
Port-Hamiltonian Formulation of Two-phase Flow Models⋆

H. Bansala,∗, P. Schulzeb, M. H. Abbasia, H. Zwartc,d, L. Iapichinoa, W.H.A. Schildersa and N. van
de Wouwd,e

aDepartment of Mathematics and Computer Science, Eindhoven University of Technology, The Netherlands
bInstitut für Mathematik, Technische Universität Berlin, Germany
cDepartment of Applied Mathematics, University of Twente, The Netherlands
dDepartment of Mechanical Engineering, Eindhoven University of Technology, The Netherlands
eDepartment of Civil, Environmental and Geo-Engineering, University of Minnesota, U.S.A.

ART ICLE INFO

Keywords:
Two-Fluid Model
Drift Flux Model
non-quadratic Hamiltonian
skew-adjoint
Stokes-Dirac structures
Port-Hamiltonian

ABSTRACT

Two-phase flows are frequently modelled and simulated using the Two-Fluid Model (TFM) and the
Drift Flux Model (DFM). This paper proposes Stokes-Dirac structures with respect to which port-
Hamiltonian representations for such two-phase flow models can be obtained. We introduce a non-
quadratic candidate Hamiltonian function and present dissipative Hamiltonian representations for both
models. We then use the structure of the corresponding formally skew-adjoint operator to derive a
Stokes-Dirac structure in the scope of the two variants of multi-phase flow models. Moreover, we
present a numerical counter example to demonstrate that only a special form of the DFM (without
slip between the phases) can be cast in a port-Hamiltonian representation and that the DFM with the
Zuber-Findlay slip conditions is not an energy consistent model for two-phase flow.

1. Introduction
In this paper, we develop a port-Hamiltonian (pH) for-

mulation for modelling multi-phase flow dynamics in pipes.
Multi-phase flows are important in a large range of industrial
applications, such as within the oil and gas industry, chem-
ical and process industry (including heat-pumping systems)
as well as the safety analysis of nuclear power plants [1, 2, 3].
Within the oil and gas industry, such models are used for vir-
tual drilling scenario testing [1, 2]. The multi-phase aspect
is particularly relevant in these applications in case of gas
influx occurring from a reservoir.

A pH model formulation is known to provide a modular
framework for multi-physics and interconnected systems [4].
The pH structure allows for non-zero energy flow through
the boundary and guarantees power preservation [5]. More-
over, structure-preserving methods for discretization and the
model order reduction of infinite-dimensional pH systems
can preserve certain original system-theoretic properties such
as stability and passivity [6, 7]. Additionally, the pH frame-
work supports the development of control strategies [8].

In the literature, the infinite-dimensional pH structure
has been exploited in several domains of science and en-
gineering. For instance, some well-known fluid dynami-
cal systems such as the shallow water equations [7], reac-
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tive Navier Stokes equations [9], and reaction diffusion pro-
cesses [10] have already been formulated in the pH formal-
ism. Such a representation is also prevalent in the fields of
structural dynamics [8] and fluid-structure interaction [11].

Multi-phase flows are mathematically governed by con-
servation laws. Several conservation laws have previously
been converted to pH representations [12, 13]. Some work
onHamiltonianmodeling formulti-phase hydrodynamics has
been done in [14]. However, (dissipative) Hamiltonian rep-
resentations do not exist for the Two-FluidModel (TFM) and
the Drift Flux Model (DFM) [15]. Moreover, until now, to
the best of our knowledge, pH modeling for fluid dynamics
only encompasses single-phase models [16].

Matrix/operator theory for linear distributed parameter
port-Hamiltonian systems on one-dimensional domains is
owed to some pioneering works [17, 18]. The central theme
of the current paper is to extend and proposemodifications to
the existing theory for non-linear distributed parameter sys-
tems. We exploit the existing theory in the scope of linear
systems and arrive at new results from an operator theoretic
viewpoint, including further generalizations in the scope of
non-linear distributed parameter port-Hamiltonian systems.

The main contributions of this paper are as follows: (i)
(dissipative) Hamiltonian representations of the TFM and
theDFM, and (ii) proposition of state-dependent StokesDirac
structures for both the TFM and the DFM along with the
proof of the corresponding representation obtained in the
scope of the TFM.

The paper is organized as follows. In Section 2, we in-
troduce the two mathematical models governing 1-D multi-
phase flow dynamics and mention under which conditions
these are equivalent. The (dissipative) Hamiltonian repre-
sentations of these models are presented in Section 3. Then,
the corresponding geometric properties are discussed and
proved in Section 4. This section also includes a non-unique
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parametrization of the boundary port-variables. Afterwards,
Section 5 deals with the reasons behind formulating theDFM
without slip between the two phases in a pH representation
instead of a general DFM with the Zuber-Findlay slip con-
ditions. Finally, Section 6 closes with conclusions.

Notations: Wefirst introduce few notations that are used
in the sequel. 2(Ω) is the space of square-integrable func-
tions over the spatial domain Ω, and

2(Ω)p = 2(Ω) ×2(Ω) × ...×2(Ω) (p-times). (1)

H1(Ω) denotes the Sobolev space of functions that also pos-
sess a weak derivative. Furthermore, H1

0 (Ω) denotes the
functions inH1(Ω) that have zero boundary values. H1(Ω)p
is defined in a manner anologous to2(Ω)p. And,ℝ denotes
the space of real numbers.

2. Multi-phase flow models
In this section, we present two sets of nonlinear conser-

vation laws, namely, the TFM and the DFM.

2.1. Two-Fluid Model (TFM)
The TFM is a set of Partial Differential Equations (PDEs)

and algebraic closure relations. The PDEs expressing mass
and momentum conservation for each phase are as follows:
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where t ∈ ℝ≥0 and x ∈ [a, b] are, respectively, the tem-
poral and spatial variables (a and b refer to the location of
the left and the right boundary of the one-dimensional spa-
tial domain). The model contains seven unknown variables,
namely, liquid and gas void fraction, �l and �g , liquid and
gas phase velocity, vl and vg, liquid and gas phase density,
�l and �g, and the common pressure p.

To complete themodel, we use one set of themost widely
applied closure laws as in [15]:

�g + �l = 1, (3a)
Mg +Ml = 0, (3b)

Mg = p)x�g +Mig , (3c)

Mig = bMg (vl − vg), with bMg ≥ 0, (3d)

�g =
p
c2g
, (3e)

�l = �l0 +
p − pl0
c2l

, (3f)

where (3a) expresses that any pipe segment is occupied by
the combination of gas and liquid. The terms Mg and Ml

with the constant bMg in (3b)–(3d) account for the force in-
teraction between the phases. Finally, (3e)–(3f) define the

equation of state of each phase with the reference density
and pressure as �l0 and pl0, and cg and cl are the constant
speeds of sound in the gas and liquid phase, respectively.

Remark 2.1. Wedo not consider gravitational and frictional
effects in the above TFM description for the sake of simplic-
ity. However, in principle, the TFM can be formulated with
the additional terms accounting for these effects [15].

The TFM, governed by the set of equations (2) and (3),
can be written in terms of only four physical variables. We
introduce the following shorthand notations: mg ∶= �g�g
and ml ∶= �l�l .

Assumption 1. The gas void fraction, the liquid void frac-
tion, the liquid and the gaseous phase densities along with
� = �l0c2l − pl0 are positive.

Lemma 2.2. By consideringmg ,ml , vg and vl as state vari-
ables, the system of equations (2) and (3) can be re-written
in the following form:
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(6)

We refer the reader to [2] for the detailed proof of the ex-
pression for �g

(

mg, ml
)

. In summary, the set of equations
(4) is equivalent to (2) and (3).

2.2. Drift Flux Model (DFM)
The DFM can be obtained from the TFM via a slip rela-

tion of the form

vg − vl = Φ
(

mg, ml , vg
)

, (7)

where mg and ml are as introduced above. Since the slip
relation (7) determines the coupling between the velocities
of the two phases, only one momentum equation is required
contrary to the two momentum equations in the TFM (2).
Several models of the form (7) exist depending on the choice
of the function Φ [15]. In the simplest case, without slip,
Φ ∶= 0. Another case is the Zuber-Findlay relation [15]:

Φ ∶=
(K − 1)vg + S

K�l
→ vg = K(�gvg+�lvl)+S, (8)
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whereK andS are flow-regime dependent parameters, which
are assumed to be constant in this study.

Using the abbreviations Ig ∶= mgvg and Il ∶= mlvl ,
the governing equations for the DFM are:

)tmg + )xIg = 0, (9a)
)tml + )xIl = 0, (9b)

)t
(

Ig + Il
)

+)x
(

Igvg + Ilvl
)

=−)xp+Qg+Qv (9c)

completed with closure equations (3a), (3e), (3f), (7) and
gravitational effects Qg and frictional effects Qv defined by
[19]:

Qg = −g
(

mg + ml
)

sin �, (10a)

Qv = −
32�m(�gvg + �lvl)

d2
, (10b)

with gravitational constant g, space-dependent pipe inclina-
tion �(x), mixture viscosity �m > 0, and pipe diameter d.

Remark 2.3. Similar to Lemma 2.2, the governing equa-
tions (9) associated with v ∶= vg = vl (DFM without slip),
the closure equations (3a), (3e), (3f) and (10), upon elimi-
nation of auxiliary variables, can be rewritten as a system
of PDEs with as many unknowns as equations. We omit the
discussion for the sake of brevity.

The TFM can be adapted to behave exactly like the DFM
if the termMig in (3d) is replaced with the term stated in the
following theorem. For the proof, we refer to [15].

Theorem 2.4. Under zero gravitational and frictional ef-
fects, the DFM (9) together with (3a) and (7) is equivalent
to the TFM (2) with (3a)–(3c), and

Mig = −�g�l
�g − ��l
mg + �ml

)xp −
mgml

mg + �ml

(

vl)xvl−

�vg)xvg + �g)x(mgvg) + �l)x(mlvl)
)

, (11)

with �g ∶=
)Φ
)mg

, �l ∶=
)Φ
)ml

, � ∶= 1 − )Φ
)vg

.

Remark 2.5. The equivalence of the DFM and the TFM can
also be shown in the presence of gravitational and frictional
effects; see [15], for further details.

The model equivalence, stated above, will play a cru-
cial role in drawing a conclusion about the behavior of the
Hamiltonian along the solutions of the DFM by using the
theoretical analysis conducted for the TFM (see Section 5).

3. Dissipative Hamiltonian Formulations
Port-Hamiltonian (pH) systems have several useful prop-

erties for system analysis and control. Basic properties of
pH systems include passivity and compositionality. The pH
model formulation is appealing as it helps to characterize
the energy exchange across the boundaries and thus accounts

for the interaction between the system and the environment.
Such a framework generalizes the classical Hamiltonian frame-
work by the definition of boundary ports. We restrict our-
selves to pH systems (with state-variable z) of the form

)tz =
(

 (z) −(z)
)

�z(z),
(

f)
e)

)

=
(

(�z(z))(b)
(�z(z))(a)

)

,
(12)

where  is the Hamiltonian functional, �z(z) its varia-
tional derivative, and is a state-dependent bijective map-
ping. Furthermore, for every z, (z) is formally skew-adjoint
with respect to the L2 inner product, i.e., for e1, e2 suffi-
ciently smooth and zero at the boundary there holds

∫Ω
eT1 ( (z))e2dx + ∫Ω

eT2 ( (z))e1dx = 0, (13)

whereΩ refers to the spatial domain, and is formally self-
adjoint with respect to the L2 inner product and positive
semi-definite. Finally, f) , e) are the boundary ports.

The dissipation inequality, which expresses that energy
cannot be generated within the system, is a property which
directly follows from the definition of a pH system. In par-
ticular, ignoring the boundary conditions,

d
dt

= ∫Ω
(�z(z))T )tz dx

= ∫Ω
(�z(z))T ( (z) −(z))�z(z) dx

= ∫Ω
(�z(z))T (−(z))�z(z) dx ≤ 0.

(14)

Thus,  is the dissipative component of the system. In the
presence of boundary conditions, the behavior of the Hamil-
tonian along the solutions of the mathematical model is gov-
erned by the following balance equation:

d
dt

= ∫Ω
(�z(z))T (−(z))�z(z) dx + b.t., (15)

where b.t. denotes the boundary terms. Normally f) , e) are
chosen such that the boundary terms equal ⟨f) , e)⟩w.r.t. some
inner product. In our case, this will be the standard inner
product on Euclidean space. Associated to the operators 
and, we can identify an underlying geometric object called
Stokes-Dirac structure. This is crucial as the pH systems can
be defined with respect to these infinite-dimensional Stokes-
Dirac structures [20]. Often, this structure is only associated
to  . This geometric object yields a manner to describe the
boundary port variables, i.e., f) and e) , see (12).

We first introduce (dissipative) Hamiltonian representa-
tions, i.e., without boundary effects for the mathematical
models under consideration. The resulting formally skew-
adjoint operators and formally self-adjoint operators are used
as a tool to derive a non-canonical Stokes-Dirac structure,
and hence the boundary port variables.

In the models discussed in Section 2, the Hamiltonian is
dependent on the kinetic, gravitational potential and internal
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energy. To derive the internal energy of the system, consider
the following remark.

Remark 3.1. The internal energy ui, i ∈ {l, g}, can be in-
terpreted as the energy causing the expansion of the i-th
compressed phase or compression of the i-th expanded phase.
In order to derive this energy component, the Gibbs relation
[21] under barotropic and isentropic flow considerations for
an infinitesimal part of the phase is used, i.e.,

�2i dui = pd�i, i ∈ {l, g}.

Using (3e)–(3f) and integrating the above equation leads to

ul = −
pl0
�l

+ c2l ln �l +
�l0c2l
�l

+K1, (16a)

ug = c2g ln �g +K2, (16b)

where K1 and K2 are the integration constants.

Considering the total energy of the system (neglecting
the gravitational potential energy), we define a candidate for
the Hamiltonian as follows:

 ∶= ∫Ω

(

�g�g
v2g
2
+�l�l

v2l
2
+�g�gug+�l�lul

)

dx, (17)

where Ω = [a, b] refers to the spatial domain.
Inserting (16) into (17), theHamiltonian for a flow across

a (unit) constant cross-section takes the following form:

 ∶= ∫Ω

(

�g�g
v2g
2
+�l�l

v2l
2
+�g�g

(

c2g ln �g+K2
)

+

�l�l
(

c2l ln �l +K1
)

+ �l(c2l�l0 − pl0)
)

dx. (18)

It should be noted that when �i → 0, �i ln �i → 0. The
term �i ln �i is bounded from below, i.e., �i ln �i ≥ −1∕e. So,
theHamiltonian (18) is bounded from below. Due to the high
bulk modulus of the liquid phase, we usually have �l0c2l ≫
pl0 [19]; therefore, the positivity of the Hamiltonian (18)
can be ensured by appropriately choosingK1 andK2 or even
adding some constants to the Hamiltonian. For simplicity,
we set K1 ∶= 0 and K2 ∶= 0 henceforth.

Remark 3.2. The discussion in the above paragraph is rea-
sonable from a physical perspective. However, numerically,
solutions of the TFM and DFM may not be guaranteed to
have non-negative density and non-negative void fractions.

3.1. Dissipative Hamiltonian Formulation for the
Two-Fluid Model

We now present the dissipative Hamiltonian framework
for the TFM.

Theorem 3.3. The governing equations (2) together with the
closure equations (3) can be written in the following dissi-
pative Hamiltonian form:

)tq =
(

T (q) −T
)

�q(q) (19)

with q = [q1, q2, q3, q4]T ∶= [mg, ml , Ig, Il]T , the
Hamiltonian functional (18), and where

T (q) =

−

⎡
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0 0 )x(q1⋅) 0
0 0 0 )x(q2⋅)

q1)x(⋅) 0 )x(q3⋅) + q3)x(⋅) 0
0 q2)x(⋅) 0 )x(q4⋅) + q4)x(⋅)

⎤

⎥

⎥

⎥

⎦

is a formally skew-adjoint operator with respect to the 2
inner product, and

T =

⎡

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0 0
0 0 bMg −bMg
0 0 −bMg bMg

⎤

⎥

⎥

⎥

⎦

is a symmetric and positive semi-definite matrix.

Proof: Similar to (4), the TFMwith respect to the state vari-
ables q can be straightforwardly formulated. We omit the
model reformulation here for the sake of brevity.

The Hamiltonian (18) in terms of q1, q2, q3 and q4 is re-
written as follows:

(q1, q2, q3, q4) ∶= ∫Ω

q23
2q1

+
q24
2q2

+ q1c2g ln

(

p
c2g

)

+ q2c2l ln

(

p + �
c2l

)

+
(

1 − �g
)

� dx, (20)

where p and �g can be replaced by the relations (5) and (6),
respectively.

The variational derivatives are:

�
�q1

= −1
2
q23
q21
+ c2g ln

(

p
c2g

)

+ c2g ,
�
�q3

=
q3
q1
,

�
�q2

= −1
2
q24
q22
+ c2l ln

(

p + �
c2l

)

+ c2l ,
�
�q4

=
q4
q2
.

For the sake of brevity, we omit detailed calculations
here. Instead, we argue that the TFM exhibits similarities in
structure with the model presented in [22], where the Hamil-
tonian structure was discussed for single-phase dynamics.
The TFM with bMg = 0 can be viewed as two separately
existing phases. The contributions due to the non-zero bMg
enter into the dissipation matrix T . The proof of the sym-
metric and positive semi-definite nature ofT is straightfor-
ward.

The operator T is formally skew-adjoint (with respect
to the 2 inner product). To prove formal skew-adjointness
ofT , we checkwhether ⟨e1,T e2⟩2(Ω)+⟨T e1, e2⟩2(Ω) =
0 for smooth e1, e2 which are zero at the boundary, where
we define ei = (ei1, e

i
2, e

i
3, e

i
4)
T . Here, the variable eij refers

to the j-th element of ei. T is formally skew-adjoint with
respect to the 2 inner product as

−⟨e1,T e2⟩2(Ω) − ⟨T e1, e2⟩2(Ω) =
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∫Ω
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which vanishes under our assumptions on the boundary con-
ditions. □

3.2. Dissipative Hamiltonian Formulation for the
Drift Flux Model

So far, we focused on the dissipative Hamiltonian repre-
sentation for the TFM. We will now deal with the DFM un-
der gravitational and frictional effects, and present a corre-
sponding dissipativeHamiltonian formulation. For theDFM,
we focus only on a case in which there is no slip between the
phases, i.e., v ∶= vg = vl (the reason for adopting this no-
slip assumption is provided in Section 5). Since gravitation
is considered, the gravitational potential energy needs to be
added to the Hamiltonian. The Hamiltonian now takes the
following form:

D(mg, ml , v) = ∫
Ω

mg
v2

2
+ ml

v2

2
+

mlc
2
l ln

(

p + �
c2l

)

+ mgc2g ln

(

p
c2g

)

+
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)

⎛

⎜

⎜

⎝

x

∫
a

g sin(�(�))d�
⎞

⎟

⎟

⎠

dx. (22)

Using the above candidate Hamiltonian function D, a dis-
sipative Hamiltonian representation of a special case of the
DFM is shown below.

Theorem 3.4. The governing equations (9) together with v ∶=
vg = vl (case of no slip), the closure equations (3a), (3e),
(3f) and (10) can be written in dissipative Hamiltonian form
as follows:

)tzD =
(

D(zD) −D(zD)
)

�zDD(zD) (23)

with zD ∶= [mg, ml , v]T , the Hamiltonian functional (22),
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D(zD) = −
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0 0 )x
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0 0 )x
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)
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)x(⋅)
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)x(⋅) 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

is a formally skew-adjoint operator with respect to the 2
inner product, and

D(zD) =

⎡

⎢

⎢

⎢

⎣

0 0 0
0 0 0
0 0 32�m

d2
(

mg+ml
)2

⎤

⎥

⎥

⎥

⎦

is a symmetric and positive semi-definite matrix.

Proof: First note that, using (9a) and (9b), the left-hand side
of equation (9c) can be rewritten as

(

mg + ml
)

)tv + v)t
(

mg + ml
)

+ )x
((

mg + ml
)

v2
)

=
(

mg + ml
)

(

)tv + )x

(

v2

2

))

.

Thus, instead of (9c) we can also consider

)tv+ )x

(

v2

2

)

= 1
mg + ml

(

−)xp +Qg +Qv
)

. (24)

The variational derivatives of D are given by:

�D
�mg

= c2g ln

(

p
c2g

)

+ v2

2
+ c2g +

x

∫
a

g sin(�(�))d�,

�D
�ml

= c2l ln

(

p + �
c2l

)

+ v2

2
+ c2l +

x

∫
a

g sin(�(�))d�,

�D
�v

=
(

mg + ml
)

v.

Next, we prove the claim equation by equation. The first line
of (23) reads

)tmg = −)x

( mg
mg + ml

(

mg + ml
)

v
)

= −)x
(

mgv
)

. (25)

Similarly, the second line is

)tml = −)x

(

ml
mg + ml

(

mg + ml
)

v
)

= −)x
(

mlv
)

. (26)

Let us introduce a short-hand notation G =
x
∫
a
g sin(�(�))d�.

H. Bansal et al.: Preprint submitted to Elsevier Page 5 of 10



Port-Hamiltonian Formulation of Two-phase Flow Models

Then, the third line yields

)tv = −
mg

mg + ml
)x

(

c2g ln

(

p
c2g

)

+ v2

2
+ c2g + G

)

−
ml

mg + ml
)x

(

c2l ln

(

p + �
c2l

)

+ v2

2
+ c2l + G

)

−
32�m

d2
(

mg + ml
)2

(

mg + ml
)

v

= −)x

(

v2

2

)

− 1
(

mg + ml
) ()xp +Qg +Qv).

(27)

The claim follows by observing that (25), (26), and (27)
are identical to (9a), (9b), and (24), respectively.

The symmetric and positive semi-definite nature of D
follows immediately from the positivity of �m. The formal
skew-adjointness of D essentially follows from integration
by parts and neglecting the boundary conditions. The op-
erator D contains terms similar to the skew-adjoint opera-
tor T , the formal skew-adjointness of which was discussed
extensively in the proof of Theorem 3.3. For the sake of
brevity, we refer the reader to follow similar lines of reason-
ing to show the formal skew-adjointness of D. □

4. Geometrical properties of the system:
Stokes-Dirac structures
We now define a geometric structure, a generalization

of symplectic and Poisson structures, called a Stokes-Dirac
structure.

Definition 4.1. [17, 20] Consider  and  as real Hilbert
spaces which are isometrically isomorphic. The subspace
 ⊂  ×  is a Stokes-Dirac structure if  = ⟂, where
⟂ denotes the orthogonal complement which is defined as

⟂ ∶= {(f̃ , ẽ) ∈  ×  ∣

≪ (f̃ , ẽ), (f , e) ≫= 0 ∀(f , e) ∈ }. (28)

Here,≪ (f̃ , ẽ), (f , e)≫ is defined as follows:

≪ (f̃ , ẽ), (f , e)≫∶= ⟨f̃ ∣ e⟩ + ⟨f ∣ ẽ⟩, (29)

where the notation ⟨f ∣ e⟩ indicates a non-degenerate bilin-
ear form defined on the bond space  =  ×  .

This structure relates the composing elements of a system in
a power-conserving manner [7]. Such geometric structures
often have a compositionality property [7, 23, 24].

For (f, e) element of a Stokes-Dirac structure, it is easy
to see that ⟨f ∣ e⟩ = 0, and thus there is a close relation to
(formally) skew-adjoint operators, see also (13). However,
if f =  e for all (f, e) ∈ D, and J is formally skew-adjoint,
then  ⊂ ⟂. To make such a  into a Stokes-Dirac struc-
ture, it is required that  = ⟂ holds. The formally skew-
adjoint part of a pH system will form the foundation of the
associated Stokes-Dirac structure, as we will show as well.

Non-linearity encodedwithin theHamiltonian alongwith
a linear Stokes-Dirac structure constitutes a favorable rep-
resentation of PDEs. Such a structure facilitates the analy-
sis of non-linear systems as the linearity of the Stokes-Dirac
structure can be exploited to assess system behavior. Stokes-
Dirac structures can also be used to formulate boundary con-
trol systems [17].

In the existing results [17, 20, 25], the skew-adjoint op-
erator yields a symmetric bilinear form on the space of the
boundary variables. An important tool used in that frame-
work is the trace operator, which, in earlier works [17, 20,
25], requires that the effort variables e belong to the func-
tion classH1(Ω). Given the state-dependent nature of skew-
adjoint operators in (19) and (23) (unlike in [17]), a com-
bination of the states and the effort variables have to be-
long to the function classH1(Ω) or suitable conditions have
to be imposed on the state variables in order to have ef-
fort variables belonging to the function class H1(Ω) (see
Theorems 4.4 and 4.6). Boundary port-variables have been
parametrized in [17] using the trace operators. However,
such an elegant parametrization is limited to the case of a
non-singular matrix Q (synonymous to (21)) arising in lin-
ear problems with state-independent operators. To the best
of our knowledge, the work [25] is the only work in the scope
of parametrization of boundary port-variables for a singu-
lar matrix Q, thereby enlarging the class of systems that
can be dealt. Villegas in [25] demonstrated the approach
to define the non-degenerate bilinear form under singular
Q and consequently modified the definition of the bound-
ary port-variables. However, [25] was limited to the setting
of state-independent Stokes-Dirac structures. In this work,
we extend the definition of boundary port-variables to even-
tually obtain state-dependent Stokes-Dirac structures with
boundary ports for non-linear problems with non-quadratic
Hamiltonian functional. It should be mentioned that the au-
thors in [5] have also considered state-dependent Stokes-
Dirac structures for problems (for instance, ideal isentropic
fluid) with non-quadratic Hamiltonian functional by using
a differential geometric viewpoint. We, contrarily, use the
matrix or operator-theoretic viewpoint in the consideration
of such geometric structures in the scope of the compressible
two-phase flow models.

Remark 4.2. Boundary port-variables, in our setting, will
remain unchanged in the presence of dissipation. This is only
true since our resistive operator () does not include any
differential operator. In general, the boundary ports could
also include contributions from the resistive part. In this
work, we only consider Stokes-Dirac structures without ac-
counting for resistive ports (for the above mentioned rea-
son) and finally arrive at a definition of the boundary port-
variables, which is practical for pH representations.

We recall the following fundamental lemma of calculus
of variations.
Lemma 4.3. If the pair (ℎ,m) ∈ 2(Ω)2 satisfies

∫

b

a
[ℎ(x))xf (x) + m(x)f (x)]dx = 0, (30)
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for all f ∈ H1
0 (Ω), then

ℎ ∈ H1(Ω), and )xℎ = m(x). (31)

Lemma 4.3 will be extensively used in order to prove that a
certain structure is a Stokes-Dirac structure.

Using the abovemathematical preliminaries, we first pro-
pose a Stokes-Dirac structure for the TFM and present a cor-
responding proof, and then we propose it for the DFM with-
out slip.

4.1. Stokes-Dirac structure representation for the
Two-Fluid Model

We, first, introduce the notations

ft =
[

fmg fml fIg fIl fBa,t fBb,t
]T
, (32a)

et =
[

emg eml eIg eIl eBa,t eBb,t
]T
, (32b)

ftr =
[

fmg fml fIg fIl
]T
, (32c)

etr =
[

emg eml eIg eIl
]T

(32d)

with ft ∈ t, et ∈ t where t = t = 2(Ω)4×ℝ2×ℝ2. On
t×t the following non-degenerate bilinear form is defined:

⟨ft ∣ et⟩ = ∫Ω
(fmgemg + fmleml + fIgeIg+

fIleIl )dx + (f
B
b,t)

T eBb,t + (f
B
a,t)

T eBa,t. (33)

Using these notations, the Stokes-Dirac structure correspond-
ing to the dissipative Hamiltonian representation of the TFM
can be expressed as follows.

Theorem 4.4. Considert and t as introduced above. More-
over, assume that mg, ml , Ig, Il =∶ q1, q2, q3, q4 ∈ H1(Ω).
We also assume that q1, q2 > 0 onΩ. Then, the linear subset
t ⊂ t × t defined as follows:

t =
{

(ft, et) ∈ t × t ∣ etr ∈ H1(Ω)4, ftr = t(q)etr,

(

fBb,t
eBb,t

)

=

⎛

⎜

⎜

⎜

⎜

⎝

fBb1,t
fBb2,t
eBb1,t
eBb2,t

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

q1 0 q3 0
0 q2 0 q4
0 0 1 0
0 0 0 1

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

emg
eml
eIg
eIl

⎞

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎠

(b), (34)

(

fBa,t
eBa,t

)

=

⎛

⎜

⎜

⎜

⎜

⎝

fBa1,t
fBa2,t
eBa1,t
eBa2,t

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

0 0 −1 0
0 0 0 −1
q1 0 q3 0
0 q2 0 q4

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

emg
eml
eIg
eIl

⎞

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎠

(a)
}

,

where

t(q) = (35)

−

⎡

⎢

⎢

⎢

⎣

0 0 )x(mg⋅) 0
0 0 0 )x(ml⋅)

mg)x(⋅) 0 )x(Ig⋅) + Ig)x(⋅) 0
0 ml)x(⋅) 0 )x(Il⋅) + Il)x(⋅)

⎤

⎥

⎥

⎥

⎦

is a Stokes-Dirac structure with respect to the symmetric
pairing given by

≪ (ft, et), (f̃t, ẽt)≫= ⟨ft ∣ ẽt⟩ + ⟨f̃t ∣ et⟩,
(ft, et), (f̃t, ẽt) ∈ t × t, (36)

where the pairing ⟨⋅ ∣ ⋅⟩ is given in (33).

Proof: The proof is divided into two parts. We first prove
that t ⊂ ⟂

t .
We consider two pairs of flow and effort variables be-

longing to the Stokes-Dirac structure, i.e., (ft, et) ∈ t and
(f̃t, ẽt) ∈ t. Using the earlier introduced notations, we ob-
tain:

≪ (ft, et), (f̃t, ẽt)≫= (37)

∫Ω
(fmg ẽmg + fml ẽml + fIg ẽIg + fIl ẽIl )dx+

∫Ω
(f̃mgemg + f̃mleml + f̃IgeIg + f̃IleIl )dx+

(fBa,t)
T ẽBa,t + (f

B
b,t)

T ẽBb,t + (f̃
B
a,t)

T eBa,t + (f̃
B
b,t)

T eBb,t.

Substituting the mappings between the flow and the effort
variables, the total sum within the integrals of (37) becomes

[

− )x(q1eIg )ẽmg − )x(q2eIl )ẽml+
(

− q1)xemg − )x(q3eIg ) − q3)xeIg
)

ẽIg+
(

− q2)xeml − )x(q4eIl ) − q4)xeIl
)

ẽIl
]

+
[

− )x(q1ẽIg )emg − )x(q2ẽIl )eml+
(

− q1)xẽmg − )x(q3ẽIg ) − q3)xẽIg
)

eIg+
(

−q2)xẽml − )x(q4ẽIl ) − q4)xẽIl
)

eIl
)]

= −)x(q1ẽmgeIg ) − )x(q1emg ẽIg )

− )x(q2eIl ẽml ) − )x(q2ẽIleml )

− )x(q3eIg ẽIg ) − )x(q3eIg ẽIg )

− )x(q4eIl ẽIl ) − )x(q4eIl ẽIl ).

Performing integration on the above expression, it equalsmi-
nus the last expressions in (37) and hence, t ⊂ ⟂

t . This
concludes the first part of the proof.

We now prove the converse part, i.e.,⟂
t ⊂ t. For this,

we follow the steps similar to Proposition 4.1 in [20]. The
proof consists of several repeated steps, which are summa-
rized below. We take (f̃t, ẽt) ∈ ⟂

t i.e., (f̃t, ẽt) ∈ t×t such
that ≪ (ft, et), (f̃t , ẽt) ≫ = 0 ∀(ft, et) ∈ t. To this end,
we use the freedom in the choice of the effort variables and
exploit Lemma 4.3.
Step 1: Let (ft, et) ∈ t with eml , eIg , eIl = 0 and emg (a) =
emg (b) = 0. Using (37), we find that

∫Ω
−(q1)xemg )ẽIg+f̃mgemgdx = 0 ∀emg ∈ H

1
0 (Ω). (38)

H. Bansal et al.: Preprint submitted to Elsevier Page 7 of 10



Port-Hamiltonian Formulation of Two-phase Flow Models

Lemma 4.3 gives

q1ẽIg ∈ H
1(Ω) and f̃mg = −)x(q1ẽIg ). (39)

Using q1 ∈ H1(Ω) along with q1 > 0 on Ω, we obtain that
ẽIg ∈ H

1(Ω).
Step 2: Considering (ft, et) ∈ t with emg , eIg , eIl = 0 and
eml ∈ H

1
0 (Ω), we have by (37) that

∫Ω
−(q2)xeml )ẽIl+f̃mlemldx = 0 ∀eml ∈ H

1
0 (Ω). (40)

Now using Lemma 4.3 leads to

q2ẽIl ∈ H
1(Ω) and f̃ml = −)x(q2ẽIl ). (41)

As before, using q2 ∈ H1(Ω) along with q2 > 0 on Ω, we
have that ẽIl ∈ H

1(Ω).
Step 3: For (ft, et) ∈ t with emg , eml , eIl = 0 and eIg ∈
H1
0 (Ω), we obtain:

∫Ω
−)x(q1eIg )ẽmg − )x(q3eIg )ẽIg−

(q3)xeIg )ẽIg + f̃IgeIgdx = 0 ∀eIg ∈ H
1
0 (Ω).

We rewrite the above equation as follows:

∫Ω
−()xq1)(eIg ẽmg ) − ()xq3)(eIg ẽIg ) − ()xeIg )⋅

(

q1ẽmg +2q3ẽIg
)

+ f̃IgeIgdx = 0 ∀eIg ∈ H
1
0 (Ω).

As a result of Lemma 4.3, we have that q1ẽmg + 2q3ẽIg ∈
H1(Ω). Moreover, we obtain the following identity:

f̃Ig = −)x(q1ẽmg + 2q3ẽIg ) + ẽmg)xq1 + ẽIg)xq3. (42)

Using q1, q3, ẽIg ∈ H1(Ω) and that q1 > 0, it can easily be
deduced that ẽmg ∈ H

1(Ω), and so (42) can be written as

f̃Ig = −q1)xẽmg − )x(q3ẽIg ) − q3)xẽIg . (43)

Step 4: Considering (ft, et) ∈ t with emg , eml , eIg = 0 and
eIl ∈ H

1
0 (Ω), we obtain:

∫Ω
−)x(q2eIl )ẽml − )x(q4eIl )ẽIl−

(q4)xeIl )ẽIl + f̃IleIldx = 0 ∀eIl ∈ H
1
0 (Ω).

Re-writing the above equation as in the previous step and
using Lemma 4.3, we have that q2ẽml + 2q4ẽIl ∈ H1(Ω)
and also obtain:

f̃Il = −)x(q2ẽml + 2q4ẽIl ) + ẽml)xq2 + ẽIl)xq4. (44)

Using q2, q4, ẽIl ∈ H1(Ω) and that q2 > 0, it can easily be
deduced that ẽml ∈ H

1(Ω) and so

f̃Il = −q2)xẽml − )x(q4ẽIl ) − q4)xẽIl . (45)

Step 5: Let (ft, et) ∈ t with eml = eIg = eIl = 0 and
emg (a) = 0, emg (b) ≠ 0. Using the procedure outlined above,
we obtain the following identity: ẽBb1,t = ẽIg ∣b.
Step 6: Let (ft, et) ∈ t with emg = eIg = eIl = 0 and
eml (a) = 0, eml (b) ≠ 0. We now observe that ẽBb2,t = ẽIl ∣b
holds.
Step 7: Let (ft, et) ∈ t with emg = eml = eIl = 0 and
eIg (a) = 0, eIg (b) ≠ 0. Using the outlined procedure, we
now obtain:

−(q1ẽmgeIg ) ∣b −(q3ẽIgeIg ) ∣b +f̃
B
b1,teIg ∣b= 0. (46)

Finally, we obtain the following identity:

f̃Bb1,t =
(

q1ẽmg + q3ẽIg
)

∣b . (47)

Step 8: Let (ft, et) ∈ t with emg = eml = eIg = 0 and
eIl (a) = 0, eIl (b) ≠ 0. Using the outlined procedure, we
now obtain the following identity:

f̃Bb2,t =
(

q2ẽml + q4ẽIl
)

∣b . (48)

The boundary port-variables fBa1.t, f
B
a2,t, e

B
a1,t and e

B
a2,t can be

obtained in a manner similar to the one outlined for comput-
ing the boundary port-variables at the right boundary of the
spatial domain Ω.

Thus, in summary we have shown ⟂
t ⊂ t and, hence,

t is a Stokes-Dirac structure. □

Remark 4.5. The formally skew-adjoint operator T (q) in
Theorem 3.3 is equal to the skew-adjoint operator t(q) as-
sociated to the Stokes-Dirac structure representation in The-
orem 4.4. These operators are found to be equal only be-
cause of the assumptions on the state variables q; see Theo-
rem 4.4 for details. In general, the formally skew-adjoint
operator and the skew-adjoint operator associated to the
Stokes-Dirac structure representation need not be the same.
For instance, see Theorem 4.6.

We now discuss the representation of the Stokes-Dirac
structure corresponding to the skew-adjoint operator D in
the scope of the Drift Flux Model without slip.

4.2. Stokes-Dirac structure representation for the
Drift Flux Model

We introduce the notations

fd =
[

fmg,d fml ,d fv,d fBa,d fBb,d
]T
, (49a)

ed =
[

emg,d eml ,d ev,d eBa,d eBb,d
]T
, (49b)

fdr =
[

fmg,d fml ,d fv,d
]T
, (49c)

edr =
[

emg,d eml ,d ev,d
]T
. (49d)

AStokes-Dirac structure for the dissipativeHamiltonian rep-
resentation of the DFM can be expressed as follows.
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Theorem 4.6. Consider d = d = 2(Ω)3 × ℝ2. We as-
sume that Ag ∶=

mg
mg+ml

, Al ∶=
ml

mg+ml
∈ H1(Ω). We also

consider that the non-degenerate bilinear form on d × d
is defined in the following way:

⟨fd ∣ ed⟩ = ∫Ω
(fmg,demg,d+fml ,deml ,d+fv,dev,d)dx+

fBb,de
B
b,d + f

B
a,de

B
a,d . (50)

Then, the linear subset d ⊂ d × d given by

d =
{

(fd , ed) ∈ d × d ,
(

Agemg,d + Aleml ,d
ev,d

)

∈ H1(Ω)2, fdr = d(zD)edr,

(

fBa,d
eBa,d

)

=
⎛

⎜

⎜

⎝

(

−Ag −Al 0
0 0 1

)

⎛

⎜

⎜

⎝

emg,d
eml ,d
ev,d

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

(a),

(

fBb,d
eBb,d

)

=
⎛

⎜

⎜

⎝

(

Ag Al 0
0 0 1

)

⎛

⎜

⎜

⎝

emg,d
eml ,d
ev,d

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

(b)
}

, (51)

where

d(zD) =
⎛

⎜

⎜

⎝

0 0 −)x(Ag⋅)
0 0 −)x(Al⋅)

−D(Ag⋅)&D(Al⋅) 0

⎞

⎟

⎟

⎠

is a Stokes-Dirac structure with respect to the symmetric
pairing given by, see (50):

≪ (fd , ed), (f̃d , ẽd)≫= ⟨fd ∣ ẽd⟩ + ⟨f̃d ∣ ed⟩,
(fd , ed), (f̃d , ẽd) ∈ d × d . (52)

The action of the operator D(Ag⋅)&D(Al⋅) is given by

D(Ag⋅)&D(Al⋅)
(

emg,d
eml ,d

)

= )x(Agemg,d+Aleml ,d)

− emg,d)xAg − eml ,d)xAl . (53)

Remark 4.7. This can be considered as a special case of
the extended structure shown in [26] in the context of spatially-
varying cross-section. We skip the proof of Theorem 4.6 and
instead refer to [26] and use similar lines of reasoning.

We have shown Stokes-Dirac structure representations
for both dissipative Hamiltonian formulations of the mathe-
matical models under consideration.

5. Special case considerations for the DFM
In this section, we disqualify the DFM with the Zuber-

Findlay slip conditions as an energy consistent model for
two-phase flow, and, thus, motivate the reasons behind con-
sidering the DFM without slip.

We recall the dissipation inequality obeyed by the TFM
(see Theorem 3.3). Under the imposition of periodic bound-
ary conditions, the time derivative of the Hamiltonian (18)
can be expressed using (3d) as follows:

d
dt

= −∫Ω
(�q(q))T (T )�q(q) dx,

= −∫Ω
bMg

(

vg − vl
)2 dx,

= −∫Ω
Mig(vl − vg) dx ≤ 0.

(54)

The equivalence between the TFM and DFM, discussed
in Section 2, gives a better understanding of the DFM, espe-
cially when comparing the energy considerations between
these two models since the only difference is how the term
Mig is chosen. In the TFM, it is chosen to be proportional to
the slip velocity vl − vg with a non-negative coefficient of
proportionality bMg . This linear relationship has been cho-
sen to enforce an entropy inequality [27] and it is the basic
ingredient to show that the Hamiltonian is non-increasing
along solutions, see Theorem 3.3. However, to imitate the
behavior of the DFM from the TFM, the expression forMig
in (11) is much more complex and it is challenging to ana-
lytically investigate the sign of the term ∫ΩMig(vl − vg) dx
that appears in (54).

If the term ∫ΩMig(vl − vg) dx is always positive, it can
be claimed that the dissipation inequality d∕dt ≤ 0 also
holds for the (general) DFM (using (54)). It is worth recall-
ing that the dissipation inequality dD∕dt ≤ 0 holds for the
DFM under zero slip considerations (see Theorem 3.4).

As the theoretical assessment of the term ∫ΩMig(vl −
vg) dx for the model with non-zero slip is highly involved,
we investigate its behavior numerically. In order to calcu-
late �g , �l and � as in Theorem 2.4, the same expressions
as computed in [15] are used. The Rusanov scheme [28]
together with Zuber-Findlay slip (with K = 1.07 and S =
0.216 m/s cf. (8)) is used to solve the DFM numerically in
a horizontal 1000 m-long spatial domain with the spatial
and temporal step size of 0.5 m and 0.0005 s, pl0 = 1 bar,
�l0 = 1000 kg/m3, cl = 1000 m/s, and cg = 316 m/s. We
consider periodic boundary conditions with the initial con-
dition as shown in Figure 1. We use this test case to draw a
concrete conclusion on the sign of ∫ΩMig

(

vl − vg
)

dx. As
obvious from Figure 1, we have found a counter example for
which this integral is negative for all time instants.

The numerical results indicate that the proposed Hamil-
tonian D with periodic boundary considerations does not
guarantee the non-increasing behavior of the Hamiltonian
functional along solutions of the DFM. A possible underly-
ing reason for this effect could be that the Hamiltonian (22)
(under zero gravitational contribution) is not suitable for the
DFM with the Zuber-Findlay slip. However, the Hamilto-
nianD has the interpretation of the energy. The increment
in this energy along the solutions in principle disqualifies
the DFM for such slip conditions as an energy-consistent
model for two-phase flow. Hence, we do not consider the
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Figure 1: (top) Initial condition and (bottom) the tempo-
ral evolution of ∫ΩMig(vl − vg)dx for the DFM with periodic
boundary conditions.

general case of the DFM and only focus on a special case of
the model, i.e., the model without slip.

6. Conclusions
We introduced a dissipative Hamiltonian formulation for

two variants of multi-phase flow models, i.e., the Two-Fluid
Model (TFM) and the no-slipDrift FluxModel (DFM) across
a constant cross-section. Moreover, we presented Stokes-
Dirac structure representations corresponding to the skew-
adjoint operators obtained both for the TFMand for theDFM
without slip (under certain choice of state-variables) along
with the proof of corresponding representation for the TFM.
Port-Hamiltonian representations for the multi-phase mod-
els are implicitly represented in terms of the Stokes-Dirac
structures. Additionally, we numerically reasoned, by ex-
ploiting a connection to the TFM, to support the considera-
tion of the DFM without slip.

Elegantly parametrizing the boundary port-variables for
a class of state-dependent Stokes-Dirac structures is one im-
portant research direction for the future. The construction
of structure-preserving surrogate models will be another fo-
cus of future work. This will open up possibilities for the
analysis and control of complex physical systems.
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