7.2. $\mathrm{R}=(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})$. We decompose it into $\mathrm{R}_{1}=(\mathrm{A}, \mathrm{B}, \mathrm{C}), \mathrm{R}_{2}=(\mathrm{A}, \mathrm{D}, \mathrm{E})$. The set of functional dependencies is: $\mathrm{A} \rightarrow \mathrm{BC}, \mathrm{CD} \rightarrow \mathrm{E}, \mathrm{B} \rightarrow \mathrm{D}, \mathrm{E} \rightarrow \mathrm{A}$. Show that this decomposition is a lossless-join decomposition.
$\mathrm{R}_{1} \cap \mathrm{R}_{2}=\mathrm{A} ;(\mathrm{A} \rightarrow \mathrm{BC}) \Rightarrow(\mathrm{A} \rightarrow \mathrm{ABC}) \Rightarrow\left(\mathrm{R}_{1} \cap \mathrm{R}_{2} \rightarrow \mathrm{R}_{1}\right) \Rightarrow$ this is a lossless-join decomposition.
7.16.The same R and F. $R_{1}=(A, B, C), R_{2}=(C, D, E)$. Show that this decomposition is not a lossless-join decomposition.
r:

| A | B | $\mathbf{C}$ | D | E |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | $\boldsymbol{\alpha}$ | 1 | 1 |
| 2 | 2 | $\boldsymbol{\alpha}$ | 2 | 2 |


| $\Pi_{A, B, C}(\mathrm{r})$ |  |  |
| :---: | :---: | :---: |
| A | B | C |
| 1 | 1 | $\alpha$ |
| 2 | 2 | $\alpha$ |


| $\Pi_{\mathrm{C}, \mathrm{D}, \mathrm{E}}(\mathrm{r})$ |  |  |
| :---: | :---: | :---: |
| $\mathbf{C}$ | D | E |
| $\boldsymbol{\alpha}$ | 1 | 1 |
| $\boldsymbol{\alpha}$ | 2 | 2 |

$\Pi_{\mathrm{A}, \mathrm{B}, \mathrm{C}}(\mathrm{r}) D \Delta \Pi_{\mathrm{C}, \mathrm{D}, \mathrm{E}}(\mathrm{r})$

| A | B | $\mathbf{C}$ | D | E |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | $\boldsymbol{\alpha}$ | 1 | 1 |
| 1 | 1 | $\boldsymbol{\alpha}$ | 2 | 2 |
| 2 | 2 | $\boldsymbol{\alpha}$ | 1 | 1 |
| 2 | 2 | $\boldsymbol{\alpha}$ | 2 | 2 |

$\neq \mathrm{r}$
7.18. The same R and F. $R_{1}=(A, B, C), R_{2}=(A, D, E)$. Show that this decomposition is not a dependency-preserving decomposition.

$$
\begin{array}{ll}
\mathrm{F}_{1}=\{\mathrm{A} \rightarrow \mathrm{BC}\} \\
\left(\mathrm{F}_{1} \cup \mathrm{~F}_{2}\right)^{+} \neq \mathrm{F}^{+} & \mathrm{F}_{2}=\{\mathrm{E} \rightarrow \mathrm{~A}\} \\
\end{array}
$$

7.21.Give a lossless-join decomposition into BCNF of $\mathrm{R}=(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})$ with the set of functional dependencies: $\mathrm{A} \rightarrow \mathrm{BC}, \mathrm{CD} \rightarrow \mathrm{E}, \mathrm{B} \rightarrow \mathrm{D}, \mathrm{E} \rightarrow \mathrm{A}$.
result : $=\{\mathrm{R}\}$;
$\mathrm{F}^{+}=\{\mathrm{A} \rightarrow \mathrm{ABCDE}, \mathrm{B} \rightarrow \mathrm{D}, \mathrm{BC} \rightarrow \mathrm{ABCDE}, \mathrm{CD} \rightarrow \mathrm{ABCDE}, \mathrm{E} \rightarrow \mathrm{ABCDE}, \ldots\}$.

R is not in BCNF.
$\mathrm{B} \rightarrow \mathrm{D}$ is a non-trivial f.d. that holds on $\mathrm{R}, \mathrm{B} \cap \mathrm{D}=\varnothing$, and $\mathrm{B} \rightarrow \mathrm{ABCDE}$ is not in $\mathrm{F}^{+}$. Therefore, result $:=($ result $-R) \cup(R-D) \cup(B, D)$, i.e. $(A, B, C, E) \cup(B, D)$.
$(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{E})$ and $(\mathrm{B}, \mathrm{D})$ are in BCNF. So this is a decomposition of R into BCNF.
7.24. Give a lossless-join dependency-preserving decomposition into 3NF.

1) Construct a canonical cover of $F$. In our case $F_{C}=F$.
2) Initially we have an empty set of $R_{j}(j=0)$. Therefore, none of $R_{j}$ contains $A B C$ (we take a dependency from the canonical cover $A \rightarrow B$ ). So $R_{1}=(A, B, C)$. Consider CD $\rightarrow$ E. CDE is not in $R_{1}$, hence we add $R_{2}=(C, D, E)$. Similarly, we add $R_{3}=(B, D)$, and $R_{4}=(E, A)$.
3) $R_{1}$ contains a candidate key for $R$, therefore we do not need to add a relation consisting of a candidate key.
Finally, the received decomposition is (A, B, C), (C, D, E), (B, D), (E, A).
I. Suppose we have a database for an investment firm, consisting of the following attributes:
B - Broker,
O - Office of a broker
I - Investor
S - Stock
Q - Quantity of stock owned by an investor
D - dividend paid by a stock.
Hence, the overall schema is $\mathrm{R}=(\mathrm{B}, \mathrm{O}, \mathrm{I}, \mathrm{S}, \mathrm{Q}, \mathrm{D})$.
Assume that the following f.d. are required to hold on this d.b.
$\mathrm{I} \rightarrow \mathrm{B}, \quad \mathrm{IS} \rightarrow \mathrm{Q}, \quad \mathrm{B} \rightarrow \mathrm{O}, \quad \mathrm{S} \rightarrow \mathrm{D}$.
4) List all the candidate keys for $R$.
5) Give a lossless-join decomposition of $R$ into BCNF.
6) Give a lossless-join decomposition of $R$ into 3NF preserving f.d. Is you answer is in BCNF?
7) I and $S$ must be in any candidate key since they do not appear on the right of any f.d. The question is whether they form a complete candidate key. And yes, IS $\rightarrow$ ISDBOQ. Hence, the only candidate key is IS.
8) 9. Decompose R by $\mathrm{I} \rightarrow \mathrm{B}$ into $\mathrm{R}_{1}=(\mathrm{I}, \mathrm{B}), \mathrm{R}_{2}=(\mathrm{I}, \mathrm{O}, \mathrm{S}, \mathrm{Q}, \mathrm{D})$. 2. $\mathrm{R}_{1}$ is in BCNF.
3. Decompose $\mathrm{R}_{2}$ by $\mathrm{S} \rightarrow \mathrm{D}$ into $\mathrm{R}_{21}=(\mathrm{S}, \mathrm{D}), \mathrm{R}_{22}=(\mathrm{O}, \mathrm{I}, \mathrm{S}, \mathrm{Q})$.
4. $\mathrm{R}_{21}$ is in BCNF.
5. Decompose $\mathrm{R}_{22}$ by $\mathrm{I} \rightarrow \mathrm{O}$ into $\mathrm{R}_{221}=(\mathrm{I}, \mathrm{O}), \mathrm{R}_{222}=(\mathrm{I}, \mathrm{S}, \mathrm{Q})$.
6. $\mathrm{R}_{221}$ is in BCNF.
7. $\mathrm{R}_{222}$ is in BCNF.

The decomposition is (I, B), (S, D), (I, O), (I, S, Q).
An alternative answer is (I, B), (S, D), (B, O), (I, S, Q).
3) (I, B), (S, D), (B, O), (I, S, Q).

The answer is in BCNF.
II. Consider a relational schema R with attributes $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ and the set of functional dependencies $\mathrm{A} \rightarrow \mathrm{CD}, \mathrm{B} \rightarrow \mathrm{CE}, \mathrm{E} \rightarrow \mathrm{B}$.

1) Give a lossless-join decomposition of $R$ into BCNF.
2) Give a lossless-join decomposition of $R$ into $3 N F$ preserving f.d. Is you answer is in BCNF?
3) 4. Decomposition by $A \rightarrow C D . R_{1}=(A, B, E), R_{2}=(A, C, D)$.
2. Decomposition of $R_{1}$ by $E \rightarrow B . R_{11}=(A, E), R_{12}=(B, E)$. ( $\mathrm{A}, \mathrm{E}$ ), ( $\mathrm{B}, \mathrm{E}$ ) and ( $\mathrm{A}, \mathrm{C}, \mathrm{D}$ ) form a decomposition into BCNF.
2) 3. $A \rightarrow C D \quad \Rightarrow \quad R_{1}=(A, C, D)$.
2. $B \rightarrow C E \quad \Rightarrow \quad R_{2}=(B, C, E)$.
3. $\mathrm{E} \rightarrow \mathrm{B}$, but $\mathrm{E}, \mathrm{B}$ are in $\mathrm{R}_{2}$.
4. A candidate key is $A B$ (or $A E$ ). It is neither in $R_{1}$ nor in $R_{2}$. Hence, we add $\mathrm{R}_{3}=(\mathrm{A}, \mathrm{B})$.
The decomposition we got is (A, C, D), (B, C, E), (A, B).
