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Abstract— Many complex systems are modeled by a net-
work of different subsystems, each having their underlying
mathematical model representations. Energy-based modeling
of each of these subsystems can yield a port-Hamiltonian
(pH) representation. In this paper, a single-phase flow model,
a dissipative mathematical component and a two-phase flow
model are interconnected to model hydraulics for Managed
Pressure Drilling (MPD) applications. These subsystems are
interconnected in a power-preserving manner to build an
aggregated pH system for real-life MPD scenarios. We prove
that the interconnection junction connecting the single- and
two-phase flow models is conditionally power-preserving.

I. INTRODUCTION

Port-Hamiltonian (pH) systems have recently received a
lot of attention for modeling physical phenomena governed
by nonlinear Partial Differential Equations (PDEs) and ordi-
nary differential equations [5], [16]. A pH realization offers
a suitable description of the components for the modeling,
analysis and controller design [5].

Controllers for PDEs are generally designed for finite-
dimensional state-space model descriptions obtained after
a low-resolution spatial discretization of the PDEs, which
lack part of the information (such as mass conservation)
present in the infinite-dimensional representation. Next to
PDE control techniques such as optimal control, backstep-
ping [8] and adjoint methods [12], recently, researchers have
been investigating control strategies for pH representations
[5]. A pH framework enables controller design based on
energy consideration by different techniques such as energy-
shaping [10], and interconnection and damping assignment
[14]. In addition, the Hamiltonian defined in pH framework
represents a good candidate for the Lyapunov function,
rendering the physics-based control design and the stability
proof more tangible [11].

One interesting feature of pH systems is power preserva-
tion. A key property of pH systems is that the interconnection
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of such systems still preserve the pH structure if the inter-
connection is performed in a power-preserving manner [5],
[3]. This compositionality feature enables to interconnect the
individual pH subsystems to define an aggregated pH system.
A lot of work has already been done in the past in the scope
of integration of finite-dimensional and infinite-dimensional
components [5], [3]. The key point in aggregating different
pH subsystems is the identification of the interconnection
structure and casting this interconnection into a power-
preserving structure.

Hydraulics in an Managed Pressure Drilling (MPD) can
be characterized by interconnection of subsystems governed
by a single-phase flow in one pipe and a two-phase flow in
another pipe (see Figure 1), and, mathematical models gov-
erned by nonlinear ordinary differential equations or static
equations [1]. A single-phase flow is usually modelled by the
isothermal Euler equations, which obeys a pH formalism [4].
For two-phase flow modelling, the Two-Fluid Model (TFM)
and the Drift Flux Model (DFM) are typically employed [1].
Recently, it has been shown that the TFM and a DFM without
slippage between the two phases can also be cast in the pH
formalism [2]. Drilling with MPD is composed of single- and
two-phase flow pH realizations, which can be interconnected
via MPD equipment (bit) in a power-preserving manner to
form an aggregated pH system.

We employ the existing theory to interconnect (individual)
mathematical subsystem models to construct an aggregated
model for MPD. To the best of our knowledge, compositional
pH modeling for MPD is taken up for the first time in this
paper. A compositional pH representation of the MPD model
is useful when it needs to be connected to other systems such
as a reservoir model, where each system is characterized by
a particular energy property. The compositional structure,
presented in this work, can be viewed as a stepping stone
towards a holistic control paradigm for MPD scenarios. To
the best of our knowledge, most controllers for MPD are
designed based on a lumped-parameter models approximat-
ing the hydraulics and ignoring the fast pressure dynamics
[1]. The framework introduced in this paper enables an
energy-based controller design while taking all (infinite-
dimensional) dynamics into account.

The contribution of this study is two-fold. First, a power-
preserving interconnection at the junction connecting the
single- and two-phase flow models are provided and, second,
a power-preserving condition for a typical junction used
in MPD [13] interconnecting these two models is derived.
Outside this conditional power-preserving region, the in-
terconnection junction generates power, which renders the
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junction model (that connects the two subsystems) non-
physical.

The structure of this paper is as follows. In Section II,
a brief introduction to MPD is provided. In Section III,
single- and two-phase flow models together with their pH
formalisms are introduced. In Section IV, the interconnection
of the single- and two-phase flow models together with
the conditional power preservation of the interconnection
junction is discussed. In Section V, the power-preserving
interconnection of the systems in a real-life drilling scenario
is investigated. Finally, Section VI concludes the paper.

II. MANAGED PRESSURE DRILLING

The industrial problem under investigation is a drilling
system, with a special focus on MPD. The configuration
of the system is illustrated in Figure 1. A drilling liquid
known as mud is pumped into a pipe, called the drillstring,
at high pressure. At the bottom of the drillstring, the mud
leaves the drillstring through nozzles created inside the
drill bit and enters the area between the drillstring and the
wellbore, known as the annulus. It then flows up through
the annulus and carries the rock cuttings out of the well.
In MPD, the annulus is sealed off from the surroundings
at the top with a Rotating Control Device (RCD in Figure
1) and the mud circulates out of the well through a choke
valve. The circulation path of the mud can be observed by
following the green arrows in Figure 1. Usually a flow from
the formation containing gas and liquid (this formation is
named reservoir in Figure 1) occurs at the bottomhole of the
annulus, leading to multi-phase flow in the annulus. For a
more comprehensive explanation of MPD, single-phase and
two-phase flow modeling, we refer to [13].

Remark 1: If no contingency happens during drilling, the
flows inside the drillstring and annulus are of a single-phase
flow nature. In case of liquid influx, we assume the reservoir
produces the same liquid as the drilling mud. If a gas influx

Fig. 1. A drilling well with MPD equipment.

occurs in the formation, the flow inside only the annulus
involves two phases.

Notation: The following short-hand notations are used
in the paper. xa, xd: spatial coordinate in the annulus and
drillstring, xd ∈ Ωd = [0, L] and xa ∈ Ωa = [0, L]: spatial
domain in the drillstring and annulus, respectively. (·)BL,d :

variable (·) at the boundary xd = L, (·)B,i0,a : the i-th compo-
nent of the decomposed variable (·) at the boundary xa = 0,
(·)|L,d: variable (·) at xd = L, (·)|L,d0,d := (·)|L,d − (·)|0,d,
(·)B,r,g0,a , (·)B,r,`0,a : boundary variables at the reservoir for the
gas and liquid phase, respectively. Subscripts (·)` and (·)g
refer to the values for liquid and gaseous phase, respectively.
R denotes the space of real numbers.

III. PORT-HAMILTONIAN MODELS

In this section, we briefly introduce the isothermal Euler
equations and the TFM. The pH formulation of each of these
models is presented in this section. It should be noted that
modeling MPD in 1D captures the most important hydraulics
features of drilling [1]. Therefore, the governing PDEs and
models for the MPD equipment are presented in 1D.

A. Isothermal Euler Equations
Isothermal Euler equations [9] are typically employed to

model single-phase flow inside the drillstring [13]. This
model encompasses a coupled mass balance and momen-
tum balance equation. For a drillstring with constant cross-
sectional area Ad and a constant inclination of the pipe θ,
see Figure 1, under the assumption of laminar flow, the
isothermal Euler equations read as follows:

∂tρ+ ∂xd (ρv) = 0, (1a)

∂t (ρv) + ∂xd
(
ρv2 + p

)
= −32

µ`v

d2
d

+ ρg sin θ, (1b)

where t ∈ R≥0 and xd denote the temporal and spa-
tial variables in the drillstring, respectively (see Figure 1).
Variables ρ(t, xd), v(t, xd) and p(t, xd) refer to density,
velocity and pressure of the mud inside the drillstring,
respectively. Moreover, µ` and dd denote viscosity of the
mud and hydraulic diameter of the drillstring, respectively,
and g is the gravitational acceleration. To complete the set
of equations, an Equation of State (EOS) is provided as
p = (ρ−ρ0)c2`+p0 with constants ρ0 and p0 (respectively the
density and pressure around which the EOS is linearized),
and c` being the speed of sound in the mud.

The Hamiltonian function for (1) in the state variables
z :=[ρ, v]T is

H(z) := Ad

∫
Ωd

ρ
v2

2
+ ρc2` ln ρ+ (c2`ρ0 − p0)− ρgx sin θ dx.

(2)
In the following theorem, the pH formulation corresponding
to (1) is introduced.

Theorem 3.1: The governing equations (1) together with
the EOS p = (ρ−ρ0)c2` +p0 can be written in the following
dissipative pH formulation:

∂tz = (Jd −Rd(z)) δzH(z), (3a)

with Jd = − 1

Ad

[
0 1
1 0

]
∂

∂xd
,Rd(z) =

[
0 0
0 32µ`

Add
2
d
ρ2

]
, (3b)
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where z := [ρ, v]T and H(z) is given by (2). This equation
is completed by the power conjugated input u and output y
at the boundaries with coupling relations as follows:(
yBL,d
uBL,d

)
=

(
1
Ad
δρH(z)

δvH(z)

)
|L,d,

(
yB0,d
uB0,d

)
=

(
− 1
Ad
δρH(z)

δvH(z)

)
|0,d.

(4)
Proof: Using (1a) and the EOS, the momentum

equation (1b) can be written in terms of ρ and v as

∂tv = −∂xd(
v2

2
+ c2` ln ρ)− 32

µ`v

d2
dρ

+ g sin θ. (5)

The variational derivatives of Hamiltonian (2) are:

δρH = Ad(
v2

2
+ c2` ln ρ+ c2` − gxd sin θ), δvH = Adρv. (6)

The physical interpretation of δvH is the mass flow rate
of the mud passing spatial location xd at time t. The
energy per unit mass multiplied by the cross section Ad
can be inferred from δρH. Equations in (3) are obtained
by a straightforward replacement of ed := [δρH, δvH]T

in (1a) and (5). Boundary conditions (4) are obtained by
satisfying the following relation for the time derivative of
the Hamiltonian Ḣ and the power through the boundaries of
the drillstring PB ,

Ḣ+ PB = −
∫

Ωd

eTd Rd ed dx+

(
1

Ad
δρH(z)δvH(z)

)
|0,d−(

1

Ad
δρH(z)δvH(z)

)
|L,d + yB0,du

B
0,d + yBL,du

B
L,d =

−
∫

Ωd

eTd Rd ed dx ≤ 0.

(7)
The last inequality is due to the positive semi-definite nature
of Rd(z).

B. Two-Fluid Model
The TFM can be defined in terms of PDEs expressing

mass and momentum conservation laws for each phase in
the annulus with constant cross-sectional area Aa, constant
hydraulic diameter da and constant inclination θ as follows
[15]:

∂t (αiρi) + ∂xa (αiρivi) = 0, (8a)

∂t (αiρivi) + ∂xa
(
αiρiv

2
i

)
= −∂x (αipa) +

Mi − αiρig sin θ − 32
µgαivi
d2
a

,
(8b)

where i ∈ {`, g} and xa is the spatial variable in the annulus
(see Figure 1). The model contains seven unknown variables,
namely, liquid and gas void fraction, α` and αg , liquid and
gas phase velocity, v` and vg , liquid and gas phase density,
ρ` and ρg , and the common pressure in the annulus pa. To
complete the model, we use a set of widely applied closure
laws as in [6]:

αg + α` = 1, (9a)

Mg +M` = 0,Mg = pa∂xαg + bMg (v` − vg), (9b)

ρg =
pa
c2g
, ρ` = ρ0 +

pa − p0

c2`
, (9c)

where (9a) expresses that any pipe segment is occupied
by the combination of gas and liquid. The terms Mg and
M` with the constant bMg ≥ 0 in (9b) account for the
force interaction between the phases. Finally, (9c) define the

barotropic EOS of each phase with cg the constant speed of
sound in the gaseous phase.

The Hamiltonian for the flow inside the annulus with za :=
[mg, m`, vg, v`]

T takes the following form (with mg :=
αgρg and m` := α`ρ`):

Ha(za) := Aa

∫
Ωa

mg
v2
g

2
+m`

v2
`

2
+mgc

2
g ln ρg+m`c

2
` ln ρ`+

α`(c
2
`ρ0 − p0)− (m` +mg) g(L− x) sin θ dx. (10)

Notably, variables ρ`, ρg, α` can be written in terms of mg

and m`, see [2]. In the following theorem, the pH formulation
corresponding to (8) and (9) is presented.

Theorem 3.2: The governing equations (8) associated with
the closure equations (9) can be written in the dissipative pH
formulation as follows:

∂tza = (Ja −Ra(za)) δzaHa(za), (11a)

Ja = − 1

Aa

[
0 I
I 0

]
∂

∂xa
,Ra(za) =

1

Aa

[
0 0
0 τ

]
, (11b)

where za := [mg, m`, vg, v`]
T and Ha is given by

(10), τ =

 bMgm2
g

+
32µgαg

m2
gd

2 − bMg
mgm`

− bMg
mgm`

bMg
m2

`
+ 32µlα`

m2
l
d2

 , and 0 and I denote

the 2 × 2 zero and identity matrix, respectively. This pH
formulation is completed by the power conjugated inputs
u and outputs y at the boundary coupled with relations as
follows:


yB,10,a

yB,20,a

uB,10,a

uB,20,a

 =


− 1
Aa
δmgHa

− 1
Aa
δm`Ha

δvgHa
δv`Ha

 |0,a,

yB,1L,a

yB,2L,a

uB,1L,a

uB,2L,a

 =


1
Aa
δmgHa

1
Aa
δm`Ha
δvgHa
δv`Ha

 |L,a.
(12)

Proof: Rewriting momentum equations (8b) in terms
of vg and v` leads to

∂tvi + ∂xa

(
v2
i

2

)
=− c2i ∂xa (ln ρi)±

bMg
mi

(v` − vg)

− g sin θ − 32
µivi
ρid2

a

,

(13)

where “+” is used for i = g and “−” is used for i = `.
Using the Hamiltonian (10) (for details, see [2]),

δmiHa = Aa(
v2
i

2
+ c2i ln ρi + c2i − g(L− xa) sin θ),

δviHa = Aamivi, i ∈ {`, g}.
(14)

Similar to the isothermal Euler equations, δviHa represents
the mass flow rate of the phase i. Similarly, The energy
per unit mass of phase i multiplied by the cross section Aa
can be inferred from δmi

Ha. Straightforward replacement of
these relations into the original equations give the asserted
equations. Similar to Theorem 3.1, the boundary terms can
be obtained from (PBa is the power through the boundaries
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of annulus)

Ḣa + PBa = −
∫

Ωa

eTa Ra ea dx+

(
1

Aa
δmgHaδvgHa

)
|0,a+(

1

Aa
δm`Haδv`Ha

)
|0,a −

(
1

Aa
δmgHaδvgHa

)
|L,a−(

1

Aa
δm`Haδv`Ha

)
|L,a + yB,10,a u

B,1
0,a + yB,20,a u

B,2
0,a +

yB,1L,au
B,1
L,a + yB,2L,au

B,2
L,a = −

∫
Ωa

eTa Ra ea dx ≤ 0,

with ea = [δmg
Ha, δm`

Ha, δvgHa, δv`Ha]T .
Remark 2: PH properties for the isothermal Euler equa-

tions in [4] and the TFM in [2] are proved for only unit cross
section without frictional and gravitational source terms.
Moreover, a different choice of the state variables than in
[2] is employed to express the pH realization of the TFM.

Remark 3: It can easily be proved that Jd in (3) and Ja
in (11) are formally skew-adjoint operators [5]. Moreover,
Rd and Ra in the same equations are symmetric positive
semi-definite.

IV. POWER-PRESERVING INTERCONNECTION

In this section, the drillstring, the drill bit and the annu-
lus are connected in a power-preserving manner. First, the
boundary conditions are introduced. Then, the dissipation
of energy through the bit is studied. Finally, the power-
preserving structure of the interconnection junction (the bit
and the summation junction at the reservoir, see Figure 2) is
investigated.

A. Boundary conditions of the single- and two-phase flow
models in MPD

The boundary conditions governing the fluid flow in the
drillstring and the annulus follow from Figure 1. The gov-
erning equations of the pump, bit and choke are summarized
in Table I. For the pump, ṁp, Ap, ρp and vp represent the
mass flow rate, the cross-sectional area, the density and the
velocity of the liquid through the pump, respectively. For the
bit, ∆pb, ρb, ṁb, AN and CD denote the pressure drop over
the bit, density at the drillstring side of the bit, the mass flow
rate through the bit, the total area of the nozzles of the bit and
the nozzle coefficient, respectively. For the choke, ṁc, ρc, pc
and p0 are the mass flow rate, the density, the pressure at the
choke inlet and atmospheric pressure, respectively. Finally,
Kc and zc, are the choke constant and the choke opening,
respectively.

First, we define the boundary conditions for the drillstring
to be used in (4).

TABLE I
GOVERNING EQUATIONS OF THE PUMP, BIT AND CHOKE.

Equipment Governing equation
pump ṁp = Apρpvp

bit ∆pb = 1
2ρb

(
ṁb

ANCD

)2

Choke ṁc = Kczc
√

2ρc (pc − p0)

Pump: At the pump location, we have Ap = Ad, vp =
v|0,d and ρp = ρ|0,d. Hence

δvH|0,d = (ρAdv)|0,d = ṁp(t). (15)

The boundary condition at the left side of the spatial domain
Ωd is assigned. Input and output variables at this boundary
can be defined with (15) and (4).

Bit and reservoir: Through the bit, the mass conservation
holds and the pressure drop is governed by the bit equation.
Moreover, the flow that passed through the bit is then mixed
with the known liquid mass flow rate ṁ`(t) and the gaseous
mass flow rate ṁg(t) coming out of the reservoir. Then,
the mixture enters the annulus. Considering ∆pb = p|L,d −
p|0,a, ṁb = (ρAdv)|L,d, ρb = ρ|L,d, we have

p|L,d − p|0,a =
1

2ρ|L,d

(
δvH|L,d
ANCD

)2

,

δvH|L,d + ṁ`(t) = δv`Ha|0,a,
δvgHa|0,a = ṁg(t).

(16)

Remark 4: To solve the TFM, typically either 2 boundary
conditions are specified at the left side of the domain and
2 at the right side or 3 boundary conditions at the left side
and one at the right [7]. In this paper, we consider the 2-2
case. In (16), one equation corresponds to the right boundary
for the isothermal Euler equations in the drillstring and two
equations correspond to the left boundary of the TFM in the
annulus.

Remark 5: Above the bit and inside the drillstring, a non-
return valve is installed to restrict the flow in one direction
only from the drillstring to the annulus. When this valve
is open, the pressure drop over the bit is governed by
the bit equation in Table I. When this valve is closed,
the drillstring and the annulus become disconnected. Then,
the right boundary condition for the drillstring becomes
ṁb(t) = (ρAdv)|L,d = 0 and therefore δvH|L,d = 0.
The left boundary condition for the annulus changes to
δv`Ha|0,a = ṁ`(t) and δvgHa|0,a = ṁg(t).

Choke: For the TFM at the choke, we have two boundary
conditions, i.e., the explicit value of gas void fraction over
time and the nonlinear choke equation. Following the same
procedure in [13], we rewrite ṁc as the mass flow rate of the
mixture, ṁc = (ρ`Aav`)|L,a+(ρgAavg)|L,a. We also replace
ρc with the mixture density, ρc = α`ρ` + αgρg . Therefore,
we have:
(δv`Ha + δvgHa)|L,a = Kczc

√
2(mg +m`)|L,a (pa|L,a − p0),

αg|L,a = g(t),
(17)

where g(t) is a function of time, explicitly specifying the
gas void fraction at the choke.

Remark 6: Notably, boundary conditions (16) and (17)
form an implicit function of variational derivative of Hamil-
tonian (2) and (10) with respect to z and za, respectively.

Remark 7: For the case of 2-2 boundary conditions spec-
ified above, setting the boundary inputs to zero leads to
Ḣa = 0 in the absence of dissipation. For the case of 3-
1 boundary conditions, setting the boundary inputs to zero
will not yield the same result and it is not clear how energy
of the system evolves over time. This complicates the energy
perspective presented in this paper for 3-1 case.
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B. Dissipativity of power through the bit
The power-preserving structure of the single-phase flow

model and the TFM are shown in Section III by the corre-
sponding dissipative pH formulation of (3)-(4) and (11)-(12).

In this section, we derive conditions under which the
interconnections, shown in Figure 2, are power-preserving.
To have power-preserving interconnections, we define the
following interconnections between input ports u and output
ports y of different components shown in Figure 2:{

ud,bit = yBL,d

yd,bit = −uBL,d
,

{
ua,bit = y1

ya,bit = −u1
,

{
u2 = yB,20,a

y2 = −uB,20,a

,{
u3 = yB,r,`0,a

y3 = −uB,r,`0,a

,

{
uB,r,g0,a = yB,10,a

yB,r,g0,a = −uB,10,a

.

(18)

The power preservation of all these connections can be easily
checked [5], e.g., u2y2 + uB,20,a y

B,2
0,a = 0. If the power is

preserved through the bit, then the entire aggregated system
preserves power. Therefore, we only focus on deriving the
condition of power preservation through the bit.

Remark 8: Due to the directions shown in Figure 1, the
positive direction is assumed from pump to the bit and from
the bit to the choke. Therefore, the incoming power into bit
flows from the drillstring and the outgoing power from the
bit enters the annulus.

The physical nature of the bit dictates the outgoing power
to be less than the incoming power (see Figure 2)

Pbit := ua,bitya,bit − ud,bityd,bit ≤ 0. (19)

The incoming power ud,bityd,bit is related to the physical
variables of the system via (18). To relate the outgoing power
ua,bitya,bit to the model-dependent variables, the power
preservation across the summation junction is written as

u1y1 + u2y2 + u3y3 = 0
(18)−−→

(−ua,bitya,bit) + (−uB,20,a y
B,2
0,a ) + (−uB,r,`0,a yB,r,`0,a ) = 0,

(20)

where uB,r,`0,a := −ṁ`(t) and, by considering the definition of
the boundary conditions in the pH formulations (4) and (12),
we have uB,20,a = ṁb + ṁ`(t) and yB,20,a = − 1

Aa
δm`
Ha|0,a.

For the summation junction, we use a 1-junction principle
where all outputs are equal and the summation of all inputs
equal to zero. This leads to yB,r,`0,a = − 1

Aa
δm`
Ha|0,a, Then

by using (16) in (20), we obtain,

ua,bitya,bit =
1

Aa
ṁb δm`Ha|0,a. (21)

Substituting (21), (16) into (19) yields

Pbit = ṁb

(
1

Aa
δm`Ha|0,a −

1

Ad
δρH|L,d

)
. (22)

Fig. 2. The power-preserving interconnection of different components of
a drilling well.

Note that when the non-return valve is closed, the two
systems become isolated and the summation of the power
change of both is less than the summation of the input-
output conjugated energy of each pipe. As the non-return
valve is open, ṁb > 0 holds. To ensure the power-preserving
property across the bit, we must ensure Pbit ≤ 0. As a result
of this property and by using (22), we have

1

Ad
δρH|L,d −

1

Aa
δm`Ha|0,a ≥ 0. (23)

Replacing the terms describing the variational derivative of
Hamiltonian with respect to state variables from (6) and (14)
leads to

(
v2

2
+ c2` ln ρ− gL sin θ)|L,d−

(
v2
`

2
+ c2` ln ρ` − gL sin θ)|0,a ≥ 0→

1

2
M2
d (−M

2
a

M2
d

+ 1) + ln
ρ|L,d
ρ`|0,a

≥ 0,

(24)

where Md =
v|L,d

c`
,Ma =

v`|0,a
c`

are the Mach numbers of
the flow at the outlet of the drillstring and at the inlet of the
annulus near the bit. To further simplify the relation, we use
the bit equation,

∆pb = (ρ|L,d − ρ`|0,a)c2` =
1

2
ρ|L,d(

Ad
ANCD

)2v|2L,d → (25a)

ρ`|0,a
ρ|L,d

= 1− 1

2
(

Ad
ANCD

)2M2
d , (25b)

The mass conservation across the bit (16) can also be
simplified to

(Adρv)|L,d + ṁ`(t) = (Aaρ`v`)|0,a → AdMd +
ṁ`(t)

ρc`
=

Aa
ρ`
ρ
Ma

(25)−−→Ma =
Ad
Aa

Md

1− 1
2
( Ad
ANCD

)2M2
d

+M`r ,
(26)

where M`r := ṁ`(t)
Aac`ρ`|0,a is the Mach number at the interface

of the reservoir and annulus. Finally by using (26), the
inequality (24) simplifies to

M :=
1

2
M2
d ((

Ad
Aa

1

1− 1
2
( Ad
ANCD

)2M2
d

+
M`r

Md
)2 − 1)

+ ln(1− 1

2
(

Ad
ANCD

)2M2
d ) ≤ 0.

(27)

For the bit, connecting the drillstring and the annulus, to be
power-preserving, the inequality (27) should hold.

V. NUMERICAL EXAMPLE

In this section, a real drilling well is considered and the
region where the inequality (27) holds is investigated. The
corresponding geometry and bit property are studied to define
the power-preserving operational region. Outside this region,
the bit model should be adjusted to abide power preservation.

Remark 9: In drilling operations, the velocity inside the
drillstring is typically around 1 m/s while the speed of
sound in the mud is around 1000 m/s. Therefore, for drilling
applications, Md ≈ 0.001.

The geometry and equipment properties of the drilling
platform are given by

dd = 76.2 mm, dod = 241.3 mm, dw = 444.5 mm,

AN = 1418.7 mm2, CD = 0.8,
(28)
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Fig. 3. Top: The value of the function M in (27) for different admissible
Mach number with ṁ` = 0, Below: Power-preserving region for different
Mach numbers of Md and M`r satisfying inequality (27).

where dod and dw are, respectively, the outer diameter of the
drillstring and the diameter of the wellbore.

For this well and this drill bit, to render the argument
inside the logarithmic function in (27) to be positive, we
observe that Md < 0.35 should hold. As shown in the top
part of Figure 3, in this restricted region for Md with no
flow from the reservoir (which is true in the normal drilling
scenarios), (27) always holds for ṁ` = 0 for the drilling well
under consideration and the bit model is indeed dissipative
(power-preserving). This might be the experimental condition
under which the model for the bit was derived.

In case of contingencies, where the fluid of the reservoir
flows into the annulus, condition (27) is not always satisfied
in the restricted region for Md, as shown in the bottom part
of Figure 3. When the reservoir also contains liquid, the
velocity of this flow should be less than the velocity of the
flow coming through the bit. This situation most probably
occurs when the drilling process and the mud injection
are halted (Md = 0) and a new pipe section is added to
the drillstring to increase its length to drill further (this is
called a connection scenario in practice). If the reservoir
is producing liquid during connection, this inequality does
not hold for sure. Therefore, the bit model presented in
Table I must not be used to simulate the hydraulics in this
situation. Notably, in cases when velocity of the flow from
the reservoir is much higher than the velocity of the flow
passing through the bit, usually the non-return valve is closed
and the two subsystems become isolated. This situation,
however, requires more investigation. These bit models are
usually derived by curve fitting to experimental data obtained
under certain conditions. To adapt the bit model, experiments
should be designed in such a way that the inequality (27) is

violated and a new model should be fitted to the new data.

VI. CONCLUSION

In this paper, two pH models for the (single- and two-
phase) flow dynamics in MPD with nonlinear boundary
conditions are interconnected by a nonlinear drill bit model.
To render the aggregated system power-preserving, the math-
ematical model of the bit, used to interconnect the two
pipes, obeys power preservation under a certain condition.
However, this conditional power preservation does not re-
strict the normal drilling operation region. The drill bit
model restricts the drilling operation where liquid influx from
reservoir flows into the wellbore. In such cases, velocity of
the drilling mud at the bit inside the annulus should be higher
than the velocity of the liquid influx. Outside this region,
the power preservation of the bit model might be violated.
The framework proposed in this paper enables an energy-
based controller design for MPD while taking the infinite-
dimensional nature of the dynamics into account.
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