7.2. R = (A, B, C, D, E). We decompose it into R₁ = (A, B, C), R₂ = (A, D, E). The set of functional dependencies is: A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A. Show that this decomposition is a lossless-join decomposition.

 $R_1 \cap R_2 = A$; $(A \to BC) \Rightarrow (A \to ABC) \Rightarrow (R_1 \cap R_2 \to R_1) \Rightarrow$ this is a lossless-join decomposition.

7.16. The same R and F. $R_1 = (A, B, C), R_2 = (C, D, E)$. Show that this decomposition is not a lossless-join decomposition.

r:				
А	В	С	D	E
1	1	α	1	1
2	2	α	2	2

 $\Pi_{A,B,C}(r)$

A	В	С
1	1	α
2	2	α

$\Pi_{C,D,E}(r)$	1	
С	D	Е
α	1	1
α	2	2

$\Pi_{A,B,C}(\mathbf{r}) \triangleright \triangleleft \Pi_{C,D,E}(\mathbf{r})$						
А	В	С	D	Е		
1	1	α	1	1		
1	1	α	2	2		
2	2	α	1	1		
2	2	α	2	2		

7.18. The same R and F. $R_1 = (A, B, C), R_2 = (A, D, E)$. Show that this decomposition is not a dependency-preserving decomposition.

$$\begin{aligned} F_1 &= \{A \rightarrow BC\} \\ (F_1 \cup F_2)^+ \neq F^+ \end{aligned} \qquad \qquad F_2 &= \{E \rightarrow A\} \end{aligned}$$

7.21.Give a lossless-join decomposition into BCNF of R = (A, B, C, D, E) with the set of functional dependencies: $A \rightarrow BC$, $CD \rightarrow E$, $B \rightarrow D$, $E \rightarrow A$.

result := {R}; F^+ = {A \rightarrow ABCDE, B \rightarrow D, BC \rightarrow ABCDE, CD \rightarrow ABCDE, E \rightarrow ABCDE, ...}. R is not in BCNF.

 $B\to D$ is a non-trivial f.d. that holds on R, $B\cap D=\varnothing,$ and $B\to ABCDE$ is not in $F^{^+}\!.$ Therefore,

 $result := (result - R) \cup (R - D) \cup (B, D), i.e. (A, B, C, E) \cup (B, D).$

(A, B, C, E) and (B,D) are in BCNF. So this is a decomposition of R into BCNF.

7.24. Give a lossless-join dependency-preserving decomposition into 3NF.

- 1) Construct a canonical cover of F. In our case $F_C = F$.
- 2) Initially we have an empty set of R_j (j = 0). Therefore, none of R_j contains ABC (we take a dependency from the canonical cover $A \rightarrow B$). So $R_1 = (A, B, C)$. Consider CD \rightarrow E. CDE is not in R_1 , hence we add $R_2 = (C, D, E)$. Similarly, we add $R_3 = (B, D)$, and $R_4 = (E, A)$.
- 3) R_1 contains a candidate key for R, therefore we do not need to add a relation consisting of a candidate key.

Finally, the received decomposition is (A, B, C), (C, D, E), (B, D), (E, A).

- I. Suppose we have a database for an investment firm, consisting of the following attributes:
 - B Broker,
 - O Office of a broker
 - I Investor
 - S Stock
 - Q Quantity of stock owned by an investor
 - D dividend paid by a stock.

Hence, the overall schema is R = (B, O, I, S, Q, D).

Assume that the following f.d. are required to hold on this d.b.

 $I \to B, \ IS \to Q, \ B \to O, \ S \to D.$

- 1) List all the candidate keys for R.
- 2) Give a lossless-join decomposition of R into BCNF.
- 3) Give a lossless-join decomposition of R into 3NF preserving f.d. Is you answer is in BCNF?
- 1) *I and S must be in any candidate key* since they do not appear on the right of any f.d. The question is whether they form a complete candidate key. And yes, IS \rightarrow ISDBOQ. Hence, the only candidate key is IS.
- Decompose R by I → B into R₁ = (I, B), R₂ = (I, O, S, Q, D).
 R₁ is in BCNF.

- 3. Decompose R_2 by $S \rightarrow D$ into $R_{21} = (S, D)$, $R_{22} = (O, I, S, Q)$.
- 4. R_{21} is in BCNF.
- 5. Decompose R_{22} by $I \rightarrow O$ into $R_{221} = (I, O), R_{222} = (I, S, Q).$
- 6. R_{221} is in BCNF.
- 7. R_{222} is in BCNF.

The decomposition is (I, B), (S, D), (I, O), (I, S, Q).

An alternative answer is (I, B), (S, D), (B, O), (I, S, Q).

- 3) (I, B), (S, D), (B, O), (I, S, Q). The answer is in BCNF.
- II. Consider a relational schema R with attributes A, B, C, D, E and the set of functional dependencies $A \rightarrow CD$, $B \rightarrow CE$, $E \rightarrow B$.
 - 1) Give a lossless-join decomposition of R into BCNF.
 - 2) Give a lossless-join decomposition of R into 3NF preserving f.d. Is you answer is in BCNF?
 - 1) 1. Decomposition by $A \rightarrow CD$. $R_1 = (A, B, E), R_2 = (A, C, D)$. 2. Decomposition of R_1 by $E \rightarrow B$. $R_{11} = (A, E), R_{12} = (B, E)$. (A, E), (B, E) and (A, C, D) form a decomposition into BCNF.
 - 2) 1. A → CD ⇒ R₁ = (A, C, D).
 2. B → CE ⇒ R₂ = (B, C, E).
 3. E → B , but E, B are in R₂.
 4. A candidate key is AB (or AE). It is neither in R₁ nor in R₂. Hence, we add R₃ = (A, B).
 The decomposition we got is (A, C, D), (B, C, E), (A, B).