TFM. One of the existing works on structure-preserving
spatial discretization of mathematical models with non-
quadratic Hamiltonian functionals includes [21]. This work
deals with the structure-preserving discretization of a pH
representation of a compressible single-phase flow model.
It focuses on discretizing state-independent Hamiltonian
operators or Stokes-Dirac structures. In contrast, the focus
of our work is to spatially discretize state-dependent
Stokes-Dirac structures (or pH representations).

Relevant works in the direction of structure-preserving
discretization of a state-dependent Stokes-Dirac structure
include [14], [22] and [23]. These works are built upon the
mixed-finite-element method (mFEM), which was initially
proposed for canonical pH systems in [9]. The methodol-
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ogy is based on the concept of using mixed or different
finite elements for the approximation of flow and effort
variables. This methodology has been used to deal with
the spatial discretization of linear shallow water equations
(accounting for Coriolis forces and topography) with a non-
constant Stokes-Dirac structure in [23]. Spatial discretization
essentially translates a Stokes-Dirac structure into a finite-
dimensional Dirac structure [15]. In view of our interest to
develop structure-preserving discretization techniques for a
pH representation of the TFM, we recall that the correspond-
ing Stokes-Dirac structure, recently introduced in [5], is
novel and has not been spatially-discretized or both spatially-
and temporally-discretized in a structure-preserving manner.

We employ the mFEM for the structure-preserving spatial
discretization of the TFM. We demonstrate that a finite-
dimensional representation preserves the finite-dimensional
Dirac structure, i.e., the geometric interconnection structure
and the power balance equation. We also discuss the role
of the boundary port-variables in guaranteeing a finite-
dimensional Dirac structure. It is of interest to investi-
gate whether the mFEM, which has so far been tested
on linear(ized) problems or state-independent Stokes-Dirac
structures, requires fundamental modifications to deal with
the non-linearity of the mathematical model or the state-
dependent nature of the Stokes-Dirac structure. Hence, we
provide insights on the influence of the model non-linearity
or state-dependent Stokes-Dirac structure in obtaining a
structure-preserving spatial discretization method. We sub-
sequently reason that it is not necessary to eliminate the
appearance of feedthrough terms from the finite-dimensional
model approximation and that a special structure in the
feedthrough matrix makes it amenable to use the mFEM for
spatially discretizing hyperbolic systems, such as, the TFM.

The main scientific contributions of this work are as
follows: (i) we propose spatial discretization of the TFM
using the mFEM, (ii) we prove the preservation of finite-
dimensional Dirac structure, and (iii) we derive a finite-
dimensional interconnected pH model.

The paper is organized as follows. In Section II, we recall
the basic definition of finite-dimensional Dirac structures. We
present a pH formulation of the TFM in Section II-A. We,
then, invoke the mixed-finite-clement method for structure-
preserving spatial discretization of the TFM in Section II-
B. The power-preserving interconnection of two discretized
lumps is performed in Section II-C. Finally, Section III ends
with conclusions and future works.

II. STRUCTURE-PRESERVING SPATIAL DISCRETIZATION

In the scope of the current work, we only recall the
definition of Dirac structures in a finite-dimensional setting.
For the definition of Stokes-Dirac structures in an infinite-
dimensional setting, we refer to [24], [25] for canonical
Hamiltonian operators and to [5], [26] for non-canonical
state-dependent Hamiltonian operators.

A (finite-dimensional) Dirac structure D is defined next.

Definition 2.1: Consider e € £ and [ € F, where £
and F are real finite-dimensional normed vector spaces and

where £ = F*,

e(f)i={e.f) = fle= %fTe + %eTf. (M

Moreover, we define the non-degenerate bilinear pairing d :
(E X F) x (€ x F) — R in the following way:

a((er fi)s(ea f2) i= (e fi) + (e ). @)

The subspace D C € x F is a Dirac structure if D = D+,
where D+ is defined as follows:

Li={(e, f) 65><f|d((€0, fo), (e, f)) =0 VY(ep, fo) €D}.
We, first, recall a pH representation introduced in [5] in
the scope of the TFM.

the dual space of F. We define

A. Port-Hamiltonian formulation of the Two-Fluid Model

The one-dimensional TFM is governed by the following
partial differential equations:

Ormg + 0, (mgug) =0, (3a)
Oymy + 0, (mpl)[) (3b)
O (mgug)+0. (my ) —a, 8zp+b (ve—vg), (Bc)
O (meve)+0, (mwz +p) = 0g0,p— b ( —vg), (3d)
where
P (mg, me, ag) = mgcg +mec? — B(1— ag), @)
2 c2 1
ag (mg,my) 922 ZﬁJriJr
G

with 8 = pgoc? — peo. Here, t € R>p and z € Q = [0, L]
are, respectively, the temporal and spatial variables with L
denoting the length of the spatial domain. Moreover, my is
the mass of the gaseous phase per unit length, m, is the mass
of the liquid phase per unit length, v, is the velocity of the
gaseous phase, vy is the velocity of the liquid phase, p is the
common pressure and bg/f is a positive constant that accounts
for the interaction between the phases. Here, variables c, and
cy, respectively, represent the constant speed of sound in the
gaseous and the liquid phase, pyo is the reference density of
the liquid phase, and py is the reference pressure.

Remark 1: It is assumed throughout the paper that both
gas-void fraction and liquid-void fraction are positive. More-
over, we do not consider gravitational and frictional effects
in the description of the TFM for the sake of simplicity.

The non-quadratic Hamiltonian functional H is given by

2 2
a3 dy 2 p
£ (1)

Q21 2 g cz

JrQQC% ln( 5
4

H(Qh g2, 43, Q4) =

where p and oy can be replaced by the relations (4) and
(5), respectively, and where ¢ = [q1, q2, ¢3, qu]? =
[mg, me, mgvy, mevy]T denotes the state of the system.
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Theorem 2.1: The governing equations of the Two-Fluid
Model can be written in a pH representation as follows:

Ooq=(J(q) —R)o,H(q) or f=(T(@) —R)e, (1)

with state-variable q, the Hamiltonian functional H (6),

0 0 9. (q1°) 0
. 0 0 0 az(QQ')
TO=00.0) 0 Oulgsrasd() 0
0 QQaz() 0 8z(q4)+q4az()
00 O 0
00 O 0
R=1o o v |
00 —bM M

and the boundary port flow and effort variables

eq = €qslz=r,  JH = (q1eq +aseq )|o=L,

eé% = €qyls=L, fb% = (@2eq, + @aeq, ) |2=1, (8)
B = —eplsm0, €8 = (qieq +aseqs )|2=0,
a% = —€q4|z:0, 652 = | g2€q, + qu€q, ‘2207

where the flow and effort variables have been intro-
duced in (7). The flow variables f are defined as the
derivative of the state-variables with respect to time i.e.,
I=1fas foos Jass Fau)¥ := Oq. Moreover; the effort vari-
ables e are defined as the variational derivative of the Hamil-
tonian functional H(q) with respect to the state-variable, i.e.,
e= [eq, €qss €qar €qu)" = 0 H ()

Using the formally skew-adjointness of 7(q), the behavior
of the Hamiltonian along the solutions of the mathematical
model is governed by the following power balance equation:

% ~ o (6,H(a))" (—R(q))d,H(q) d=+

(eqs (qleql + q3e¢Z3)) |2=0 +( 4 (Q2€q2 + Q4€q4)) l-=0 —

(eQS <Q1€q1+q3€q3)> |Z:L _<eQ4 (q26q2+q4elI4)) |2:L .

We can clearly observe that %, in the absence of dissipa-

tion, is governed by the product of boundary port variables.
Remark 2:  We have considered a non-unique way to
define the boundary port flow and effort variables. Such
boundary port variables can be elegantly parametrized fol-
lowing the principles laid down in [25].
The boundary flow and effort variables can be interpreted
physically. Ignoring the sign associated to the boundary flow
(and effort) variables; f5 and f5 (ef1 and 6{?2) can be in-
terpreted as gas and liquid volumetric flow rate, respectively,
at the left end (and at the right end) of the spatial domain.
The flow variables f;Z and f3 have physical dimensions of
energy per unit mass. Similarly, the effort variables eZ and
e, have the physical dimensions of energy per unit mass.
Remark 3: Given the nature of R, this work basically
considers the setting which abides by the strict conservation
of energy in the absence of such dissipative terms. So,
bé” = 0 and therefore R = 0 in the sequel.

B. Spatial discretization of the Two-Fluid Model

The structure-preserving spatial discretization procedure
essentially consists of the following steps. We approximate
the states, and the flow and effort variables by suitable dis-
crete functions. We then use such an approximation to obtain
finite-dimensional equations and ensure power balance. In
addition to preserving the power balance equation, we assess
the existence of the finite-dimensional Dirac structure.

Numerical discretization entails discretizing the spatial
domain Q = [0, L] into several finite elements. We apply
the procedure to a single discretized lump Z,;, = [a, b], with
0 <a<b<L,in the scope of the TFM.

Each state variable is discretized using one spatial basis
function as follows:

Gi(t,z) = ¢ (t)wi(z), forall i =1,2,3,4, (9

i

where

b
wf;i (2) =

, foralli=1,2,3,4, (10)

1
b—a
with z € Zgp. The normalization assumption on w’(z) yields

b
/ wit(2)dz =1, forall i € {1,2,3,4}. (1)
Recall that we have:

fqi = athﬁ

Each flow variable f,, is discretized in a manner similar
to the state approximation, i.e.,

far(t,2) = [l (wg? (2),

Each effort variable e, is spatially discretized using two
different basis functions w (z) and w? (z) (fori =1,2,3,4)
in the following manner:

eq = 0, M(q), fori=1,2,3,4. (12

for all i € {1,2,3,4}. (13)

eq, (t, 2) =€l (Hwi (2)+eb (t)wd (2), for i=1,2,3,4, (14)
where w? (z) = %2, and W’ (z) = =2, and the

following boundary conditions hold:

wl (a)=1,w (b)=0,w} (a)=0,w’ (b)=1,i=1,2,3,4,

qi qi
and

ZL (t) =€q; (t> a)’
Here, eq,(t,a) (and eg, (t,0)) is the value of the effort
variable at the left (and the right) boundary of Z;.

Remark 4: We impose suitable constraints on the finite-
element (FE) spaces such that the geometric properties are
preserved while associating the lowest order FE spaces.

Remark 5:  The time-dependence is omitted in the se-
quel. We focus on obtaining a (point-wise in time) finite-
dimensional Dirac structure.

The basis functions for the flow and the effort variables
should satisfy the system model in (7). Under the assump-
tions of linear spline basis functions, we obtain following

e e (t)=eq(t,b), for i=1,2,3,4. (15)
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finite-dimensional equations:
ab __ 1 ab 4 — ab b
a T p_qa q1 €qs — T €45 )>
ab _ 1 ab ed — ab b
@ p_g Q2 €q, — 92 €q4 )>
ab __ 1 ab ed — ab b
qs 41 €q, ¢

1
o= (a5"eq, — as'el,
The above system (16) cannot be used for defining the Dirac
structure as we have four flow-type variables and eight effort-
type variables. Following [20], we motivate an alternative
definition of (discrete) effort variables to ultimately obtain
a Dirac structure at the finite-dimensional level. Alternative
effort-type variables are defined as the average values of the
efforts on the boundary of the discretization interval. Such
a definition of effort-type variables is in the same spirit as
that used in [20] (see Section 8.2.3), and can be viewed as a
special case of the definition in [20] with o = 0.5. As shown,
such a definition essentially guarantees that the energy is
preserved after (spatial) discretization. Mathematically, these
alternative effort-type variables take the following form:

(16)

+2qab a _2qab b >’

+2qab a 72qab b )

1 .
el = 5(ej; +eb), forallie {1,234} (17)
— ab ab ab ab
LetuSdef;)nefz[ lh[; q2 7b qa’B Q4’Ba17 Ba2’ fglv fb2] >
J— a a a a
e = [e(h’ €qo0 €30 €quv Cals €a2y Cp1> ebQ] . and

Az := b — a. Using (16), (17) and discrete approximation
of (8), we then have

I ar® _ g¢f? ]
00 0 Az Az ng Sab _671_
9b Oab 0 Oab OabE Az €q
Q4 0 293" 2q3 0 0 )
Az Az b b Az Az b b 22
0 0 L% o o 26 2 ¢
f= Az Az Az Az az ,(18)
o 0 0 0 -1 o0 0 0 egs
0O 0 0 0 O 0 -1 0 €4s
ab ab ea
04 0 o0 % 0 :
Az ab Az ab 6%4_
IREEXEEES
FT
ri 1 T r.a
;3 000000 s,
003 3000 0f[cb
1 1 1
0000330 0]
000000 L L]0
e=| g b q2 (19)
K00 0% 00 0 |eg,
ab ab
0 0% 00 0% 0] |%
00 0 0 0 1 00 6g4
(000000 0 1] L,
ET

Theorem 2.2: Consider £ x F = R® x R8. The subspace

Drry ={(e,f) €EXF| I NeR®

st.e=ETNf=FT)\}, (20

with E and F defined in (19) and (18), respectively, is a
Dirac structure in Erpar X Frrm = R8 x R3.
Proof: The two conditions that need to hold in order

to ensure that D7 gy is a Dirac structure are as follows [8]:
(i) EFT + FET =0, and (ii) rank([E F]) = 8.
Condition (i) is a discrete equivalent of a power balance
equation (or power-preservation), while, condition (ii) is
representative of richness in the interconnection structure
in order to interconnect discretized lumps in a power-
preserving manner. It is straightforward to check that ' and
E introduced respectively in (18) and (19) fulﬁll the above
two conditions for all discrete states ¢°, q$ ,q3 and ¢’
It is also clearly observable that Dy gy is a Dirac structure
irrespective of the value of the spatial step Az. [ ]

Remark 6: Recently, the notion of power-preserving maps
has been introduced in [27] to define a finite-dimensional
Dirac structure abiding by the non-degenerate bilinear form.

Remark 7: The approximation space generated by the
chosen polynomial basis may not be suitable for resolv-
ing moving discontinuities. It is well known that not all
choices of finite-element approximation spaces may lead to
a stable mixed Galerkin discretization or a well-behaved
scheme. Hence, an alternative (discrete) function approxi-
mation might be needed to resolve these sharp gradients.
Using (18) and (19), the flow-effort relations are given by:

£ = Je® + Buy,

(21
s = Ce™ + Duy,
where fab — [ glb7 :Izzb’ ‘(]zsb7 ab] , eab —
b b b b _
[eglv eZQa 6337 a] » Yo = [falv a2a fb1a fb2}
uy = [eB, e, e, el]T. The matrices J, B,C and D

are as follows:

0 0 2 00-21 g
ab ab
S_| o 0o 0 | 5 _ o0 0 -~
- 2q¥b ’ - 2q3 ’
o9 0 0 20— 0
0 -2 o o 02 0 2
0 0 10
o o |0 0 01
C==B% DP=141 9 00
0 -1 00

Remark 8: Invoking the mFEM for the spatial discretiza-
tion of the TFM is seen to contain feedthrough terms, i.e.,
D # 0. However, the matrix D is observed to have a special
structure, i.e., it is skew-symmetric. We claim that such a
structure is not unnatural for hyperbolic systems and support
it by the following reasoning. The instantaneous information
that is transferred across each face of the finite-element
is non-zero. However, the instantaneous power due to the
feedthrough matrix D is zero as (up,yg) = ugDua =0.

We now invoke few notations in order to define a state-
space pH model that represents the TFM locally at the geom-
etry of Z,;. Using (9), (10), (12) and (13) we can straight-

forwardly deduce that £ = [dtq{fb, dtq2 , (ftng, dtq4] )
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The discrete Hamiltonian H4® is expressed as:

aby2 ab\2 ab a
H“b:/ ( (@), @) i In ( e
7., \2q®(b—a) 2¢5°(b—a) b—a b—a
2 ab ab .2 ab
Cy 4o B d ) q3°¢Cy ( 43
4% _Pg_ 42 )
czZb—a cg( o) +b—an b—a+
2 ab
S @ B 4 d
where o = — 6, _ a4’ + L4+ A, with
g 2B(b—a) 28(b—a) 2 ’
a a 2 a
A ( e N asbc; 1) qie?
260—-a)  2Bo-a) 2) TEo—a)

Using the discrete Hamiltonian (22) along with (12), (15)
and (17), e can also be computed for numerical purposes.
For the sake of simplicity, we will use Q® instead of f?°,
and VH$" instead of € in the sequel, i.e.,
Qab = fab
Using these notations, the finite-dimensional pH model at
the geometric domain Z,;, is given by
Q= JVH + BU,
Y =CVH + DU,

, VH = e,

(23)

where we have omitted the superscript “ab” in the above
representation for the sake of generality of the structure. The
subscript “d” is also dropped from the Hamiltonian for the
sake of clarity in the sequel. Moreover, U := [U!, U"]T =
up and Y := [V, Y"|T = y,, where we define U, U", V!
and Y as follows:

Ul = [efl, efQ , (24)

w2 YT =161 A3

Each discretized lump has been shown to possess the
properties of a finite-dimensional Dirac structure. Given this
fact, the lumps can be interconnected to obtain an aggregated
finite-dimensional pH representation, which is shown next.

]T7 Ur= [elj?lv ebBQ]T

Yi=] (25)

al»

C. Power-preserving interconnection of 2 segments

In this section, we show the procedure to interconnect two
lumps (in series) in a power-preserving manner.
We consider that the spatial domain © = [0, L] with 0 <
a < b < c< L is discretized into N lumps. We focus our
attention on two discretized lumps, ie., Z,, = [a,b] and
Zpe = [b, ¢]. Using the structure in (23), the first discretized
lump across Z,;, is governed by the following state ODEs:

Q.= J\VH, + BiU, = J,VH, + B.U! + B{U",

. (26)
Vi = C1VH, + DU + DUT,

where B! and D!, respectively, refer to the matrix composed
from the first 2 columns of B and D introduced earlier.
Anologously, BT and D7 are composed of the last 2 columns
of B and D, respectively. Matrices B!, D}, B}, and D are
each of size 4 x 2. The subscript “1” refers to the quantities

(introduced in (23), (24) and (25)) for the first element Z,p.
Similarly, for the second discretized lump Z;., we have

Qo = JoVHy + BoUy = JoVHy + BLUL + ByUS,
Y = CoVHy + DyUs + D3Us,
where the subscript “2” refers to the quantities corresponding

to the second finite-element Zj..
The following power-preserving interconnection relations

hold:

[U{] _ {o —I] [Yl} _ [—C%QVHQ — Dy?Uy

UL T I o] |Yd] T | e#vH, + DU |
where the subscripts “1” and “2” carry the same meaning
as before. Matrix C’212 refers to the first 2 rows, i.e., row 1
and 2 of the matrix C' for the second element Z.. Similarly,
matrix C$* refers to the last 2 rows, i.e., row 3 and 4 of the
matrix C' for the first element Z,;. Analogously, ng” refers
to the first 2 rows, i.e., row 1 and 2 of the matrix D for the
second element Z3.. Similar explanation holds for Dll’34.

Interconnecting the 2 discretized lumps in a power-

preserving manner yields the following structure:

][ Ji —BiC3? VH] B —BrDyM[U
Q2| | BLC3 Ty VH,|"|BLYDY** By U

27

Jassemhled
v/ ci2 —pptcy?|[vH,
r|= 1,34 ~34 34 + (28)
Yy D37 CF Cs Vi,
ey
Dl2734Di,34 02><2 Ug )

where C12, D72, C3* and D5** can be computed by
following the notational conventions introduced earlier.

We have described the procedure to interconnect two dis-
cretized lumps. Analogously, N discretized lumps can be
interconnected in a power-preserving manner to obtain a
complete pH model.

Remark 9:  The model (28) is conservative in the sense
thar 441 = 415 4 22— (v ()T UL () + (Y3 (1) TUS (1))
represents the net power across the left and right ports
of the assembled system, and the system has no resistive
effects in its dynamic behavior. This behavior is inherent
and a representative feature of hyperbolic partial differential
equations of the type that is studied here. The conservative
(lossless) nature of the approximate mathematical model is
therefore physically meaningful and replicates the conserva-
tive (lossless) nature of the infinite-dimensional pH model.
However, a time-simulation of the behavior of this type of
conservative model is numerically quite a challenge. Firstly,
a standard implementation of existing symplectic schemes,
as in [6], in the scope of our work, does not guarantee
the exact preservation of discrete energy balance. Secondly,
the structure-preserving temporal discretization framework
in [6] needs to be extended to account for state-dependent
system matrices and feedthrough terms in the state-space
pH representation. Hence, the temporal discretization of the
model (28) deserves a separate and careful treatment, which
is deferred to future works.
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III. CONCLUSION

We performed spatial discretization on an infinite-
dimensional port-Hamiltonian (pH) representation of the
Two-Fluid Model using a mixed-finite-element method. We
demonstrated that such a discretization preserves the finite-
dimensional Dirac structure even for the underlying state-
dependent Stokes-Dirac structure. We obtained an explicit
finite-dimensional state-space representation for each finite-
element. Furthermore, we obtained an aggregated finite-
dimensional pH model using the notion of power-preserving
interconnection. Such a finite-dimensional approximation is
amenable for control and observer design.

The resistive effects can be incorporated while developing
a state-space pH model by considering the discrete approx-
imation of different variables as introduced in this paper.
However, the image representation of a Dirac structure (see
Theorem 2.2) will be different, and conditions for the exis-
tence of a Dirac structure will need to be modified in accor-
dance. An alternative would be to approximate an extended
state-dependent Stokes-Dirac structure by using admissible
function spaces for different variables. Also, the proposed
methodology can be adapted, though not straightforwardly,
to consider higher-order finite-element (FE) spaces by using
a similar spatial discretization procedure. Moreover, the
proposed approach shares similarities with the recently devel-
oped mixed Galerkin discretization [11], [27] applicable for
multi-dimensional models and, hence, it possesses potential
for generalization to N —dimensional models. Extensions of
the proposed methodology to account for higher-order FE
spaces, deal with N—dimensional setting, and incorporate
resistive effects will be the subject of future works.

Building on the current work, it is natural to develop a tem-
poral discretization methodology. It is worth stating that the
temporal discretization should also be structure-preserving.
Moreover, it should not give rise to numerical instabilities.
Future works will deal with the numerical implementation
of spatially- and temporally-discretized scheme, and will
encompass the validation of the approach along with the
verification of the numerical convergence.
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