Architecture of Information Systems

using the theory of Petri nets

lecture notes
for
Systeemmodelleren 1 (2M310)

K. van Hee
N. Sidorova
M. Voorhoeve
and
J. van der Woude

Department of Computing Science
Technische Universiteit Eindhoven

Table of Contents

I

2

3

1. Petri Nets

4

Introduction

Information Systems Engineering .

Information Systems Life cycle

Preliminaries .

4.1 Bags .

4.2 Equivalence relation .
4.3 Transition Systems

Petri Nets

5.1 Nets and markings

5.2 Place invariants .

5.3 Transition invariants .
Special types of Petri nets

6.1 Petri nets with inhibitor arcs
6.2 Subclasses of Petri nets .

Constructing Petri Nets

7.1 Transformations of classical Petri nets

7.2 Connecting Workflow Nets
7.3 Client-Server coupling

Timed Petri nets

14
14
17
23
26

4

9 Petrinets with hierarchy o000
10 Colored PetriNets
10.1 Preliminaries L.
10.2 Colored flatnetso
10.3 Combining color and hierarchy
Architecture
11 Architecture oL L L L L
12 Componentso e e
12.1 Conceptual framework
12.2 Formal frameworko
13 Road-map for Architecture L.
131 Stepr:Classmodel
13.2 Step 2: Lifecyclemodel
13.3 Step 3: Component interaction model L L.
13.4 Step 4: Specification of transitions and datatypes
13.5 Step 5: Verification of consistency L.
14 Specification in coloured nets, Zand UML
14.1 Introduction oL Lo
I4.2 2 . .. e e e e e e e e
14.3 Typedefinitions L.
14.4 Operations and expressions on elements
14.5 Schemata L.
14.6 Application to coloured Petrinets L.

Table of Contents

14.7

Specification of components

28
32
32
32

34

37
37
39
39
40
44
45
46
47
48
50
50
50

51
52

54

59
62

1 Introduction

Information systems are complex artifacts like airplanes and power plants. Because society heav-
ily depends on information systems, they have to be developed very carefully.

This course focuses on an essential part of the development of information systems: the archi-
tecture of the system. We describe architectures using high level Petri nets in combination with
UML-notation and Z-notation. An architecture is used by potential users to understand the sys-
tems, by programmers who have to construct parts of it and by persons who have to deploy and
maintain the system when it is built. An important role of an architecture is that it can be used to
verify and validate properties of the system.

After an introduction the course starts with the theory of Petri nets. This process modelling tech-
nique was developed in 1962 and its theory and applications are still being developed further. We
use only a small part of Petri net theory, however some parts we use are quite new. About half
of the course is devoted to this theory and to modelling with Petri nets. The other half is devoted
to architecture of information systems. An important part of an architecture can de described by
the diagram techniques of (high level) Petri nets but we also need a data modelling notation and
a notation for describing input-output relations. For data modelling we use UMLs class models
and for relations we use Z-notation.

At the end of the course the students should have a good knowledge of the Petri net theory that is
presented, know what the role of an architecture is in the development of a system and last but
not least they should be able to design and verify an architecture of a complex system based on
an informal, verbal description.

The approach of this course is applicable to the software engineering project (2R690), specifically
for the first three phases.

The course is based on material of the book "Information systems engineering, a formal ap-
proach" (K.M. van Hee, Cambridge University Press (1994)) but contains important new mate-
rial. The software tool ExSpect can be used to make a part of the models that form an architecture.
Models in ExSpect are executable and can be used as prototype. For verification of particular as-
pects we have Woflan. (ExSpect and Woflan are both developed at the TU/e).

2 Information Systems Engineering

Systems engineering is the scientific discipline focused on the creation of new systems designed
to play a role in our society. In most cases systems have a limited scope and instead of a role in
’society’ we often consider the role of a system in some business environment. Besides the de-
velopment of totally new systems it becomes more and more important to consider the renewal
or renovation of existing systems. This requires different approaches and introduces new chal-
lenges. One of the major issues is that the systems engineers have to understand the system that
has to be renovated. An existing system puts extra constraints on the development of new parts
which makes renovation different from development from scratch.

Information systems can be characterized by their functions: the generation, interpretation, pre-
sentation, transformation, transportation and storage of information. Information systems are
becoming very complex and society is strongly dependent on them. This implies that it becomes
more and more important to develop information systems in a systematic and controlled way.
The information systems we focus on require many person-years of development (think of 20
or more) so the only way to develop these systems in a reasonable time is to develop them by
team work. This requires a strong coordination mechanism which allows to divide a system into
components that can be developed in isolation and that are relatively easy to assemble. Note that
we always use already existing components like a database management system.

Today component based development is considered to be the most promising way of developing
information systems. In order to make the development of information systems more efficient,
there is a strong focus on reusing existing components. Although different business environments
require different information systems, it turns out that many required systems functions are the
same as in other systems, so the reuse of components is a big challenge. At the moment there
are many vendors who sell software packages or components. These vendors try to make their
products applicable in a wide range of environments and therefore they endow their systems
with parameter mechanisms in order to tune their systems to the specific needs of a business
environment by choosing the right parameter values. This process of parameter setting is called
the configuration of components. Therefore the development of information systems has changed
dramatically the last ten years: instead of constructing the software from scratch in some pro-
gramming language, the selection, configuration and assembly of existing components is becoming
the major part of the job. Of course there is always a need for new components and the assembly
of components often requires programming as well, so the programming discipline will continue
to be important.

A crucial factor in the systematic, controlled and coordinated development of systems is the ability
to keep overview over the complexity of the system. The way to do this is to use models to describe
parts or aspects of a system. A set of models that together define the essentials of a system is
called the architecture of the system. The development of the architecture and the maintenance
of it during the development process is one of the most important tasks in the development
of complex information systems. The architecture of a system plays different roles, not only in
the development process but also during the life cycle of a system. Therefore it IT-architects are
becoming more and more important.

3 Information Systems Life cycle

Information systems have to play a role in some business environment, in particular they have
to fulfill tasks in some business process, like the control of equipment or the administration of an
insurance company.

In the life cycle of a system, we distinguish the following 15 activities:

1. requirements analysis

ii

IO.
II.
12.
13.
14.

5.

. process architecture

. functional architecture
. software architecture

. network architecture

. selection of existing components

design of new components

. construction of new components

. configuration of components

assembly of components

testing the system

acceptance of the system

installation in the operational environment
migration of old to new system

operations: functional and technical maintenance

It is really a cycle because after some years of operation the system has to be renovated or re-
newed due to changing business goals and new technology (i.e. new hardware and software that
is needed for our system) and then a new requirements analysis starts. There are many different
ways to cluster the activities of an information systems lifecycle into phases. There are also many
different ways to manage the lifecycle of systems development.

For example, the approach of software tool company Rational, which is popular in industry, distin-
guishes four phases: inception, elaboration, construction, and transition. (We will not go into detail
here.)

As another example, in the standard lifecycle of ESA, the European Space Agency, which is used
in our course on Software Engineering (2R690), the lifecycle has six phases, which cluster the
activities mentioned above as follows:

iii

phase activities

user requirements definition | requirements analysis
2 software requirements process and functional architecture
3 architectural design software and network architecture

selection of existing components
design of new components

4 detailed design and production | construction of new components
configuration of components
assembly of components

testing
5 transfer acceptance test
installation
migration
6 operations and maintenance functional and technical maintenance

The requirements analysis has three goals: to understand the environment in which the system
will operate, to define the functions the system is supposed to have and to list the constraints the
system or the development process has to fulfill. Therefore, a description is made of the business
process to be supported by the information system. At least, there should be a verbal description.
This is important because all the stakeholders of the system should be able to verify this.

Stakeholders are persons for whom the system will play a role. Stakeholders may be users, system
administrators or managers of an organization. Besides stakeholders, we distinguish actors. They
are either persons who have interaction with the system, like users and administrators, or who
have other software systems that interact with the system.

Besides the process the system has to support, we describe the functionality of the system by
means of use cases. A use case is a "piece of functionality" of the system. A use case belongs to
one or more actors; one of them is the initiator of the use case, and the others are participants in
it.

At the level of requirements, the use cases are described in natural language, as a list of tasks the

system has to fulfill.

We do not require more than verbal statements in this phase; formalizations are usually made in
the architecture activities:

The second group of activities is called the architecture. The architecture is the answer by the
architect to the question represented by the requirements. We distinguish four levels of architec-
ture:

1. the process architecture, also called business architecture; a set of models that describes the en-
vironment of the system.

2. the functional architecture: a set of models that describe the logical structure of the system as
a set of related logical components. Together, they cover the functionality required by the use
cases; usually, one component handles one or more use cases;

iv

3. the software architecture: a set of software components that realize the functional architecture.
A software component is a "piece of code";

4. the network architecture: a set of computer devices and a communications network on which
the software components are executing.

The architecture results in a set of components and the communication relationships between
them. For each component we have either a specification, i.e. a description that tells us what the
component is doing or a decomposition into a network of communicating sub-components. In
many cases the components are already available and have to be searched for.

This is done in the selection activity. If they can be found, they have to be configured (i.e., pa-
rameters have to be set). This is done in the configuration activity. If they are not available, they
have to be constructed where the models of the component are used as specification. Configu-
ration of software packages is a relatively young profession. After the realization of components,
the assembly of components has to be performed in the assembly activity. In the test activity we
check if the system functions according to the requirements, both the functional and the non-
functional requirements. If the acceptance test is successful, the system is installed in the envi-
ronment where it should be operational; this is called installation. Before the system can be used
it should be loaded with the business data. Often this requires conversion of data from the old to
the new system,; this is called migration. When this is complete, the system can be used, and the
operational phase starts: the applications should be maintained; functional maintenance means
updating user and system parameters, while technical maintenance includes the adaptation of
the system to new infrastructure.

In this course we focus on the design of architectures and in particular of the process and func-
tional architecture. As said before the architecture is not only used for the development of a sys-
tem but also for the maintenance and renovation of the system. So the architecture itself should
be maintained carefully.

1. Petri Nets

4 Preliminaries
4.1 Bags

N denotes the set of natural numbers. A bag (or a multi-set) over some alphabet A is a mapping
from A into N, which indicates a number of element occurrences in the bag. The set of bags over
A is denoted by bag.A. We denote bags by listing the elements between square brackets and we
use superscripts for the multiplicity of the occurrences. So [a2, b3, c] is the bag consisting of two
occurrences of a, three of b and one of c.

The operations we use on bags are addition, comparison and subtraction. So we have [a?, b3, ¢] +
[a3,c2,d] = [ad, b3, c3,d], [a®, b, c] < [a2,b3,c2,d], and [a%, b, c?,d] — [a%,b?,c] = [c, d]. Some-
times we use a simplified notation, writing p, or i*+p, instead of [p] or [i¥, p] respectively. Overload-
ing the notation, we write () for the empty bag. As for sets, we write a € X to indicate individual
elements of a bag.

To make things precise, let X,Y € bag.A and a € A. Note that X(a) denotes the number of
appearances of a in bag X. Now we will formally define the operations €, +, —, <, < on bags.

aeX & X(a)>0

(X+Y)(a) = X(a)+ Y(a)
(X—-Y)(a) = max{0,X(a) —Y(a)}
X<Y & VaceA:X(a) <Y(a)
X<Y & X<YA(HaeA:X(a)<Y(a))

4.2 Equivalence relation

A binary relation R on a set A is an equivalence relation iff R is

— reflexive, i.e., Va € A: (a,a) € R;

- symmetric, i.e.,Va,b € A: (a,b) € R= (b,a) € R;

— transitive, i.e., Va,b,c € A: ((a,b) € RA (b,c) € R) = (a,c) € R.

The symbol ‘~’ is among the most commonly used for equivalence relations. An equivalence
relation defines a partition of A into equivalence classes, i.e. the sets of the form {x € A | x ~ a}.

4.3 Transition Systems

Definition 4.1. A transition system is a (S, A, T, sy) where

— Sisa set of states;

— A is an alphabet of actions, i.e., a (finite) set of distinct labels

- T C S x A x Sisa transition relation;

— sp € Sis an initial state.

Each transition is thus a triple (s1, a, s2) where s; is a source state, a is an action label and s, is a
destination state. We denote it as s; — s,, and we say that a leads from s; to s,.

If a transition system has a finite number of states it can be represented by a graph. Each state is
represented by a node and each transition by a labeled edge.

We say that a state s’ is reachable from state s if there exists a transition sequence o (maybe empty)
leading from s to s'. In this case we write s = s'. We say that a state is dead with respect to the
current state of the transition system, if it is not reachable from the current state. We say that a

state s is recurrent iff Vs : s = s = s = s, and a state s is transient iff it is not recurrent. And
finally, a state s is deadlock iff therei s no transition starting in s, and a state s is livelock iff all the
transitions starting in s lead to s.

5 Petri Nets

5.1 Nets and markings

Definition 5.1 (Petri net). A Petri net is a tuple N = (P, T, F), where:

— Pand T are two disjoint non-empty finite sets of places and transitions respectively;

- F:(PxT)U(T x P) — Nis a weight function (also called flow relation).

We present nets with the usual graphical representation consisting of circles for places, boxes
for transitions and arrows linking places and transitions related by F. When we do not want to
distinguish between places and transitions, we refer to them as the nodes of a Petri net.

Definition 5.2 (marking). Markings are configurations of a net. A marking M of N is a bag over P,
i.e., a mapping from P into N where M(p) denotes the number of tokens in p in marking M. We write
(N, M) to denote a Petri net N with marking M.

Given a transition t € T, the preset *t and the postset t* of t are bags over P given by *t(p) & F(p, t)
def

and t*(p) = F(t,p) for any p € P. Similarly, for a given place p € P, the preset *p and the postset p®
of p are bags over T given by *p(t) £ F(t, p) and p*(t) & F(p,t) forany t € T.

Definition 5.3 (enabledness). A transition t € T is enabled in marking M iff *t < M.

Definition 5.4 (firing). An enabled transition t may fire, thus performing action t. This results in a
new marking M’ defined by M' < M — *t + 1°.

We write M <5 M’ to denote that M < M’ is a step in net N. Derived notations are “M —» M'”

when N is implicit, M X when M is not relevant, and “M — M'” when there is a transition t
“« 2 I »

such that “M = M'”.

Lemma 5.5. Each Petri net determines a transition system.

Proof. The transition system induced by a Petri net takes the markings as states and the transi-
tions as action alphabet. The transition relation records the changes in the markings that result

from the firing of the transitions. So we have (bag.P, T, U, my), where my € bag.P and m, L my
imUiff*t<m A®t+mo =my +1°

It should be noticed that several transitions in a Petri net can be enabled at the same time. They
may be concurrently enabled or, otherwise, they are in conflict.

Definition 5.6 (concurrently enabled). A subset of transitions T' C T is concurrently enabled in a

marking M iff >~ *t < M.
teT!

Definition 5.7 (conflict). Subsets of transitions Ty and Ty with Ty N To = () are in conflict if both Ty
and T, are concurrently enabled in M, but Ty U Ty is not concurrently enabled in M.

According to Definition 5.4 enabled transitions may fire, but only one at a time. If several transi-
tions are concurrently enabled, they can fire in any order. Such a view of concurrency corresponds
to the interleaving process semantics. In the framework of the step semantics, we can allow transitions
to fire simultaneously, i.e., if a subset T’ of transitions is concurrently enabled, all transitions of
T' may fire at once. Moreover, we could go one step further by considering bags of transitions to
be enabled concurrently. It is possible, for example, that a marking M is equal to *t + *t for some
transition t. Then we could allow ¢ to perform two firings at once. In the following, we will mainly
work with the interleaving semantics of processes.

Definition 5.8 (firing sequence). A sequence (t1,. .. ,t,) of transitions is a firing sequence in (N, M)
iff there exist markings My, ..., M, such that M b M; B M,.

We write “M % M'” when o is a firing sequence leading from M to M, “M = M'” if there exists a

firing sequence (maybe empty) leading from M to M’, and “M ~3 M'” if there exists a non-empty
firing sequence leading from M to M'.

Definition 5.9 (reachability). We say that a marking M is reachable in (N, M) if M = M'.

Definition 5.10 (Parikh vector). Let N = (P, T, F) be a Petri net and o a finite sequence of transitions.
The Parikh vector @ : T — N of a transition sequence o is the bag of .

For example, if T = {t,...,ts}, then the Parikh vector of the sequence (t3,1s,13,ts,t2) is
(0,0,1,2,1,1,0). Note that the Parikh vector destroys the information on the order of the firings.

Lemma 5.a1. Let M 2 My, M B My, and &1 = 75. Then M, = M,.

Lemma 5.12 (additivity of markings). Let M; ©5 M} and My 23 M}, Then My + My 5 M| + M),
where o is an arbitrary merge (or interleaving) of o1 and o2.

Definition 5.13 (liveness). A transition t of a marked Petri net (N, My) is live iff for every reachable
marking M there is a marking M reachable from M and enabling t.
A net N is live iff all its transitions are live.

Definition 5.14 (dead). A transition t of a marked Petri net (N, My) is dead iff there is no marking M’
reachable from M which enables t.
A marking M is a deadlock in a Petri net N iff all transitions of (N, M) are dead.

Lemma 5.15. A live Petri net (N, M) does not have any dead transition.

Note that the reverse is not true: a net which has no dead transitions may be not live. Take, for
instance, a net where every transition can fire only once. Such a net is not dead, but it is not live
as well.

Definition 5.16 (boundedness). A place p of a Petri net (N, My) is bounded iff there is a natural
number n such that for every reachable state the number of tokens in p is at most n.

A place p is k-bounded iff for every reachable state the number of tokens in p is at most k.

A net (N, My) is (k-)bounded iff all its places are (k-)bounded.

A 1-bounded place or net is also called safe.

Definition 5.17 (conservation). A marked Petri net (N, M) is a conservative net iff all the reachable
markings have the same total number of tokens as M.

Lemma 5.18. A marked Petri net (N, M) is a conservative net iff for every non-dead transition t:| *t |=|
t* .

Definition 5.19 (path). Let N = (P, T, F) be a Petri net, and let ny, m, € (PUT). An undirected path
C from a node ny to a node ny, is a sequence (n1, na, . .., mg), wheren; € (PUT), forj=1,...,k, such
that for every i with 1 < i < k, we have either (n;,n;1) € F or (nj;1,n;) € F.

The path is directed if (n;, n; 1) € F for all suitable i.

Definition 5.20 (connectedness). A Petri net N = (P, T, F) is connected iff for every pair of nodes x
andy, x,y € (PUT), there is an undirected path leading from x to y.
If for every node there is a directed path to any other node, the net is called strongly connected.

Definition 5.21 (acyclic net). A Petri net N = (P, T, F) is an acyclic net iff there is no directed path
from a node to itself.

5.2 Place invariants

Let’s consider a Petri net in Fig. 1.1. It is easy to see that whatever the initial marking of the net
is, the sum of the tokens in places p1, p3, p4 in any reachable marking is the same as in the initial
one. The explanation of this phenomenon is very simple: with its firing, every transition of the
net consumes from py, p3, ps the same number of tokens as it puts into these places. We will say
that (1,0,1,1,0) (or p1 + p3 + p4) is a place invariant of this net. The invariant indicates that
the amount of particular resources stays unchanged during the work of the net. Often, we are
interested in more complicated invariants of the form I(p;) - M(p1) + ... + I(pu) - M(pn), or just
its vector (I(p1),...,I(pn)) of coefficients. The coefficient vector has length | P | and we may
express the invariant by way of the innerproduct: I ¢ M thus opening up the toolbox of linear
algebra. Although we won’t treat the calculation of invariants here, it may be reassuring to know
that simple linear algebraic techniques suffice to automatically calculate the invariants of a Petri
net.

Definition 5.22 (place invariant). Let N = (P, T, F) be a Petri net. A mapping I : P — Z is a place
invariant iff for every transition t € T the following holds:

> I(p) = > I(p), or, equivalently, [o (°t) = I o (t*)
peot peto

The equivalence above may be explained by

Le (*t) = > I(p) - *t(p) = 2. I(p) - F(p,t) = >_ 1(p)

peEP peEP pE®t

p](>p5

t5

13 t4

[(O]
yZi
Fig. .. M(p1) + M(ps) + M(ps) = const.

and something similar for the right hand side.

Theorem 5.23 (property of place invariants). Let (N, M) be a marked Petri net, and I a place invari-
ant of N. For any reachable marking M in (N, My) we have I« M = [e M.

Proof. First, note that M < M’ implies that M + *t = t* + M/, so that after the innerproduct
with the invariant, we have Te M + [e (*t) = T o (t*) + [@ M’; hence, by 5.22, [e M = [e M'.
Since a reachable marking results from M after a finite sequence of firings, iteration of the above
reasoning leads to the required result.]

5.3 Transition invariants

After defining place invariants, it seems logical to introduce a similar notion for transitions. Note,
however, that we restrict the transition invariants to natural valued coefficients, as negative firings
do not make much sense.

Definition 5.24 (transition invariant). Let N = (P, T, F) be a Petri net. A mapping] : T — Nisa
transition invariant iff for every place p € P the following holds:

> J(t) = >° J(t), or, equivalently,] o (*p) =] o (p®)

te®p tep®

Lemma 5.25 (property of transition invariants). Let o be a finite sequence of transitions of a net N
which is enabled at a marking M. Then the Parikh vector & is a transition invariant if M 5 M (i.e.,
iff the consecutive firings of transitions in o reproduce the marking M).

Proof. Let o be a firing sequence such that M % M’. Because o was assumed to be enabled in M,
this is equivalentto M + > t* = > *t+ M.

tea teo
Let p € P be arbitrary. Then M(p) = M'(p) iff (>_ t*)(p) = (>_ *t)(p) or, equivalently with some
tco tco
rewriting using the Parikh vector, > & (t) - F(p,t) = 3. & (t) - F(t, p). In terms of the inproduct
teT t€T
this reads @ o (p®) = @ o (°p). Thus M = M’ iff & is a transition invariant. a
Fig. 1.2 gives an example of transition invariants.
tl 3
9 t4

Fig. 1.2. (1,1,0,0) and (0, 0,1, 1), or in other words [t1, 2] and [t3, t4] are transition invariants.

6 Special types of Petri nets

6.1 Petri nets with inhibitor arcs

One of the main factors limiting the modeling power of Petri nets is the lack of possibility for zero
testing, i.e. determining whether an unbounded place is empty. Let us suppose we are construct-
ing a model for a system processing two kinds of tasks incoming to places p, p2 respectively, with
transitions t, to processing each kind of tasks respectively (Fig. 1.3). Now, let the first kind of task
have a priority over the second one, i.e. transition t; may fire iff transition t; is not enabled. This
can not be modeled with classical Petri net.

To increase the modeling power of Petri nets, the inhibitor arcs will be introduced. While the
normal arc leading from a place to a transition says that the transition is enabled only if a token is
present in this place, the inhibitor arc says that the transition is enabled only if there is no token
in this place. Graphically, we present the inhibitor arc as a line with a circle at the end. So we can
model the priority in the system from Fig. 1.4 by introducing an inhibitor arc from place p; to
transition to.

It was proved that a Petri net with inhibitor arcs produces a modeling scheme which can model
any Turing machine. This, however, also means that Petri nets with inhibitor arcs belong to the
class of systems for which most of the analysis problems, like reachability, boundedness, termi-
nation (absence of infinite firing sequence), are undecidable.

incoming tasks

@

11 2

task processing ¥

incoming tasks
D (2
\
2

J task processing

Fig. 1.4. Introducing a priority by means of the inhibitor arc.

[—]

Fig. 1.3. Processing of two kinds of tasks.

6.2 Subclasses of Petri nets

Definition 6.1 (state machine). Let N = (P, T, F) be a Petri net. N is a state machine (SM) iff

Vie T:|t|< 1At |< 1.
State machines are equivalent to finite automata.

Definition 6.2 (marked graph). Let N = (P, T, F) be a Petri net. N is a marked graph (MG) iff
VpeP:*p|<IN|p®|< L.

Marked graphs are dual to state machines in the graph-theoretic sense and from the modeling
point of view. State machines can represent conflicts by a place with several output transitions,
but they can not represent concurrency and synchronization. Marked graphs, on the other hand,
can represent concurrency and synchronization, but cannot model conflicts or data-dependent
decisions.

Definition 6.3 (free-choice Petri net). Let N = (P, T, F) be a Petri net. N is a free-choice Petri net
thl, to € T,% Nty # 0 lmphes *t; = *to.

Free-choice Petri nets allows both concurrency and conflicts but in more restricted manner then
general Petri nets. By the definition of free-choice Petri nets, the input places for the transitions
form a partition; so if a place is an input to several transitions (potential conflict), then input
places for all these transitions coincide. Hence either all of these conflicting transitions are si-
multaneously enabled, or none of them is enabled. This allows the choice (conflict resolution) of
the transition that will fire next, to be made freely; the presence of tokens in other places is not
involved in this decision.

Definition 6.4 (workflow net). A Petri net N is a WF-net (Workflow net) if and only if:

— N has two special places: i and f. Place i is a initial place: *i = () and f is a final place: f* = ().

— Ifwe add a closing transition ¢ to N that connects place f with i (i.e., *t = {f } and t* = {i}), then
the resulting Petri net is strongly connected. Later on, we call this net the closure of WF-net N and
denote N (cf. Fig. 1.5).

(the remainder of N)

Fig. 1.5. The scheme of N.

Given the definition of a workflow net, it is easy to derive the following structural properties of
WF-nets:

Lemma 6.5. For every WF-net N = (P, T, F)

— the second requirement in the definition above is equivalent to the following requirement: ‘Every node
x € PUT isona path fromitof’;

— for any place p € P different from i, *p # 0, i.e., i is the only initial place;

— for any place p € P different from f, p* # 0, i.e., f is the only final place.

Definition 6.6 (soundness). A WF-net is k-sound iff for every marking M reachable from marking i,
there exists a firing sequence leading from marking M to marking f*. Formally:

A WE-net is sound iff for every natural k, it is k-sound.

For some classes of Petri nets (e.g., colored Workflow nets), it is often enough to require 1-
soundness of a net. 1-soundness does not necessarily imply k-soundness. Fig. 1.6 gives an ex-
ample of a net which is 1-sound but not 2 sound.

==

Fig. 1.6. An example of a net that is 1-sound but not 2-sound.

Lemma 6.7. In k-sound WF-net the only marking reachable from i* with at least k tokens in place f is
fFitself. Formally:

VM:(i* 5 MAM> Y = (M=FfF).

Proof. Let’s assume that on the contrary, there exists a marking M such that i¥ 5 M 4 f*. Since
the net is k-sound, there exists a firing sequence o such that (M + f¥) % f*. As f* = (), and hence
the tokens in f can not move to another place and they are not involved in any firing, we have
M %), which means that (due to the additivity of markings) the last transition in o has an empty
postset. This implies that there is no path from this transition to any other node of the net. This
contradicts the requirement of strong connectivity in the definition of WF-net.]

Lemma 6.8. Ifthe closure of a WF-net is live and bounded then the net is 1-sound.

Proof. Let (N, i) be live, in particular, the closing transition ¢ is live. Since enabling markings for
t are at least f it follows that

YM:(i5>M): 3M:: (M5 f+M)).

Now assume that N is not 1-sound and let z be such that i = x but x does not lead to f. By the
above it follows that y = f + ' for some nonempty u’. But this violates the boundedness of N
since

i—*>ui>f—i—,u'—t>i—i—p',hencei—*)i+k-u'forallk.

I0

Lemma 6.9. If a WF-net is 1-sound then its closure is bounded.

Proof. Let’s assume there exists N such that it is 1-sound and its closure is unbounded. Then N
contains an unbounded place p. Hence, there exists an infinite sequence of reachable in (N, i)
markings p* + My, p*? + My, ..., p"" + M, ... withk; < ky < ... <k, <Since the sequence
is infinite, it contains some markings p* + M;, ph + M; such that P4+ M; < phi + M; *. In other
words, there exists M’ > () such that pb + M; = (p% + M;) + M.

Since N is 1-sound, [f] is the only marking with a token in place f that is reachable in (N, 1)
(Lemma 6.7). The closing transition t of N is the only transition in N from which i can get a token,
and *t = f, hence i is the only marking with a token in i reachable in N. This fact implies that
every marking reachable in (N, i) is reachable in (N, i) as well. So p* + M;, p¥ + M; are reachable
in N. N is 1-sound, hence (Def. 6.6) there exists a firing sequence o such that p* + M; Sy f.
Then (Lemma 5.12) i — pb + M; % f + M, which contradicts the statement of Lemma 6.7. O

Definition 6.10 (t-workflow net). A Petri net N is a tWF-net (t-workflow net) if and only if:

— N has two special transitions: t; and t;. Transition t; is an initial transition: *t = (). Transition tf is a
stop transition: f* = ().

— If we add a place p to N which connects transitions tr and t; (i.e., °p = t; and p* = t;), then the
resulting Petri net is strongly connected.

ti —y (the remainder of N) tf

~

> -
e

Fig. 1.7. The scheme of N.

Definition 6.11 (extension and closure). The extension of a tWF-net N is the net pN WEF-net con-
structed by adding to N places i and f with *i = (), i* = t;, °f = tr, f* = .

The closure of N is the net obtained by adding one place p with *p = t¢ and i® = t;. We will use the same
notation N as in case of WF-nets.

! which is a consequence of Dixon’s Lemma that can be interpreted as following: “any infinite subset of N* contains
an infinite increasing sequence”.

II

Definition 6.12 (soundness). A tWF-net N = (P, T, F) is k-sound iff the net pN, as defined in 6.11,
is a k-sound WF-net.

Lemmas 6.8, 6.9 immediately imply that the following statements hold:
Lemma 6.13. Ifthe closure of a tWF-net is live and bounded then the net is 1-sound.
Lemma 6.14. If a tWF-net is 1-sound then its closure is bounded.

Definition 6.15 (SMWE). N is a State Machine Workflow net (SMWF) iff N is a Workflow net and a
state machine.

Lemma 6.5 implies that for any SMWF the following holds:
Vie T:|t|=1A |t |=1.

This immediately implies the following fact:

Lemma 6.16. Any SMWF is a conservative net.

Lemma 6.17. Any SMWF is a sound workflow net.

Proof. First, we prove that any SMWEF is 1-sound. Consider a SMWF N with the initial marking i.
Any reachable marking in (N, i) consists of 1 token (lemma 6.16). Let p be a marking consisting
of the only token in an arbitrary place p. N is strongly connected, which means that there exists
a path p,t1,p1,t2,pa2, ..., ts,f leading from p to f. It is easy to see that t;,...,t, form a firing
sequence o such that p % f. Hence, N is a 1-sound net.

Now, let’s prove that, for any natural k, N is k-sound. Consider an arbitrary marking M reachable
from i*. Lemma 6.16 implies that | M |= k, i.e, M = p; + p» + ... + pi. From the proof
above we know that there exist firing sequences o7, ..., 0 such thatp; 5 f,... . pg % f. Then
(lemma 5.12) M "57 f* ie., N is k-sound whatever k is taken. Hence, N is sound. a

Definition 6.18 (MGWE). N is a marked graph Workflow net (MGWF) iff N is a WF-net and N is
a marked graph.

Lemma 6.5 implies that for any MGWF the following holds:
Vpe PA\{if}:|*p|=1A[p" |= 1.
Lemma 6.19. A MGWF is sound iff it has no cycle.

I2

Proof. Let N be sound and assume that ¢ = (t1,p1,...,tn, pn, t1) is a cycle in N. Clearly, p; +
...+ pu is an invariant, which is 0 since i doesn’t occur in . Hence no p; is reachable and all ¢;
are dead.

The net N is a WF net, so there is a directed path (i,v1,q1,v2, ..., Vs, qu, t1). Since g, = [t1] and
t; is dead, g, cannot lead to f, and gy, is hence not reachable. As *g, = [v,], v, is dead. Repeating
this line of reasoning shows that v; is dead too, which can’t be true since i = f and i* = [v1]. So
we have shown that a sound MGWF is acyclic.

In the other direction, let N have no cycles. We first consider N with the initial marking [i] and
show that N is 1-sound.

We introduce a recursively-defined ordering function on the nodes of N (see an example at
Fig. 1.8):

0 if*x=10
ord(x) = max ord(y) + 1 else
yE®x)

Since N is acyclic, the recursion is well-founded. Moreover, for anynode n : n #iAn # f =

ord(i) < ord(n) < ord(f).

Note that since Vp € P :| p* |= 1, there are no conflicts on a token between transitions, i.e., every
enabled transition eventually fires. Therefore, we can consider a firing of enabled transitions in
any convenient order without loss of generality.

In marking [i], the transition with ord(t) = 1 is enabled. Its firing leads to a marking M such
that every place p with ord(p) = 2 has one token. Hence all the transitions with ord(t) = 3 are
enabled. In general, if all the transitions with ord(t) < n— 1 have fired, we got a marking in which
all the places with ord(p) = n— 1 have a token, i.e., all the transitions with ord(t) = n are enabled.
Finally, we get to the point where the input transition of f is enabled, it fires and puts a token into

f.

Now, we show that it is the only token in this marking. In our firing sequence, every transition
fired exactly once, i.e., every place (besides i) got exactly one token during the execution run.
On the other hand, every place, besides f is an input place for some transition, and since every
transition has fired, every token, besides the one in f has been removed. We can conclude that N
is 1-sound.

Now consider the run of the net (N, [i¥]). Since there are no conflicts on a token, the marking
of the net can be considered as a superposition of markings obtained in k nets (N, [i]). So we
immediately get that N is k-sound for any k, and, hence, sound.]

The other conclusions we can draw from the proof above are the following:
Lemma 6.20. Let N be an acyclic MGWF. Then

— (N, [i]) is safe;

3

N?é;

3 4

Fig. 1.8. Defining ord-function on a marked graph.

— (N, [i¥]) is k-bounded;

— (N, [i}]) contains no dead transitions.

Definition 6.21 (free-choice WF). Let N = (P, T, F) be a free choice Petri net and a Workflow net.
Then N is a free-choice Workflow net.

Lemma 6.22. A 1-sound free-choice WF-net is safe.

(The proof of this lemma is beyond the scope of this course.)

7 Constructing Petri Nets

7.1 Transformations of classical Petri nets

Definition 7.1 (renaming places). Let N = (P, T, F) be a Petri net and M be a marking of N. A
renaming function for places is a function p : P — P'. Renaming (N, M) according to p gives us a new
net (P', T, F') and marking M', denoted by N/p and M/ p respectively, where F' and M’ are defined by:

F(p',t)= > F(p,t), F(t,p)= > F(t,p)and M'(p') = >° M(p).
p(p)=r p(p)=r' p(p)=r'

In applying the renaming operation to N we reduce N by fusing all places with the same p-image
into a single place. Those new places are in fact equivalence classes under the equivalence rela-
tion {(p,q) | p(p) = p(q)} on P induced by p. (And the renaming function is the quotient map
for that relation.) The equivalence classes will be written as p/p, which explains the notation N/p
and M/p for the new net and marking.

The transitions are untouched but the arcs between places and transitions follow the fusion pro-
cess: if *tis [p1,...,pi), then in N/p, *tis [p1/p,...,pr/p]- A marking M in N is fused into a

14

pl p2 p

p2/

p3 p4 p3/

Fig. 1.9. Place fusion

ef

marking m £ M/p in N/p. It is easy to see that m and M have the same number of tokens.
Fig. 1.9 gives an example where p4 is renamed to p. In cases where only a few places of a net are
renamed while the other places are left untouched, we will say that we rename places p, g, s, ... to
X, 2, ... correspondingly. So we can see that renaming places is a way of expressing their fusion.

Definition 7.2 (renaming transitions). Let N = (P, T, F) be a Petri net and M be a marking of N. A
renaming function for transitions is a function p : T — T'. Renaming (N, M) according to p gives us a

new net N/p = (P, T', F') where F is defined by:

Fl(pa T’I) = Z F(p, t) and F,(t,,p) =

p(t)=t'

The marking remains the same, as the places don’t change.

pl p2

N/ where (p4) =

(P2)

> E(,p).

()=t

tl 2 t

Fig. 1.10. Transition fusion

As was the case for place renaming, the renaming of transitions is a kind of fusion; see figure 1.10
for an example. The net N is reduced by fusing transitions with the same p-image into a single
transition. We write t/p for the equivalence class of t (and thus for the fused place in N/p). The
places are untouched but the arcs between places and transitions follow the fusion process: if *p

is [t1,...,t], thenin N/p, *pis [t1/p,. .., t/p]-

15

1/
p3

N/ where

()=

oA

t2/ =t3/

(t3)

Pl

Definition 7.3 (net union). Let Ny = (P, Ty, F1) and Ny = (Py, T, F2) be two Petri nets. The union
Ny U Ny o]f these nets is a net (Py U Py, T1 U Ty, F1 + Fa), where the zero complementing domain
extensions F; of F; are defined by

F() _ Ft(xa))) anG(PiUTi)
1 x? Y - 0 l
else.
remove remove
produce from produce from
(D/ buffer buffer
put into /) put into put into put into
buffer buffer buffer buffer
Producer Consumer Producer u Consumer

Fig. 1.11. The union of the Producer and the Consumer nets.

Net union may be used as a weak alternative to the fusion by renaming. The difference between
the renaming and the union is that the renaming is applied on a single net, while the union
allows us to “fuse” places and transitions of one net with places and transitions of the other net
(only in pairs). Fig. 1.11 gives an example of the union of two nets.

remove
from
buffer

remove
produce from

buffer
7777777777777 U,C/

put into put into put into
buffer buffer buffer

Producer Consumer Producer u Consumer - Producer

Fig. 1.12. The difference operation illustrated.

Definition 7.4 (net difference). Let Ny = (P1, T1, F1) and No = (Py, T, Fo) be two Petri nets. The
difference N1 /Ny of these nets is a net (P1\ P2, T1\ T2, F), where

16

F(xv Y) = max{ov ﬁl (xv Y) - F~2(x7 Y)};

and the F;’s as defined in Def. 7.3.

7.2 Connecting Workflow Nets

N1 N2

7 2

Fig. 1.13. Sequential composition of WF-nets.

Definition 7.5 (sequential composition). Let Ny = (Py, T1, F1), No = (P9, To, F3) be two Workflow
nets with start places iy, io and final places f1, fo respectively. The sequential composition N = Nj - Ny
of N1, No, is a net obtained in the following way (Fig. 1.13):

1. bijectively rename Ny such that iy and fi are renamed to i and p respectively, while f doesn’t occur,
resulting in Ni;

2. bijectively rename N such that io and f; are renamed to p and f, respectively, while the other names
of nodes differ from those of N}, resulting in Nb;

def

3. N2 N/ U N,

Proposition 77.6. Let Ny, N2 be two k-sound Workflow nets. Then Ny - Ny is a k-sound Workflow net.

Definition 7.7 (sequential composition — t-Workflow nets). Let N; = (P1, T, F1), No = (P9, To, F)
be two t-Workflow nets with start transitions i1, iy and stop transitions f, fo respectively. The sequential
composition of Ny, N, is a net N = Nj - Ny obtained in the following way (Fig. 1.13):

1. rename try in Ny tot, where t ¢ (Ty U Ty), resulting in Ni;

2. rename try in No to t, resulting in Nb;

7

N1 N2

LY/

ti1

tr1 ti2 > tr2

AR
L J

ti1 tf2

AR
L/
LY/

N1.N1

Fig. 1.14. Sequential composition of tWF-nets.
dej
3. NZ N UNL

Proposition 77.8. If Ny, Ny are two k-sound t-Workflow nets then Ny - Ny is a k-sound t-Workflow net.

N1

m/

N2
\CD/'
—

7 2

N1 || N2
Fig. 1.15. Parallel composition of WF-nets.
Definition 7.9 (parallel composition). Let Ny = (Py, Ty, F1), No = (P, Ta, F2) be two Workflow
nets with start places iy,i, and stop-places fi, fo respectively. Assume that their node sets are disjoint
and don't contain members of {i,f,t,,t;}. The parallel composition Ny || Nz of Ny, Ny, is a net
N = (P, T, F) such that (Fig. 1.15)
P:PIUPQU{i,f},T:T1UT2U{tp,ts}andF:F1UF2UG

where G is zero outside the domains of the F; except for

i=0,i=[t, and °f = [t],f* =0,
*ty =1, ty = [i1,i0] and *t; = [fi, o] 8] = [f].

18

Proposition 7.10. If N1, Ny are two k-sound Workflow nets then Ny || Ny is a k-sound Workflow net.

N1

-~
~o—

< m

\‘O/

7> f2

5

N1+ N2

Fig. 1.16. Alternative composition of WF-nets.

Definition 7.1 (alternative composition). Let Ny = (Py, T1, F1), No = (Pg, T, F2) be two Workflow
nets with start places i1, ia and stop-places f1, f» respectively. Assume that their node sets are disjoint and
don’t contain members of {i,f,t; ,ti,, 47, t5 }. The alternative composition of N1, N2, N1 + Na, is a
net N = (P, T, F) such that (Fig. 1.16)

P=PiUPU {l,f}, T=TUTyU {til,tiQ,tﬁ,th} and F=F, UF, UG
where G is zero outside the domains of the F; except for

[b [tl2] and .f = [tfptfz]v * =10,
= [i], 8 = [i] and °t;, = [i], £}, = [ia],

1
[ﬁ], = [fTand *t, = [f2], 8, = [f].

II“

t

Proposition 7.12. If N1, Ny are two up-to-k-sound Workflow nets then Ny + N is an up-to-k-sound
Workflow net.

Definition 7.13 (place-expansion). Let N be a Petri net with a distinguished place p and Ny be a WF-
net with initial place i and final place f, such that the nodes are disjoint. The p-expansion of net N with
net Ny isanet N' = (PU Py \ {p}, T U Ty, G), where G is the obvious modification of the union of the
weight functions such that *i = *p and f* = p°®. (Fig. 1.17)

Lemma 7.14. Let N be an n-sound WF-net with a k-bounded place p and Ny an up-to-k sound WF-net.
Then p-expansion of net N with net Ny is n-sound.

9

hod

N1

Fig. 1.17. Place expansion of WF-nets.

Definition 7.15 (transition expansion). Let N be a Petri net with a distinguished transition t and Ny be
a t WFE-net with start transition t; and stop transition t¢, such that the nodes are disjoint. The t-expansion
of net N with net Ny isanet N' = (PUP;, TU Ty \ {t}, G), where G is the obvious modification of the
union of the weight functions such that °t; = °t, tp =t (Fig. 1.18)

Lemma 7.16. Let N be an n-sound WF-net with a transition t such that the places from °t are k-
bounded, and Ny be a tWF-net which is m-sound for any m < k. Then p-expansion of net N with net
Nj is n-sound.

Definition 77.17 (loop addition). Let N = (P, T, F) be a WF-net with a place q € P and a transition
t & T. Then the loop extension of N is the net N' = (P, T U {t'}, F') where F'(q,t) = f'(t,q) = 1
and F'(x,y) = F(x,y) forany x,y € (P x T) U(T x P).

Lemma 7.18. The loop extension of a k-sound WF-net is k-sound.

Definition 7.19 (iteration). Let N = (P, T, F) be a WF-net. The iteration of N is a WF-net N' =
(PUA{pi,pr}, T U {ti, tr,ty }, G), where G contains the additions to F such that (Fig. 1.19)

*tp = [f], 15 =[]
*pi=0,p; = [t;] and *pr =[], p} = 0,
.ti = [pi],ti. = [l] and
.tf = [ﬂvtf = [pf]

20

N2

Y/

N2

Fig. 1.18. Transition expansion of WF-nets.

Fig. 1.19. Iteration of a WF-net process.

21

Pr

\ Y/

Lemma 7.20. If N is a k-sound WF-net, then its iteration is a k-sound WF-net.

Definition 7.21 (State-Machine Pattern net). A workflow net N = (P, T, F) has a State-Machine
Pattern net (SM-pattern net) iff there exist a state machine N = (P, T, F), a set W of disjoint sound
t-WF nets with elements w = (P,,, T, F,,) and a bijective function w : T — W such that expanding
every transition t € T with w(t) € W, we obtain N (see Fig. 1.20).

Function w is called the expansion function.

Note that

P=P+ |J Py T= U T
weWw weWw

N
e T

Fig. 1.20. An example of a SM-pattern net

Lemma 7.22. Let N be a SM-pattern net as defined above. Then for any marking M reachable from [i]
one of the following conditions holds:

(i) there is p € P such that M = [p];

(ii) there isw € W such that M € bag.P,, and M = q for some q € P.

Proof. For the initial marking [i], condition (i) holds. Now suppose we have a marking [p] with
p € P. Then one of the initial transitions of some t-workflow net w from W can fire, resulting
in a marking M € bag.P,. So condition (ii) holds. Since w is a sound t-workflow net and it
is connected with N only via initial and final transitions, tokens will stay in w until the final
transition of w fires, resulting in some marking [q] where q € P (condition (i) holds). a

Lemma 7.23. Let N be a workflow net with an SM-pattern. Then N is sound.

Proof. Since N is a workflow net with a SM-pattern, N can be obtained as a result of transition
expansions applied to a state machine. Any state machine is sound (lemma 6.17), and applying
a transition expansion to a sound workflow net, one obtains a sound workflow net (lemma 7.15).
Hence, N is sound. O

22

Fig. 1.21. An example of a CS-coupling (not sound!)
7.3 Client-Server coupling

Definition 77.24 (Client-Server Coupling). Let Ny = (P, Ty, F1), No = (P2, Ta, F2) be two disjoint
t-workflow nets with initial and final transitions t;1, tip, tr1, tro respectively, Q be a set of places disjoint
with Py and Py, and cs : Q — ((Ty x T2) U (T2 x T1)) be an injective function such that there exist
ai,qr € Q with cs(q;) = (tin, tia), cs(qr) = (tra,tr1). We write cs;(q) for w1 o cs(q) — the projection
of ¢s on the first component (transmitter), and cs,(q) for mo o cs(q) — the projection of cs on the second
component (receiver).

A Client-Server Coupling (CS-coupling) CSn(N1, No, Q, cs) is a t-workflow net N = (P; U Py U
Q, T1 U Ty, F) with the initial transition t;; and the final transition t¢| (see Fig. 1.21), where

Fi(x7Y) lfx,YE(PiUTi),i:LQ;
B 1 ify € Q and csi(y) = x;
Fley) = 1 ifx € Q and cs,(x) = y;
0 otherwise.

Note that in CSy(Ny, No, Q, ¢s) Ny is the client and Ny is the server.
We say that the CS-coupling is sound iff the resulting t-workflow net is sound.

Lemma 7.25. Let Ny, No be MGWF-nets and N = CSn(Ny, No, Q, cs) be an acyclic CS-coupling of
them. Then N is a sound MGWEF.

Proof. First, N is a MGWF, since every place in N has exactly one input and one output position
(check it with Def. 7.24). Since any acyclic MGWF is a sound workflow net (Lemma 6.19), Nis a
sound workflow net. 0

23

Definition 77.26 (isomorphic nets). Tivo Petri nets Ny = (Py, T, F1), Ny = (Py, To, Fy) are called
isomorphic if there exist bijective functions r, : Py — Py, 1, : Ty — T defining a renaming of places
and transitions of Ny which results in No.

Note that the renaming functions for the workflow nets can map initial places to initial places
and final places to final places only.

Theorem 7.27 (isomorphic coupling). Let N1, Ny be disjoint SM-pattern nets with corresponding state
machines Ny, No and wy, wo as expansion functions, and moreover, Ni, Ny are isomorphic nets with
renaming functions r,, r;.

Let N be a parallel composition of Ny, No where for every transition u € T either a CS-coupling
CSN(wy(u), wa(ri(u)), Qu,csy) or CSN(wa(r(u)), wr(u), Qyu, csy) is applied such that for every u,v €
T with *u = *v the coupling of pairs (wy (u), wa (r1(1)), (w1 (v), wa(r1(v)) goes in the same direction (ei-
ther client-server for both, or server-client), and moreover, every such a coupling forms a sound t-workflow
net (see Fig.1.22). Then N is a sound workflow net.

Proof. Any marking M of N reachable from [i] (except for the ones with tokens in [f]) can be
represented as M; + My + M3 where M; € bag.P;, Ms € bag.P; and M3 € bag.(UteT1 Q;)- The
only marking directly reachable from [i] is [i1, iz}, i.e., [i1, 7 (i1)].

Let us consider an arbitrary marking [p, r,(p)], where p € (P; U Py) and the output t-workflows of
p serve as servers (see Fig. 1.23). Without loss of generality we can assume that p € P;. We'll refer
to such a marking as a marking of type I. In any such a marking, only the output transitions of p
are enabled (since every output transition of r,(p) has also an input place from Q and, thus, not
enabled). Every output transition of p is an input transition of one of the transition workflow nets
from N;. Now let one of the output transitions of p fire, say the input transition t;, of a workflow
net wy (u). Then we obtain a marking of the form M; + My + M3 where M; € bag.Py, (i) for
some u € p* (u € N), My = [rp(p)], M3 = [q;,] + M3 with M3 € bag.(Qy \ {iu, 5 }) (type II). The
only transitions enabled in this marking are the input transition t;,(,) of the workflow wy(r;(u))
and possibly transitions of w; (u). So after a firing we can obtain either another marking of type
IT, or a marking consisting of a marking of the workflow net CSy (w1 (1), wa(ri(u)), Qu, csy) and a
one-token marking [r,(p)], which just indicates that wy(r;(u)) can start working (type III).

The only transitions of CSy(wi(u), wa(r:(u)), Qu,csy) that communicate with the rest of the
net are tg, and t4(,). So until wi(u) or wy(u) terminates, the firings in N are the firings in
CSN(wi(u), wa(ri(u)), Qu, csu) only. Moreover, by definition of CS-coupling, t(,) fires before tg,
does. Since CSy(w1(u), wa(r:(u)), Qu,csu) is a sound coupling, t4,) will eventually fire leading
to a marking consisting of a marking of the workflow net CSy(wy (1), wo(ri(u)), Qu,csy) plus a
one-token marking [r,(q)], where r,(q) is the output place of 5, (type IV).

In the marking of type IV the following things can happen. First, the termination of the workflow
w (u) after the firing of some transition sequence. After that we obtain a marking [g, r(q)] of type
I. (Here we use the fact that the coupling is isomorphic.) And second, if the t-workflow net with
input place r(g) served as clients in the corresponding CS-couplings, they are enabled by a token
in r(gq) and may fire. Let a transition t;.(,, fire consuming a token from r(g). Then we obtain a
marking M; +Ma+ Mz where M; € bag.P,, (), M2 € bag.P,,(w)), and M3 = [qj,, giw] +Mj with

24

Fig. 1.22. CS-coupling

ty,
<>Chw
t

&4{3
ﬁﬂ)

——g -
N~ _ .-
: T —
. N
J 7
= -

W

tU

&—’5*@

tiu

<>qu
tf (u)

f(w)

=X

i (w)

t

o

i (u)

t

i
(D)

(W)

«(U)

Fig. 1.23. Scheme for Theorem 7.2

() CIN)

typel — type2—~type3

“typed

Fig. 1.24. Scheme for Theorem 7.27

25

M; € bag.((Qu \ {qiw, apw}) U (Qw \ {qiw: 4 })) (type V). t-workflow wy(r(w)) cannot terminate
until t-workflow w; (w) puts a token into qg,. Therefore, from a marking of type V we can obtain

either a marking of type V, or, in case w; (1) terminates, a making of type II.
So we constructed an abstract transition system representing the behaviour of N (see Figure 1.24).

The only thing left to prove is that we can always reach the marking [fi, f2] (see Fig. 1.22). It is
easy to see that in a marking of any of the five types we can define a sequence of firings leading
to f. Namely, for markings of type I we take a corresponding place p, for markings of types ILIII,
and IV — place ¢, and for markings of type V — place s. Since N;, Ny are sound isomorphic
marked graphs, there is a path in N; leading from this chosen place to f; and the corresponding
path through the renamed places and transitions of Nj to fo. We can always make our choices for
firings in N according to this path. So the marking [f;, fo] will be reached, and ty,, will eventually
fire yielding the marking f, which means that N is sound. a

8 Timed Petri nets

Petri nets can be extended with a concept of time. Timed Petri nets can be used to investigate:

— the correctness of the desired functionality, absence of deadlocks, etc.

— performance of the modeled system, which allows to remove bottlenecks, predict mean waiting
times and average throughput, compare different strategies.

In timed Petri nets each token gets a time stamp telling when this token can be used. We can
specify either fixed or interval delays (i.e., random delays where values are taken from some
interval) for transitions. Let RT be the set of all non-negative real numbers. For the time set we
will write Q, which is normally either R* or N.

Definition 8.1 (timed Petri net). A timed Petri net is a tuple N = (P, T, F, A, Amax), where:

— Pand T are two disjoint non-empty finite sets of places and transitions respectively;
- F: (Px T)U(T x P) — N is a weight function;

— Apiny Amax : T — Q are functions for the minimal and the maximal delays of transitions, satisfying
Apin(t) < Apax(t) foranyt € T.

Definition 8.2 (marking). A marking M of a timed Petri net N is a bag over P x Q.

Thus, a token is a pair (p, 7) where p stands for a place and 7 for a time stamp. In order to extract
a place or a time stamp out of the token we use a projection operation. So 7 (p,t) = p, and
mo(p,t) = t. We define 71 (M) as a bag of places corresponding to the tokens of M.

26

Fig. 1.25. A timed Petri net.

Now, consider a net N with a marking M and a transition ¢t of this net. We will say that the
transition is potentially enabled in M iff *t < w1 (M). In case if 71 (M) = *t, it is clear that t can fire

at the moment of time 7, = max 7 (0), i.e. at the moment when the token with the maximal time
oc

stamp becomes available. However, it is possible that *t < (M), i.e., we could chose several
different subsets X of M which can be involved into the firing of t. In this case, we chose the
subset which allows the earliest firing of t. So we define

oeX

min X : X < M A m(X) = °t: maxma(o) °t < m (M)
Tt M) = 00 else

7(t, M) gives us the earliest time moment when ¢ can fire in M. We assign oo to the transitions
that are not enabled in M to establish an order relation on the firing times. In case if 7(t, M) < oo,
we also define

m(t, M) = {X | X < M,mi(X) = *t, maxms(o) = 7(t, M)}.

m(t, M) is a set of the markings that can be involved into the earliest firing of ¢.

Suppose we calculated 7(t, M) for every transition ¢t of N. Now we need to decide which transition
is to fire. We choose to pick the one with minimal firing time, which equals mi%l 7(t, M). If several
te

transitions have this firing time, one of them is chosen nondeterministically. The result of the
firing of t is the marking

MI:M—Ml—‘rMQ,

where My € m(t, M) and Ms is such that 71 (M) = t* and the time stamps of all tokens in My
are 7(t, M) + 6, Apin(t) < 0 < Apax(t).

Let’s consider the simple net at Fig. 1.25, which is a net with fixed transitions delays (4,,;, =
Amax = A) The marking of this netis M = [(plﬂ 3)? (plv 2)’ (an 4)5 (an 5)a (an 7)a (p3a 6)a (p4a 3)]
Both transition t; and transition t, are enabled in M since 7 (M) = [p?,p3,p3,p4], *h =
[p1,p2], *t2 = [p2, ps], and thus *t; < M and *t; < M.

27

Fig. 1.26. Firing results.

Now we calculate 7(t;, M). Submarkings of M that satisfy the condition 7 (X) = °t are the mark-
ings consisting of one token in place p; and one in place po. We define maximal time stamp
for every such a pair of tokens, and then chose the minimum of these maxima. So we get that
7(t1, M) = 4. This firing time corresponds to the markings [(p1, 2), (p2,4)] and [(p1, 3), (p2,4)]
which form the set of markings m(t, M).

Similarly, we calculate that 7(t2, M) = 6. So mijr; 7(t, M) = 4 and the transition that is to fire is t;.
TE

Its firing will consume either tokens [(p1,2), (p2,4)] or tokens [(p1, 3), (p2,4)] and produce one
token with the time delay 4 + 3 = 7 for p3. So the firing of t leads nondeterministically to one of
the markings at Fig. 1.26.

Note that the delays of transitions do not assume that the firing of the transition takes some time.
On the contrary, all the firings are instantaneous. The delay is a way to postpone the availability
of the produced tokens. If, for instance, two customers come to a shop to develop their films on
Tuesday, that means that both of them will get the developed films on Wednesday (Fig. 1.27). So,
the transition fires there twice at the same moment of time, which is in this case Tuesday.

However, if we try to model the work of the film-developing machine under the assumption that
the machine processes film sequentially, we would need a different way of the delay modelling. In
Fig. 1.28, we introduce an auxiliary place idle indicating when the device is idle (if idle has a token)
or busy (no token). This net can be reduced to the net in Fig. 1.29 showing the same behaviour.

9 Petri nets with hierarchy

Most software systems can be regarded as components, which are built from other (smaller)
components. Every component has an interface stating how other components can communicate
with it. It is only at the highest level that we have components that do not communicate with
other components. These components can be seen as “ordinary” Petri nets. Component technol-
ogy induces hierarchical modeling, since the components that we use are themselves built from
(sub)components and so on. Petri nets with hierarchy is the formalism that we shall use for mod-
eling components. Here we will limit ourselves to hierarchical classical nets; in the sections to
come we will meet “colored” nets with hierarchy. These nets are used to define components.

28

Tuesday
Tuesday Tuesday Tuesday
A =dayl A =dayl A =dayl
Wednesday
Wednesday

Wednesday

Fig. 1.27. Developing films 1.

13:40

13:40 13:40
=mib. =mi.
idle idle
13:45
=mif. =mif.
=mi. A =mib.
idle idle
13:50
13:50
=mif. A =mif.
13:50
13:45 13:45

Fig. 1.28. Developing films 2.

A =mib.

A =mif.

13:45

13:40

13:40
idle =mib.

Fig. 1.29. Developing films 3.

The interface of a hierarchical net will consist of a set E = ey, ..., ¢ of pins, which can be con-
nected to places in the net’s environment to allow communication. We shall distinguish input,
output, store and inhibitor pins. A hierarchical net is constructed from subnets and places. Every
subnet D within a hierarchical net C must be installed by connecting the pins from the interface
of D to either a place p of C or a pin e of C. By connecting pins of different subnets to the same
place of C, subnets can influence one another. By connecting a pin e of a subnet D of C to a pin
of C, we say that e becomes a part of the interface of C.

1 0

z

O
(D

Fig. 1.30. A hierarchical net

A hierarchical net H in figure 1.30 contains the subnet U with pins x,y and z that has been
installed into H by connecting pin x to place p, pin y to place q and pin z to outer pin w.

Now we give a formal definition for classical Petri nets with hierarchy. We presuppose a set 1T of
pins.

Definition 9.1 (hierarchical net). A hierarchical net C is a pair (E, R), where E C II is its interface
and a 4-tuple R = (D, P,f, M) is the decomposition, where D is a set of subnets, P a set of places,
feU(E; | d e D) — (PUEc) ? a function telling which pin of which subnet is connected to which
place or pin of C and M € bag..P an initial marking.

We assume the sets of pins of the subnets and of C to be disjoint. In case we have pins with the
same names, we rename them. Similarly, we assume that the set of places P and the sets of places
of the subnets are disjoint.

The set E of a net’s pins is decomposed into E' + E°, which are input and output pins respectively
3. Note that a pin of a subnet can be connected to a pin of C only if the pins are of the same kind,
soe.g.if x € EJand f(x) € II, then f(x) € Eg.

We call atomic hierarchical nets processors. A processor possesses an interface E and a decompo-
sition consisting of empty sets, functions and bags only.

A hierarchical net C is called flat iff all its subnets D are processors. We can unfold non-flat nets by
replacing nonatomic subnets by their decompositions. The unfolding operators @, has as domain
the nets C = (Ec, (D, P,f, M)) where d € D. ®4(C) has the same interface E¢ as C. The subnets

? By E;, Ec we denote the interface (E part) of the subnet d, C respectively
% the + operation is a union of disjoint sets

30

of @4(C) are found by replacing d in D by the subnets of d. The places of ®;4(C) are found by
adding the places of d to P. The markings are obtained in a similar way. The connection function
of &4(C) is obtained by adding the connection function of d to f transferring the connections to
E; by means of f.

Definition 9.2. Let C = (E, (D, P,f, M)) be a hierarchical net and let d = (E4, (D', P',f',M")) € D
be a nonatomic subnet. Then @ ;(C) is the net (E, (A, PUP',g, MU M')), where A = (D \ {d}) U D/
andg € \J{E:. | c € A} — (PU P' U E¢) defined as follows:

f(e) if3ce D\ {d} me€ E,

gle) = f(e) ifdceD ecE.Nf'(e)e P
f(f'(e)) ifdce D ecE. Af'(e) € Ey

H

A

~o

Fig. 1.31. Unfolding a hierarchical net

In figure 1.31 we see the unfolding of subnet U from figure 1.30. The indirect connection from
U.v to p via pin x has been made direct, and so has the connection from g to U.vvia y. The pin z
of U has been connected to the pin w of #(H, U).

We define a hierarchical net C and its unfolding ¢,4(C) as equivalent: they have the same in-
terface and behavior w.r.t. the interface, although they have different decompositions. A net
C can be flattened iff there exists a sequence of unfoldings @41, Py, . .., Py, such that the net
Dy (Pga(. - - (Pgn(C)) ...)) is flat. There are nets that cannot be flattened according to the defini-
tion above, e.g. recursive nets that contain (a copy of) themselves as a subnet.

A hierarchical net is called closed if has an empty interface. Closed flat hierarchical nets define
marked Petri nets.

Definition 9.3. Let C = (0, (D, P,f, M)) be a closed flat hierarchical net. Then C defines the marked
Petrinet (Nc, M), where Nc = (P, D, ¢), and ¢ is defined for d € D,p € P by
¢(d,p) =[{e|ec E;Af(e) = p} | and ¢(p,d) =[{e| e € E; Afle) = p} |-

Closed hierarchical nets that can be flattened thus define marked Petri nets, that correspond to
transition systems. If a net is not closed, we can use it to construct closed nets; if such a net can
be flattened, such a closed hierarchical net can be flattened too and thus defines a Petri net.

31

10 Colored Petri Nets

In classical Petri nets, we consider flows of tangible and information objects, but we abstract
from their actual properties. If we want to consider the latter, we have to extend our model, thus
arriving at colored nets. In colored nets, tokens have values (called colors for historical reasons).

The token values may have several types (e.g. numbers, strings, booleans). We assume the exis-
tence of a set T of types (note that T is thus a set of sets of values). We will type places, i.e. connect
types to them, so a place p typed with A will only contain tokens of type .A. Our set T also contains
the one-point type 1, which has the value * as its only element. A classical Petri net is a colored
net with all places typed with 1.

We will start by recollecting some standard notions. Then we describe flat colored nets and finally
hierarchical colored nets.

10.1 Preliminaries
We define the dependent product ITo of a function o with a set of types as codomain.

Definition 10.1. Let A be a collection of labels and o : A — T an assignment of types to labels. The
dependent product 1o is defined by

Ho={f:A—- T | Va:ac A:f.a€oa}

So, if 0 has domain {a, b} and 0.a = A, 0.b = B, then Ilo = {(a,x), (b,y) | x € A Ay € B}. The
dependent product can be seen as the tuple (record) type constructor.

The bagification function 3 converts sequences to bags in the obvious way. For instance 5.(a, b, ¢, a, b, a) =
[a3b%c]. Note the correspondence to the Parikh vector.

10.2 Colored flat nets

The first step is assigning types to places and transitions.

Let (P, T, F) be a Petri net and let 7 : P — T be an assignment of types to places, then 7 induces
a typing of the transitions in T. This typing of the transitions will also be denoted by 7. If a
transition t has an input place p of type A and an output place g of type B, then we assign to t the
type 7.t = A <> B which is the set of relations with domain A and codomain B. If there are more
input and output places, with weights attached to them, we take the weighted cartesian product
of the inputs as domain and the weighted cartesian product of the outputs as codomain.

This notion is formalized as follows. The type 7.t of t is domtype.t <+ codtype.t, with

domtype.t = I1$ and codtype.t = IIvy, where 0,7 : P — T are given by
6.p = (T.p)F®Y and v.p = (7.p)F*P).

32

So a transition is typed as relation between its input and output. If *t = [a®b], t* = [ab?], and
r.a = A,7.b = B, then 7.t = IT{(a, A?), (b,B)} < I{(a,A), (b, B?)}, which is isomorphic to
(A2 x B) ++ (A x B?). Note that the exponent 2 in [a?h] denotes the bag multiplicity and in .42
denotes the cartesian product of a set with itself.

(By defining A° = 1, we do not need to limit ourselves to positive weights, since IT(f U{(a, A°)})
is isomorphic to IIf.)

For such a typed transition t a relation, say p.t will be given that has the required type. IL.e.
dom.(p.t) C domtype.t and cod.(p.t) C codtype.t

Note that the relation p.t does not have to be total: the domain of the relation may be a proper
subset of the domain type and similarly for the codomain versus the codomain type.

We will use the mathematical language Z to specify the input-output behaviour of the relation p.t
that belongs to the transition .

Definition 10.2 (simple flat colored net). A simple flat colored net is a classical Petri net with a
typing T : P — T of the places and a type correct assignment p of relations to the transitions.

A marking for a colored net, like the marking for classical nets, records the tokens in the places.
A token in place, say, p posesses a value of type 7.p. A place is marked with several tokens, so the
marking of a single place is an element of bag.(7.p). Finally, the marking of the whole net can be
modeled as an element of a dependent product.

Definition 10.3 (marking). A marking for a simple flat colored net with typing 7 : P — T is an
element of IT y where p : P — T is defined by p.p = bag.(7.p).

We thus have defined the state space; in order to define the state transitions, we extend our partial
order < on bags to I i in the obvious way: if m, M € II u, then m < M iff for every p € dom.M
we have m.p < M.p. We define addition and subtraction on IT i in the same way.

Essentially the firing rules in the colored Petri net would be defined as follows. We say that a
transition t € T is enabled in a marking M € II y of the net if the marking contains (in the sense
of bags) an element x € dom.(p.t), i.e. x < M.

For a pair (x,y) € p.t, we have a successor marking M’ = M — x +y such that M - M’. However,
this definition schema is not correct. It is not even type-correct since for x € dom.(p.t) we have
that x.p € (7.p)"®" while M.p € bag.(7.p). So the first is a tuple and the second is a bag. The
conversion is made by a bagification step (see 3 above):

B.(x.p) < M.pforeveryp € P,i.e. fox < M.
M'.p=Mp—B.(x.p) + B.(y.p) foreveryp € P,ie. M =M —fox+ foy.

We thus arrived at the following definition.

33

Definition 10.4 (enabling and firing).
Transition t is enabled in marking M iff (3x : x € dom.(p.t) : fox < M).
The firing results in a marking M' € {M — Box+ Soy]| (x,y) € p.tandtenabledinx}.

In other words M = M’ iff ox+ M = M+ Boyforx,y such that t is enabled in x and (x,y) € p.t.

The role of inhibitor arcs is to prevent a transition from firing, thus further restricting the domain
of input-output relation of the inhibited transition. Questions related to the inhibitor arcs in
colored Petri nets will be treated in the section on the specification language.

In colored Petri nets the concept of special places called stores is introduced and widely used. A
store is a place initially containing a single token. Transitions that consume a token from a store
must necessarily produce a token back to this store. Both consumption and production must
occur with weight 1. This concept makes little sense for classical nets, but for colored nets it can
be compared to a (possibly structured) variable in programming.

10.3 Combining color and hierarchy

In the preceding section on hierarchy, the central concept was the hierarchical net. Places oc-
curred inside hierarchical nets, while processors were the “leaves” of the hierarchy. In order to
lift the coloring of Petri nets to the level of hierarchical Petri nets it is sufficient to define the
coloring concepts for hierarchical nets in such a way that their flattening is colored according to
the discussed coloring above.

We shall color or type the hierarchical nets inductively. A colored hierarchical net is a tuple
(E, 7, (D, P,7p,f,M)), where E is a set of pins, 7z € E — T, D a set of colored subnets, P a
set of places, p € P - T, f € |J(E; | d € D) — (PUE¢) and M € II i, where u : P — T is
defined by p.p = bag.(7p.p).

We assume again that all pins and places of a net and its subnets are disjoint, so that we can
use the function 7 as the disjoint union of all the 75’s and 7p’s of a net and its subnets (and
subsubnets etcetera).

The gluing function that joins the pins of subnets in D with pins in E and places in P should
conform with the typing. So, for the type correctness, we should have 7.x = 7.(f.x) for all pins x
of subnets in D.

We extend the subsets of pins with inhibitor pins E" and store pins E*. So for any hierarchical
net, its interface E can be written as E = E' + E° + E° + E". The set of places P contains a subset
Ps of stores. A store is a place that is always marked with a singleton bag, so for s € P* we must
have M.s = [x| for some x € 7.5. If f.e; € Ec, the pins ¢; and f.e; must be of the same kind. If
f.eq & Ec and ¢, is a store pin, then f.e; must be a store.

The basis of the coloring is the assignment of type correct relations to processors, the transi-
tions of the corresponding flat Petri net. Again, processors are hierarchical nets with an empty
decomposition.

34

Lett = (E, 7g, (0,0,0,0,0)) be a processor. The set E of pins consists of four subsets, i.e. E = E'+
E° + E° 4+ E". The inhibitor pins are irrelevant for the typing, and the store pins are bidirectional,
so they count for the domain type as well as for the codomain type. Let § be defined by d.e = 7p.e
fore € (E'4 E*) and 7 by y.e = 7z.e for e € (E°+ E°), then domtype.t = IT§ and codtype.t = IT+.

This settles the coloring of the hierarchical Petri nets. For the details of the definition, or rather
specification, of the relations we refer to the section on Z.

35

2. Architecture

11 Architecture

We define an architecture of a system as a set of related models that describe the essentials of a
system. The variety of models describes different components (parts) and different views (aspects)
of the system. Components are building blocks: a system can be constructed by gluing together
the components according to some rules. Views differ from components in the sense that they
do not occur as a system on their own. To illustrate this we consider the building industry. Each
floor of a building can be seen as a different component and the water supply system or the
electricity system are examples of views. The latter systems are realized in parts that belong to
components. In information systems the database (sub)system and user-interface (sub)system
are examples of components and the structure of the communication and data are two examples
of views. Usually we distinguish several standard views of a system: a business view, a functional
view and a technical view. Each of these views can be split into parts. The technical view is split
into a software view and a network view. So we divide the architecture of an information system
into four levels:

1. business architecture. Business processes and the object classes that play a role considered from
the perspective of the information system

2. functional architecture. The logical decomposition of the system into (logical) components and
the assignment of processes and object classes to these components

3. software architecture. Software components that realize the functional architecture, e.g the
database management system, the workflow engine and the connectivity software (middle-
ware)

4. network architecture. A computer and communications network together with their operating
systems

In case of a system that is implemented on a stand alone computer the network architecture
is trivial: just one node. In our life cycle we recommend that all architecture is designed in the
second phase. In some other life cycle models the business architecture is considered to be part
of the requirements analysis.

Information systems are discrete dynamic systems, which means that these systems can be viewed
as transition systems that have a (finite or countably infinite) state space and that make transitions
through that state space at discrete points in time. We distinguish between static models and

dynamic models. Static models describe the structure of a system or the state space (i.e. the set
of states the systems might be in). Dynamic models describe the behavior of the system, i.e. the
possible sequences of transitions a system can make.

The models an architecture consists of may be of different type. A verbal description can be a
model, all sorts of diagrams can be models and a set of mathematical or logical formulas can be a
model. We distinguish informal and formal models. Informal models have a (often sloppy) syntax
and an intuitive semantics, like verbal models and many diagram techniques. Formal models
have besides a syntax a formal defined semantics. The combination of a modelling syntax and a
formal semantics is called a modelling framework. Mathematical and logical formulas are examples
of formally models. Informal models are used in communications with stakeholders of a system
(persons who have some say in the development of the system, e.g. potential users). Formal
models are meant for systems engineers, programmers and for software tools that are able to
analyze or interpret the models. There are modelling tools that can generate a simulation model
from a description of the modelling framework. The simulation model is supposed to behave as
the modelled system.

An architecture should have two important properties: consistency and completeness. "Consistency"
means that all models are consistent internally and that they do not imply any contradiction or
conflict when they are put together. Internal consistency should be defined in terms of the mod-
elling framework. One simple but important consistency property is that a model is syntactically
correct. A more advanced consistency property that is often required is that the systems are free of
deadlocks. With “completeness” we mean that all models together provide sufficient information
for constructing a system with the same functionality as the modelled system. A practical test for
completeness is that from the set of models the external behavior of the system is fully defined
and that a simulation model of the system can be generated and tested in the environment where
the real system should operate. Note that in general the simulation model is not the same as the
real system because the simulation model captures only the functional requirements of a system
and not necessarily the non-functional requirements, such as the response times and scalability.

For the verification of the consistency and completeness we have several formal methods. Al-
though the quality and scope of these methods are increasing rapidly there are many properties
that can not be verified in a formal way. These properties should be checked by testing methods,
i.e. by means of experiments with the system itself or with a model of the system. An example of a
property that can not be verified by formal methods is "user friendliness" of a system. We call the
checking of properties by means of testing: validation. It is well-known that the cost of correction
of errors increases with the discovery in later stages of development. Therefore it is important
to try to verify and validate a system as much as possible in the design stage. The architecture
is a base for verification. In this course we focus on a particular way of verification: correctness
by construction. In this approach we construct models using predefined patterns from which it is
known that they imply correct behavior. This method is not a panacea for all verification issues.
However a nice feature of this approach is that it does not require to search the state space but
only the diagrams of the models. A system architecture is the base for the development of the
software and for the maintenance of a system.

12 Components

The functional and software architecture are modelled by means of components. Components
are subsystems that communicate with each other and with the environment. The functional
components are conceptual or virtual in the sense that they only exist as mathematical models.
In the software architecture the components represent real pieces of software. In theory there can
be a one-to-one mapping between these different sets of components, however in practice the two
component models are different and it is possible that one component of the functional model is
realized by two or more components in the software architecture and that two components of the
functional architecture are partly realized by the same software component. Although we focus
here on the functional architecture the component framework is also applicable to the other area’s
of architecture.

The framework consists of two parts: the conceptual framework, i.e. the set of concepts we use in
natural language to describe an architecture and the formal framework in which the concepts are
translated. In general a formal framework consists of three parts: a language (textual or graphical)
with a defined syntax, a semantics that gives a meaning for the language constructs in terms of
mathematical or logical notions and a theory, i.e. a set of theorems that express properties of the
models described in the language.

12.1 Conceptual framework

The framework consists of seven concepts.

— Component
A component is an open system that is able to communicate with other components. Compo-
nents are triggered by their environment to perform a service.

— Workflow
For each kind of service a workflow is defined, i.e. a partially ordered set of tasks that has to be
executed. The workflow is triggered from the environment of the component and it may trigger
other components to perform other services as part of its own. So a component may divide the
work it has to do into parts that can be "outsourced" to other components. The first workflow
is called the "client" and the second one is called the "server" workflow.

— Case

The work that is done in a workflow is called a "case", a "job" or a "transaction". We consider
these terms as synonyms and we will choose the term case. So the function of a component is
"case handling" . An example of a case is the manufacturing of a product in a factory or the ful-
filment of a supply order in a warehouse.(In general we only consider the information aspects
of such cases.) At some moment during the performance of a service the work in progress is
in some stage, we call this the state of the case. Each case has its own, unique, identity. A case
that belongs to a server workflow has its own identity and and has a method to determine the
identity of the case in the client workflow that invoked it.

39

— Task

A task is considered as an atomic unit of work in a workflow, which means that it has to be
performed as one indivisible action. (Like the t-workflow expansion it is possible to expand
a task into a non-atomic t-workflow). The smallest possible workflow consists of one task. A
task transforms one or more inputs into zero or more outputs. Each task has an input-output
relation, often specified by pre and post conditions. In many cases this is a functional relation
so that the output is functionally dependent of the input. The input and output are messages or
objects.

— Object store
A component may have one or more object stores that store objects. A task may store, update,
copy, delete or send an object to some other component. An object store stores objects from
only one type. Objects have a unique object identity. There may be different object stores of the
same type. A specific object resides in only one object store. (A copy of an object,with a different
identity, may reside in another store.)

— Subcomponent
A component may have subcomponents, so components can be nested. Subcomponents are use-
ful if the workflow of a component can be divided into one or more specific sub-workflows that
can be considered as "black boxes".

— Consistency properties
There are several consistency properties. One is the requirement that each case terminates
properly, which is expressed by the soundness property. Another one is that constraints that
should hold for objects in the object stores remain valid after the workflows have finished.

12.2 Formal framework

We model components with two formal frameworks: Petri nets and class models belonging to UML
(Universal Modelling Language. UML is not yet a formal framework according to our definition
but it is a de facto standard). The Petri net framework is described in part I. The part of class
models we are using is very similar to the entity relationship framework that is introduced in the
ISO-course.

In this section we map the concepts to the elements of these formal frameworks. The formal
framework also restricts the modelling process and the communication with the stakeholders.

— Component net

Each component has a component net, i.e. a hierachical, colored Petri net with input and out-
put pins that may be connected to places outside the component net. Component nets may
be nested so inside a component there may be a subcomponent net (Fig. 2.1). The pins of a
component net are inside connected to the pins of transitions within the component: input to
input pins and output to output pins. We also have inhibitor pins and store pins. Pins may be
connected to the pins of the same kind (i.e. input, output, inhibitor, object store) of the sur-
rounding component. It is allowed to connect more than one pin to the same place or store in
the surrounding component.

40

input Component output
connector connector

start

cumulate stop

sition \8

answer —<—O—<— query

SubComponent

write —(—O—(— read

N

Fig. 2.1. Example of a component net

— Workflow nets

A component net has a workflow. The workflow of a component is modelled by a set of t-workflow
nets: for each case type there is one specific t-workflow net. The tasks of a workflow are modelled
by the processors of the t-workflow nets. Note that the smallest t-workflow net consists of one
transition. Processors have input and output pins. Some of them are connected to places in
the t-workflow net they belong to. The other pins may be connected to interface places that
connect them to subcomponents. Alternatively the pins may be connected to the pins of the
surrounding component. The t-workflow nets in one component are not connected to each
other, but they may be connected to the same subcomponent or they may share object stores
(see below).

— Case tokens.
A case is modelled as the set of tokens in a t-workflow net that is generated by one firing of
the initial transition of the t-workflow net. We call them the case tokens. The state of a case is
the marking of the t-workflow net. Remember that a case is always invoked by some external
trigger or another case. We call this last case an ancestor of the first case. All cases carry the
following properties:

an identity

a method to determine their ancestor

a set of object identities for one or more classes.

some data.

41

Transitions within a t-workflow net have built-in preconditions that guarantee that they only
consume case tokens with the same identity as input and that they only produce case tokens
with this identity. So cases are treated as if they move through the t-workflow net in isolation.
The mechanism that takes care of the identity book keeping is not relevant for modelling,
because we only have to know that a new case obtains a unique identity. Although not relevant
for modelling it is nice to know at least one way to model such a mechanism as a "proof of
concept". A way to deal with identities in the framework is to extend each t-workflow net with
one extra place, the "identity" place (fig. 2.3), which is an input place for the initial transition
and an output place for the final transition of the t-workflow net. The identity place contains
all free identities and as soon as a case is started by an outside trigger, a free identity token is
taken from the identity place and it is returned as soon as the case has finished. We assume the
identity place has enough tokens and that each identity token is updated by the initial transition
of the t-workflow net: so the identity consist of two parts: a fixed and unique label and a version
number that indicates the number of times the identity token is used. Together they form the
case identity and this is always a unique number. In this conceptual model we assume that each
case token has an identity list containing the ancestor identities in chronological order. The
initial transition of a workflow extends the identity list of the invoking token with the identity
of the newly created case. During the processing of the workflow and the communication with
its ancestor workflows the identity list remains unchanged. When the final transition of a t-
workflow fires and it returns a token to the invoking workflow, the identity of the case belonging
to this workflow is deleted from the entity list. In Fig. 2.2 we see a Message Sequence Chart
(MSC) with three communicating t-workflows.

a.b
ab.c
ab.c

ab.c
a.b.c

ab

Fig. 2.2. Identity list

Typically we do not model this construction explicitly because it is assumed for all t-workflows.

— Class model
The class model is used to model the type of objects in an object store. A class model is made for
the whole system that we wish to consider. In this framework we have classes that determine
an object type. Objects have attributes and methods also called operations or functions. Each

42

: t

initial —»O—» task —»O—» final

\o/

free identities

Fig. 2.3. Identities

attribute may have a value that belongs to a datatype. Classes may be associated with each other
by means of relationships, each characterized by its cardinality. We use UML-notation (explained
later). Note that we only use a subset of the class modelling notation of UML. We assume that
all objects "know" the object identities of the objects they are associated with, so the objects
have methods that manipulate and retrieve the object identities of the associated class. In the
class model we may use inheritance relationships which facilitate the reuse of class definitions
in modelling. For a class model we may define constraints: i.e. properties that each instance
of the class should fulfill. In fact the cardinalities of the relationships are also constraints. An
example of a constraint for two classes A with an attribute 4 and B with an attribute b that are
associated to each other by a relationship r is: "the value a of an object x of class A is equal to
the sum of the values b of objects y of class B that are related to x by r". Such a constraint is
expressed in some language, for instance predicate logic.

— Object store

We model object stores in a component net as special places, called stores (we use a circle
with an x-cross in it as an icon for an object store.) An object store contains always a (possible
empty) set of objects of one class. In Petri net terms this set of objects is considered as one
token in the place. The class to which the objects of an object store belong may be involved in
one or more relationships. We assume that the objects can access the objects they are related
to by these relationships, provided that these other objects reside in the same component. So
the t-workflow nets of a component can be linked by one or more common object stores. On
the other hand an object store may be linked to more than one t-workflow net. Often we do not
draw the connections of a t-workflow net to its "own" object store because it is assumed that the
transitions have access to them. In most applications it is a requirement that t-workflow nets
keep the constraints invariant. So during the execution of a t-workflow net a constraint may be
violated, but if all t-workflow nets that an object is involved in have finished, the constraints
should be valid again (this can be seen as a "weak invariant").

— Scope

Components may be nested, but they are not allowed to overlap in another way. So an object
store, a transition, a place or a subcomponent may belong to more than one component. We
call the smallest component that includes this entity scope and the union of all components
that include the entity the telescope of it. A transition may access an objects store if it is in
the telescope of the object store. Similarly objects from one object store may access objects of
another objects store that are in its telescope for retrieval purposes only, if and only if there
exists a relationship between the classes of the object stores.

43

— Consistency
We distinguish two important consistency properties.

— The t-workflow nets (discarding the pins of transitions outside the t-workflow net) are sound.
If they are connected to other (internal or external) components then the flattened Petri net
should be sound.

— The constraints that are required for the objects in the object stores should be valid if all t-
workflows in the component they reside have finished. This is also called transaction integrity
in the database world.

Other consistency properties are often expressed with place invariants (for instance the book
keeping of object identities) or with reachability, i.e. certain markings may never occur.

All the objects in the object stores represent persistent data, i.e. data that may still be in a com-
ponent (in an object store) if all the cases (or t-worklow nets) have finished. The case tokens,
messages and triggers that are modelled as data values and represent volatile data, i.e. data that is
gone as soon as the cases have finished.

On the one hand a system is modelled as a (hierarchical) Petri net and on the other hand mod-
elled as a class model. Both models are linked since all object stores belong to component and to
a class. We model this link by means of the so-called CRUD-matrix. In this matrix the rows rep-
resent classes and the columns transitions. An entry in the matrix is either blank, which denotes
that the transition has nothing to do with objects of the class or it contains one or more of the
characters C, R, U, or D. These characters stand for: create, retrieve, update and delete one object
of the class. We may also build a CRUD-matrix with classes replaced by object stores.

13 Road-map for Architecture

Here, we define the phases of the design of the architecture. Although our methods are appli-
cable to all levels of architecture we concentrate on the business architecture and the functional
architecture. So we cover a part of "design of architecture’ phase of the information systems life
cycle. Besides the hierachical, timed and colored Petri nets and the UML-class model we use use-
ful other techniques: the CRUD-matrix, Message Sequence Charts (MCS) and Z-schema’s. This
phase has the requirements as input. We assume the requirements in the form of a document
describing the system. The architecture phase is further refined into the following five steps:

1. class model

2. life cycle model

3. component interaction model

4. specification of transitions and datatypes

5. verification of consistency properties

44

Although it looks as if this is a sequential process, it usually is an iterative process. In a next phase
one finds errors or improvements for the former phases. In the end all parts have to be consistent,
in particular the requirements document has to be updated frequently. In most practical cases the
verbal description of the start differs fundamentally from the final version, which proves that the
modelling activities give us new insights and ideas.

In the description of the modelling steps we describe what has to be done and we give some
guidelines how things can be viewed or done.

13.1 Step 1: Class model

— We start with modelling the dynamical classes of a system, i.e. the objects that may change
during the lifetime of the system. Objects can be stored in object stores. So the classes can
be considered as the types of the object stores. In many applications it helps us to distinguish
three kinds of objects and therefore their classes:

— Case classes.
A case object has a life cycle. A system or component is constructed to handle cases. The
life time of a case can be a couple of milliseconds if the case is handled fully automatically,
e.g. a billing transaction in a mobile telephone network. But it may take months if human
intervention is needed, e.g. a claim handling of an insurance company.

— Resource classes.
Resource objects represent objects with a relatively long lifetime in the system. They often
play a role in the handling of a case as a "resource" for the cases. Examples of resources are:
employees, machines, computer systems, contracts, rulings, clients and suppliers.

— Event classes.
Event objects do not have a life cycle, they are created at some moment in time and they are
used as message or trigger. They are created in a transition that is performed in a t-workflow
net. Often we model triggers and messages just as data values, which means that they do not
have an object identity and that they will not be stored explicitly in an object store.

Note that all case tokens may refer to a case object or a resource object. In modern java de-
velopment methods the same distinction is made. There these classes are called respectively:

"session beans", "entity beans" and "session beans without a state".

— Next we model relationships between the classes and we will classify these relationships (for
instance: "composed_of" and "uses relationships"). We indicate the cardinality constraints for
the relationships.

— Now we express the other constraints. Note that each constraint introduces the obligation to
prove that the t-workflow nets that manipulate these relationships keep these constraints in-
variant.

— We usually do not model attributes, methods or non-dynamical classes in this step. Non-dynamical
classes are used for objects that play a role in computations but that do not change during the
lifetime of the systems or the changes of which are left out of consideration, e.g. the postal code

45

table. We define all these class properties when we specify the transitions that need them. We
make one exception to this rule if attributes, methods or non-dynamical objects are essential in
the formulation of the constraints.

13.2 Step 2: Life cycle model

— For each case class we define one or more t-workflow nets each one expressing a different work-
flows the objects of the class may be involved. We assume that each transition in a t-workflow
net may access the object store of that class.

— For each resource class we define one or more t-workflow nets. Each of these nets usually has
a very simple structure consisting of one transition. So we have one for the creation of a new
object, one for deletion of an object, one for retrieval of one object or the whole set of objects
and one for updating an object. Slightly more complicated t-workflow nets are for updates
where the update is done by some other component. In that situation the t-workflow net has
two transitions. (Fig. 2.4) All these transitions have access to the object store.

et —>— pu

—»— Create Delete |—<€—

<> Retrieve Update |—e€—

Fig. 2.4. Life cycle of a resource class

— Event classes do not have a life cycle.

— The tasks (i.e., processors) have a unique name and an informal description; transitions are not
specified yet.

— If one class inherits from another then the life cycles may do it as well. Life cycle inheritance is
defined for workflow nets by the p-expansion, the t-expansion or loop extension, i.e. life cycle
A is a specialization of life cycle B if A can be derived from B by one of these transformations.
At least soundness is a property that is inherited in this way. (There are more advanced forms
of life cycle inheritance but they are out of the scope of this course).

— A CRUD matrix is produced: for each task, it is determined what objects are involved and in
which way (C, R, U or D). Note that a task in the life cycle A of a class may use another class B.

46

— For each constraint of the class we have to prove that after the t-workflow nets have finished the
constraint is valid.

Note that a t-workflow net is in fact a timed and colored workflow net. However we abstract from
time and color in this phase.

13.3 Step 3: Component interaction model

— First, we define for each case and resource class a component consisting of a life cycle, an object
store and an interface with the environment: messages created by tasks and messages trigger-
ing tasks.

Fig. 2.5. Component for a dynamic class

— Next, we consider the interaction between tasks of different life cycles of the components. There
are two possibilities: either two tasks have to fuse to become one task, or the tasks communicate
by message passing. The first form is synchronous communication, the second form is asyn-
chronous. The following rule has to be obeyed: if at least two communicating tasks of two life
cycles communicate synchronously the life cycles are fused into one (Fig. 2.7) and become one
component”. In case they communicate asynchronously, they become two components and
they are connected by means of places (Fig. 2.6). So one component may have more than one
t-workflow net and more than one object store.

The communication between two or more components can be defined or represented by means
of Message Sequence Charts (Fig. 2.8). Note that a standard MSC only represents some fixed
ordering of messages, while two components may have several different orders of message
passing. So more than one MSC might be needed to define the communication between twe
components. Components are always connected by means of interface places. (Fig. 2.9).

— For components and object stores we have some freedom in the nesting. A good rule is: "nest
them as deep as possible". This means that they are hidden as much as possible and can be
considered as black boxes. Consider for example (Fig. 2.10). Component D can only communi-
cate (asynchronously) with the t-workflow net of C and D is hidden for the outside world. The
same semantics would hold if D had been placed outside C, but then D would be visible for
other components and it could be connected to them. For stores the level is determined by the
telescope of the transitions that use it.

47

class A

class B

Fig. 2.6. Asynchronous-communication case

1 f 1 !

> ae O of O co P> dn p=

gy

class A class B

Fig. 2.7. Synchronous-communication case

— Finally a check has to be performed on the CRUD-matrix of step 3: "Are the tasks and the
classes rightly coupled?".

13.4 Step 4: Specification of transitions and datatypes

If the components we need exist already then we do not have to specify them in much detail.
Some form of specification is always necessary to find them and to check if a found component
could fit. In practice we have often already an idea of available components. (Note that if we have
found a suitable existing component we still have to configure it by setting parameters in a later
stage.) Here we use a notation for specification of data types and for input-output relations. The
first is necessary for places and pins, the latter for transitions. We will use the language Z, see the
next section.

— The non-dynamical classes are specified.

— The attributes for the object classes are specified as well as their data types.

48

Fig. 2.8. A Message Sequence Chart

PR
P Q9

Fig. 2.9. Connected Components

— Specify the methods for classes.
— Data types for places within the t-workflow nets are specified.

— Data types for the pins and interface places are specified.

Now, we are ready to define the input-output relations of the transitions (cf. Part I, Colored Petri
nets). All pins (input, output, inhibitor and store) of the transition have a unique identifier and a
datatype. The input-output relation is specified by means of a precondition and a postcondition in
which only the pin and store identifiers are free variables. The methods can be used in the pre
and post conditions as functions. For example in Fig. 2.11 we have input pins x;, %9, x3, output
pins yi, y2 and store pin s.

precondition: f(x1) = g(x1, %) Axy €5
postcondition: y; = h(x1,x2) A y2 = k(x2,x3) As' =sU {x1,x3}

In this example f, g, h and k are arbitrary functions. A store identifier occurs in two forms: one
with and one without prime (cf. s and §). The one with the prime denotes the old state of the store

49

component C

class A class B component D

Fig. 2.10. Nested Components

x1 yl

Y | —v
X2 —= transition
—» N
x3 T ¢ y2
s s'

Fig. 2.11. Specification of a transition

and primed one denotes the new state. We refer to attributes of objects or tuples using the dot
notation, so reference to the attribute a of object s is done by s.a.

13.5 Step 5: Verification of consistency

Verification of soundness can be proved by analyzing the reachability graph of the t-workflow nets.
There are software tools for this check (cf. Woflan). Another approach is based on "correctness by
construction”: start with a t-workflow net that is known to be sound and use construction rules
for which it is proved that they maintain soundness.

Verifying the invariance of constraints on the objects can sometimes be proved using place or
transition invariants. In other cases we have to transform predicates using the pre- and post-
conditions of the transitions.

14 Specification in coloured nets, Z and UML

14.1 Introduction

Specification of Petri nets consists roughly of two phases, the architecture of the net and the de-
scription of the details in the actions and the typing thereof. In the architectural phase the concep-
tual static modelling has been performed, here we are merely concerned with the mapping of that
abstract typing onto the elements in the Petri net model. Such a specification and typing should
allow for verification both on the level of human insight and that of rigourous mathematics. This

50

calls for a formal but clear language with sufficient automated support as well as notational and
generic freedom. However, there is also a need for general acceptance and adherance to common
practices. (Of course these requirements will turn out to necessitate compromises.)

The choice is made for the state-based formal specification language Z ([0]) as a vehicle for speci-
fication as finegrained coloured modelling. Z is a matured and popular notation that grew out of
collaboration of Oxford University with several industrial partners, and it accomodates impera-
tive, object-oriented and functional styles. (An ISO standard is being developed and a committee
proposal is available on the web ([1])).

As may be expected from a device with an extensive installed base there are ample tools available
for editing, type checking and even theorem proving, e.g. Z/EVES ([2]), the documentation of
which was very useful for the content and the typesetting of this section.

In the next subsections we give a brief and necessarily incomplete introduction to Z. The in-
tention is to show how we can put elements of Z into good use in the specification tasks we
encounter. We do, however, take our freedom in the choice of elements to be presented and in
the emphasis they will be given. The notational divergence from the standard is rather small. The
reader is encouraged to browse through some books on Z (e.g. [3], [4]) and to find and use Z-tools
(e.g. [2])to get aquainted to the precision and possibilities of full-fledged Z.

142 Z

The specification language Z (pronounciation “zed”) is based on the Zermelo-Frankel set the-
ory and first order predicate logic. The focus of Z is on modelling systems based on (values of)
state variables and the changes thereof. In fact, with the models and the operations on them,
abstract data types and/or objects are described. The language also allows for purely functional
descriptions (without states).

The systems and their operations are both described as a constrained collection of records (or
a subset of a dependent product), so there is not really a difference between a system and an
operation. For the system descriptions Z uses the notion of schema.

In order to express the records, some kind of typing is necessary, while the description of the
constraints asks for expressions in terms of the members of the types and the operations on
those elements. This means that in Z types and members thereof as well as operations on those
types are defined by way of type definitions, set constructions and axiomatic definitions. Types
and sets are closely related in Z and the difference is not really relevant for our purposes other
than the difference in role. The following rule of thumb (though formally not correct) suffices: A
set is a type when it is used in declarations of variables (and functions) and a type is a set when
used as an “object” in value expressions.

In the sections to follow we will discuss the types and sets and their constructions, the expressions
and operations on members within the types, the axiomatic definitions and the schemata. We will
apply them to the specification of transitions or processors in coloured Petri-nets.

51

14.3 Type definitions

The only type built in in Z is the integer type Z. In addition there are four ways to introduce new
types. Here we shall discuss three of them and hint at the forth way that will be treated further in
the subsection 14.5 on schemata.

Given type. New types may be introduced by just declaring the names of the new types in a list,
the given type declaration (which is a simpel schema with only declarations of types).

[GNAME] or, for a bunch of types, [GNAME, ..., GNAME,]

Those newly defined types may be viewed as conceptual, abstract types without any reference to
construction of the new type from old ones and without any clue on the shape of its members.

Basic constructions. There are several basic constructions for types. Since we hardly distinguish
between types and sets we defer this discussion to the discussion of constructions within set the-
ory. But it may be worth while to note that types are closed under cartesian product and powerset
constructions.

Free type. A new type may be constructed as a disjoint sum of types each of which is embedded
in the new type by a constructor, similar to the data definition in Haskell, for example

FNAME ::= constry | constry (X)) | constro((Y x Z))

which defines the type FNAME as the disjoint sum of the types 1 (which is, as usual, suppressed in
the constry-part of the right hand side), X and Y x Z, using the constructors constr; as embeddings.
This allows for the introduction of enumerated types like

BOOL ::= false | true

as well as inductive types. Recursion is allowed, so that for instance binary trees over A may be

defined by
ATree ::= empty | leaf (A)) | fork({ATree x ATree))

Set constructions. The flexibility of Z depends on the flexibility of its users. All kinds of standard
sets from mathematics may be used, like N, R, B, String and Char. They may be considered to be
known, but tools like Z/EVES do not always support them.

Type (set) constructors allow for other types (sets) to be introduced via set theoretic expressions.
The following table gives the most important set constructions in Z without further ado.

52

name shape

Empty set 0

Subrange m..n

Set comprehension {n:N|n<481 ¢ 3xn}
Set enumeration {to, ey tn}

Set union, intersection and difference XUY,XNYand X\Y
Power set PX

Finite subsets FX

Cartesian product Xy X ... X X,
Relations XY

Total (partial) functions X=YX+Y)
Total (partial) injective functions X—Y(X+Y)
Finite sequences seq.X

Bags bag.X

The collection of bags over X may also considered to be the function space X + N.

Record type. The dependent product (or the record with named fields) does exist in Z, but the
definition uses a schema which also allows for restrictions on the tuples (or records). Discussion
of those types will be deferred to a future subsection on schemata.

The following notation will be used as a shortcut

[labely : Toy; ...; label, : T,] with elements
[labely — ty, ..., label, — t,] provided Vi: N |0<i<net; €T

Note that the notation for elements of record types uses brackets instead of the curly braces
that might have been expected (from the function notation to come). This stresses the fact that
the images of the labels do not belong to one image type (the image type depends on the label:
“dependent product”).

The usual cartesian product is a record type too with default label names chosen to be a prefix
of the positive naturals, while the ordinary parenthesis for tuples are used. Le. (x,y) is just [1 —
x,2).

Note that the bracket notation above may be easy but it is not the Z standard. In Z (and thus in
Z/EVES) the following delimiters are used { and).

Type synonyms. Finally there is a set (or type) synonym construction in order to introduce short-
hands or suggestive nomenclature, e.g.

SHORTSUGGESTIVENAMEFORPRIMES == {k: N; [: N |1 <kA 1l <lekxl}

Be careful with meaningful identifiers!

53

14.4 Operations and expressions on elements

Most of the usual operations and expressions in mathematics are available in Z, but the notations
may differ. In this section we mention only a few typical conceptional and notational elements,
the major part of standard elements is considered understood.

— The logical and arithmatical “language” is standard with the following slight modification for
the notation of the quantifications: a quantor is followed by a declaration which is a list of typed
dummies, separated by semi-colons, closed with a bar; between the bar and the bullet we find
the domain predicate and finally to the right of the bullet the term to be quantified is placed:

(x:X;y:Y|x<yexxy>48l)and (Vz: N | e zmod2 = 0)
So the bar and the bullet replace the two colons in the quantified expressions in predicate
calculus. In particular, the domain predicate is omitted if it is understood or true as in the
rightmost example.
There are two shortcuts that are used often: if the domain predicate is true also the bar is

removed and if the term is just the dummy (mostly in set expressions), the bullet and the term
are removed as in:

{(%,y) eXxY|x<y A xxy>481} and (Vz: N e zmod2 = 0)

In the sequel we shall stick to the ternary format for quantifications.

— The A-term as a means to express functions is considered to be a quantification too and follows
the ternary notation and the shortcuts, like

Ax:Z;y:Z|x>0Ay>0e(x,y)and (Ax:N; y: Ne (x,y))

for the pair former on naturals.
— For ordered pairs (x, y) an alternative notation is x + y which is called a maplet.

— Projections on cartesian products to certain factors are denoted by T orabel(s), €-8-
m2,3(a, b, ¢) = (b, ¢) and 7y, [linne — molinae, eng — greencheek] = molinae
The usual record notation is also allowed as in
(a,b,c).1 = a and [linne — molinae, eng — greencheek].linne = molinae

— Function application of f to n may also be denoted by f n.

— Functions may be denoted by enumerating their constituing pairs as maplets.

54

{argy — xp, ..., arg, — %}

Note that the ordered pairs and maplet notation does not correspond to the common direction
in application. The maplet has its argument on the left hand side and the result on the right,
while function application usually is denoted with the argument on the right hand side of the
function symbol.

— For f,g : X + Y the partial function f @ g (f overridden by g) is defined by
dom(f ® g) =domf Udomgand (f ® g)(a) = if a € domg then g(a) else f(a) fi

— Relations are directed with the domain on the left and the codomain on the right (like the
maplets for functions). The set of values in the codomain that may result from application of
the relation to domain elements for which the relation is defined is called the range of the
relation. For R: A <+ B

domR={a:A|(3b: B|eaRb)ea}andranR={b: B|(Ja: A|eaRb) e b}

Note that we underline the relation if we use it in an infix notation. We might also have used
the set notation (a, b) € R in stead of aRb.

— Relational composition uses the semi-colon Rg S in the usual meaning, don’t use the functional
composition symbol!

— The relational converse of R is denoted by R™.

— The domain and range restrictions of relation R to part X of the domain type and to part Y of
the codomain type respectively are

XdR={r:R|rl1eXer}andR>Y={r:R|r2€Yer}

Note that the type of a restriction is still the type of the original relation.
— The relational image is defined by R(S|) = {r: R|r.1 € Se r.2}

- Sequences are enumerated between “angles” as in (4,8, 1) orin ().

— Catenation of s and t is denoted by s " t. Moreover a repeated catenation is provided by /s
which catenates all members of the sequence s of sequences.

— The proposed standard defines sequences to be functions on N with a domain starting from
1. So head(s) = s(1) and tail(s)(n) = s(n + 1). On the other side of the sequence we have

last(s) = s(#s) and front(s)(n) = s(n) while #front(s) = #s — 1.

— The empty bag over any set is denoted by [], membership and bag inclusion are given by
“x in B” and A C B, while the multiplicity of the occurrences is represented by the size as infix
operator, B x.

55

— Bag union and bag difference are denoted by A + B and A — B. (In the Z-standard A& B and
A J B are proposed).

14.5 Schemata

Next to the mathematical language we encountered in the former subsections, Z has the schema
as a characteristic notational construct. Even more, the schema plays a central role in the Z-
concepts. Roughly, a schema consists of a declaration part and a predicate part separated by a
horizontal line. We may break up the predicate in two parts and consider the schema in a ternary
format, like we have for quantifications. The declarations and predicates are to be expressed in
terms of the mathematical language treated before.

Schemata may be used to define states and actions and they can be combined to specify classes
in an object-oriented setting. However, these are all special cases of the constrained record type
definition the schema really stands for.

Axiomatic definition. The axiomatic definition is an anonymous schema which is used for the
definition of variables (and constants, functions or relations) with explicit constraints. We won’t
bother with scope rules as we don’t treat the general Z paragraphs anyway.

A typical example for constraining variables is

year : YEAR
febday : N

1 < febday < 28 + (0 max (1 — year mod 4))

A newline denotes a conjunction, but in order to save space the lines in the declaration part may
be glued into one line with a semi-colon as separator, while in the predicate part the usual logical
conjunction is to be used to combine the lines.

A typical function definition is

pred : N + N

dompred = N\ {0}
Vn:N|n € dompred o pred(n) =n—1

State schema. The state schema is a named schema. It models a system consisting of state vari-
ables that may have certain values. It has a name, a declaration part for the typed state variables
and a decription part for the constraint that is expressed via a predicate.

_ DMY
day:1..31
month : 1..12
year : N

month =2 = 1 < day < 28 + (0 max (1 — yearmod 4))
| 15 — 2 % month | mod 4 # 1 = day # 31

56

What is meant with a DMY-system? In fact it is a member of a constrained record type (or depen-
dent product); the state variables are the field names (or attributes or labels) and the constraint
is given in terms of the “generic” field names. So for a member x : DMY the constraint should
be valid where the attributes day, month and year are replaced by the x-attributes x.day, x.month
and x.year. The non-mentioned member of DMY in the defining schema may also be referred to
as #DMY which is pronounced as the DMY, or just this or self as in object orientation; thus the
generic field name day stands for § DMY .day.

The state schema is the fourth way to define types in Z after given types, free types and the
standard constructions in set theory. The state schema, is a kind of macro for instance definitions,
and thus a vehicle for type definitions.

A horizontal notation, with an unmentioned name, is allowed too (but in most practical cases the
lines are to short), as in:

[day : 1..31; month : N; year : N | 1 < month < 12]

If the constraint in a schema is just true, the predicate part may be omitted, thus arriving at the
notation for the record type we encountered in the section on type definitions.

[day : 1..31; month : N; year : N|

Schema type refinement. Schemata may occur as types of declared fields in the declaration part
of a schema, but they may also appear as a “supertype” in the declaration part, e.g. in the case
below where a date is enriched with a name and year of birth in order to form a “birthday”.

__ BIRTHDAY
DMY
name : NAME
year : N

year < ODMY .year

The name clash is circumvented by using the self of DMY. The meaning of the importation of
DMY is the following flattened schema with the unfolded occurrence of DMY:

— FLATBIRTHDAY
Dday :1..31; Dmonth:1..12; Dyear: N
name : NAME; year : N

Dmonth = 2 = 1 < Dday < 28 + (0 max (1 — Dyear mod 4))
| 15 — 2 % Dmonth | mod 4 # 1 = Dday # 31
year < Dyear

The name clash is resolved by renaming the fields of the flattened schema, a kind of a-conversion.

Operation schemata. Operations change state variables and/or construct output based on the val-
ues of the state variables and inputs to start with. In order to take care of the two values of the state

57

variables (initial and final) two instantiations of the system have to be declared. By convention the
result instantiation has the same name as the initial one but it is marked with a prime (). There
are also conventions that tell inputs from outputs: an input variable is postfixed with a question
mark (?), while an output is postfixed with an exclamation mark (!).

—_changemonth
x,x : DMY
m?: N

oldnew! : N x N

1<m? <12
x'.month = m? A x'.day = x.day A x'.year = x.year
oldnew! = (x.month, m?)

A few remarks are in order here:

— The condition on m? in the first line of the predicate part is a precondition for the execution of
changemonth. The rest of the predicate part may be viewed as the postcondition of the execution.
Just for clarity’s sake we allow for an extra field in the operation schemata: the precondition
field, which as a domain predicate comes in between the declaration part and the postcondition
part (the term).

This is not standard in Z and cannot be found in Z/EVES. It is only used by us to stress the
role of the preconditions. To turn it back in ordinary Z it suffices to remove the horizontal line
between the precondition part and the predicate part.

— Instead of the declaration of variables for the states to be changed, we may import the system
DMY twice, where the second is primed.

So the above schema may also be given by:

__changemonth
DMY, DMY'
m?:N; oldnew! : N x N

1<m? <12

day' = day N\ month' = m? A year' = year A oldnew! = (month, m?)

Instead of explicitely importing two instantiations for the “before” and the “after” states, we may
indicate the variability of the state variables by prefixing (the instantiation of) the system with
A. If the state variables are only inspected and not altered, this is mentioned by prefixing (the
instantiation of) the system with =, in that case the equalities between primed and unprimed
components are not mentioned anymore, e.g.

58

__changemonthandyear
ADMY

=x: DMY

m? : N; oldnew! : N x N

1<m? <12

month’ = m? A year' = x.year A oldnew! = (month, m?)

In the above schema the name DMY is used in two different ways. In the second line it is used
as a type in a declaration and x is an invariant member of that type. In the first line it is a system
(which may be interpreted as an unnamed member of the type DMY), this system is allowed to
be changed.

Finally, note that an operation schema not really differs from a state schema. Again a record type
is defined in which the state is built from the before and after states of the systems involved and
the inputs and outputs. The precondition gives the applicability of the operation as a constraint on
the argument part of the state space, and the postcondition gives the action as a relation between
the argument and the result part of the state space.

If the postcondition is deterministic, the operation schema defines a functional record type, i.e.
the result and output fields in the record are functionally dependent on the argument and input

fields.

14.6 Application to coloured Petri nets

The road-map for architecture mentions six steps that lead to the design of the architecture. In the
step that takes care of the modelling of the so called dynamical classes, the attributes, the methods
and the constraints are mentioned. In a later stage, the specification of transitions and datatypes,
the non-dynamical classes are to be defined and the attributes, methods and constraints need to
be specified and/or refined in order for them to be exploited in the definitions of the transitions.
In the last stage the consistency properties need to be verified, which can only be done if the
system is specified in a sufficiently formal way. Hence, first the application of the Z specification
language will be in determining, naming and defining the types to be used in the dynamical
classes as well as in the non-dynamical ones. This is carried through in the typing of the places
and the pins of the components on all levels. Afterwards the methods need specification and the
necessary variables are subjected to the appropriate constraints. Finally, all these elements are to
be used in the specification of the transitions.

Types, attributes and methods. The non-dynamical types are mainly the types to be used in the
attributes of dynamical classes, the parameters of the methods and the (possibly persistent) data
stores. (Conceptual modelling also comprises the classes as types, they will not be considered
here.)

The “given” type definitions and the “free” type definitions are used to lay the fundaments of the
types to be used in the specification process. For the sake of clarity type synonyms may be used in
order to distinguish between conceptually different types and to have shorthands for types with

59

complex type expressions. It may be interesting to define complex record structures using the
state schema as dependent product with contraint. This may very well apply to the definition of
the store types.

The declaration of variables and (enumerated) relations and functions with their constraints, their
preconditions and their defining specifications can be given by way of the axiomatic definition
schemata.

DAY ::= mon | tue | wed | thu | fri | sat | sun

numday : N <+ DAY

numday = {0 mon, 1 — tue, 2 — wed, 3 — thu
4 — fri, 5+ sat, 6 — sun}

prevworkday : DAY + DAY

Va € DAY; x e N | xnumdaya A x <4
e prevworkday(a) € numday({((x — 1)mod7) min4}|

(The complification of using a relation as an intermediate means to express the function is con-
structed just for the sake of illustration of expressions. This applies to all odd definitions and
expressions, they are not to be interpreted as being bright, beautiful or otherwise amenable, just
as not impossible!)

In the above function definition for prevworkday the definition per argument is given via a quan-
tification. We could have given an enumeration too, and even a A-expression is allowed. Moreover,
we could have chosen to give the definition via the operation schema, as follows

pred : N < N

0pred4
VxeN|[x>0expred(x—1)

__prevworkday
Ax : DAY

numday({x}) N {5,6} =0

x numday”™ s pred s numday x'

A function definition that has a shape in between the state altering schema and the axiomatic
definition uses inputs and outputs without a system declaration.

6o

__prevworkday
x?: DAY
y! : DAY

x? numdays < 5

YL # fri v 0 € numday({x7?})
YVW=mV (Vm,n:N|mnumdayx? A nnumdayy! e m +1 = n)

Processors. Next to expressing types, constants, variables, relations and functions we will use Z
extensively in defining the actions performed by the transitions in coloured Petri nets. Transitions
will be specified by way of the operation schemata in a way similar to the schema example for the
definition of prevworkday. In fact, it is an ordinary relation definition. The typing of the relation,
like in the mentioned example, is implicit in the declaration part of the schema; even stronger, the
order of the factors doesn’t matter, which means that the typing always employs the dependent
products.

Consider a processor (E, (0, 0,0,0)) (i.e. a hierarchical net with empty decomposition). As men-
tioned in the section on colour and hierarchy, the set E of outer pins determines the typing of
the transition. The real situation is slightly more complex than sketched there. The stores may be
divided into two sets, the fixed stores whose values are to be unchanged and the changeble ones.
The fixed stores only contribute to the domain type, not to the codomain type (unless the invari-
ance is taken to be a constraint). Inhibitors play a role in the defining expressions, to be more
precise, they are used in the precondition, the condition for firing. Inhibitor pins are connected
to places, and places usually provide tokens on an individual basis and this is reflected in the
typing in the declaration part of the operator schema, where the type of a “place”-pin is the type
of an individual token. However, the inhibitor uses all available tokens in the connected place!
A typical use of an inhibitor is to prevent a transition from firing as long as certain values are
present in the inhibiting place, or even as long as there are tokens at all in the inhibiting place.
These are properties of the collection of all tokens in that place instead of properties of individual
tokens as is the case for normal coloured token games. This causes a problem in the comparison
of the typing of the pins with the typing of the Z-schema gouverning the transition relation. The
inhibitor pin has the same type as the place it is connected to, say X, but the declaration of the pin
in the schema is chosen to be of the corresponding set type P X (since nets are finite we might
even have said F X). This results in the following general form of the operation schema definition
of the transition relation.

Leti: I,o: Oand h : H be the typed input, output and inhibitor pins of the transition TRANS,

in particular, E* = {i}, E* = {0} and E" = {h}. The store pins are divided in two : sc : SC and
sf : SE.

61

__TRANS
171
ol:0
Asc: SC
Zsf: SF
Eh:PH

Precondition in terms of i?, sc, sf, h

Expressions giving values for o!, s¢’ but not for sf’, h

14.7 Specification of components

We have treated the specification of processors. We shall now treat the specification of compo-
nents. A component is specified by an UML class diagram and a hierarchical colored net. The
class diagram defines objects classes (with their attributes and methods) and the relations be-
tween them. The net defines the places, object stores and subnets. Eventually the net can be
flattened, resulting in a flat net with processors, places and stores.

The UML class diagram defines schemata defining classes and an axiomatic definition of the
relations between classes. The names of the schemata are the class names, which must be unique.
The names of the relations must be unique too. The class diagram lists a set of attribute names
per class.

Customer +ordered_by +has_ordered Order
+name
+total
+address
1.1 0.

Fig. 2.12. A UML class model

In Figure 2.12, a class diagram is defined. This class diagram implicitly defines the following Z
schemata and definitions.

Customer
name : string
address : string

Order

litotal : N

62

ordered_by : Order <+ Customer
has_ordered : Customer < Order

has_ordered = ordered_by™
Vx : Customer |® 0 < has_ordered({x}|) < oo
Vx : Order |o 1 < ordered_by({x}) <1

The two relations, ordered_by and has_ordered will be implemented by adding data about the or-
ders made in Customer objects and/or data about the ordering customer in the Order objects.
While specifying, we do not want to fix an implementation. Since the relations are inverses of
one another, an update of one relation will automatically lead to an update of the other.

The processors in a component possess the implicit schemata and definitions from the class
model. A processor is connected to input and output places and object stores. These object stores
are of the type IP. A, with A some class name. The places may have any type, even a class. However,
places typed with a class do not contain the true objects, which reside in the object stores. Instead,
places may contain “value” copies of objects.

We present an example of a component definition. The component uses the class diagram in Fig-
ure 2.12, and thus the derived schemata and definitions. We add the object stores K for Customer
and B for Order objects.

c m 0 d
create delete
move order

X X

Fig. 2.13. A component

The component contains four processors; they can be specified as follows. The create processor
receives customer information and creates a new customer, both as object and as token. Note that
the equation K’ = K U {k!} causes the creation of an object in the object store K with value equal
to k!.

__create
c? : [name : string, address : string]
k! : Customer
AK : P Customer

k! =¢?
K' = KU {k'}

The processor move receives a customer name and address and updates both a customer token
and object, by altering the address to the given address for the customer with the given name.
The equation K’ = K\ {k?} U {k!} denotes the value change occurring in the object store. This
value change will be implemented by updating an object in K with value k?.

—_move
m? : [name : string, address : string]
k?, k! : Customer
AK : P Customer

k? € K
k?.name = m?.name

k! = k? @ [address : m?.address)
K' = K\ {k?} U {kl}

The order processor receives a customer name and an amount ordered. It does not update the
customer, but it creates a new order object. The ordered_by relation is augmented with a cus-
tomer/order pair; the customer must have the given name and the order is the newly-created
order. This relation update must be implemented by updating the concerned objects in the stores
K and/or B. Note that we can update a relation iff we access object stores for both object classes.
Since the processor order accesses both K and B, the relation ordered_by may be updated.

__order
o? : [name : string, tot : N]|
k?, k! : Customer
=K : P Customer
AB : P Order

k? € K
k?.name = o?.name

n = [tot : 0?.tot]
B = BU {n}
ordered_by' = ordered_by U {n — k?}

The delete processor removes a customer with the given name, both as object and as token.

64

__delete

d? : [name : string]
k? : Customer
AK : P Customer

k? € K
k?.name = d?.name
K' = K\ {k?}

65

References

[0] The Z notation, http://www.afm.sbu.ac.uk/z/

[1] Formal specification - Z notation - syntax, type and semantics, Consensus working draft 2.6,
http:/ /www-users.cs.york.ac.uk/ ian/zstan/cd.html

[2] Documentation for Z/eves, Z/eves information: http://www.ora.on.ca/z-eves
[3] The way of Z, J. Jacky, Cambridge University Press 1997

[4] Formal object-oriented specification using object-Z, R. Duke and G. Rose, Cornerstones of computing, McMillan
Press Itd, 2000

