
Process Modelling

Natalia Sidorova



Process modelling (2II30)

Lecturer: dr. Natalia Sidorova (n.sidorova@tue.nl)

4 study points = 112 study hours
18 hours – lectures,
94 hours – self-study + assignments

Schedule:
Lectures: Tuesday 5-6 h.,
Office hours: Tuesday 15:30-16:30, HG 7.84

Four assignments
25, 25, 40 and 10% of the final grade resp.;

Course website: www.win.tue.nl/∼sidorova/pm/

studyweb!

– p.1



Why to model?

O – p.2



Why to model?

To help understand, describe, or predict how things
work in the real world by exploring a simplified
representation of a particular entity or phenomenon.

O – p.2



Why to model?

To help understand, describe, or predict how things
work in the real world by exploring a simplified
representation of a particular entity or phenomenon.

A model is useful when . . .

O – p.2



Why to model?

To help understand, describe, or predict how things
work in the real world by exploring a simplified
representation of a particular entity or phenomenon.

A model is useful when it answers a question!

– p.2



What is a model?

O – p.3



What is a model?

A model is a perception of (maybe imaginary) reality.

A model is a representation of some aspect of reality.

A model is a simplification of reality.

A model is a formalized and simplified representation
of reality which can be studied “easily”.

A model hides uninteresting detail, highlights
important facts and promotes understanding of the
whole.

The most difficult in modelling is to decide what
needs to be left out and what needs to be included,
i.e. reach a balance between simplicity and accuracy.

– p.3



Types of models

O – p.4



Types of models

Text-based models

Physical models

Mathematical models
Economic models
Sociological models
. . .

...

– p.4



How does modelling work?

1. Get a clear picture of the problem.

2. Choose the most appropriate modelling medium to
solve the problem and then make a model.

3. Solve the problem on your model.

4. Translate your answer back into the language of the
original problem.

5. Check the solution. Is the answer good enough for
your needs?

Importance of steps 1,2,4 and 5 is often underestimated!

– p.5



What is a process?

O – p.6



What is a process?

Any group of activities organized according to some
purpose, is a process.

These activities may be naturally occurring or
designed.

They are possibly taking up time, space or other
resource.

They may require specific inputs from one or several
suppliers.

A process normally produces some outcome to some
customers.

– p.6



What is there to model?

O – p.7



What is there to model?

What is going to be done?

Who is going to do it?

How and why will it be done?

Who is dependent on it’s being done?

Duration, costs, probabilities, etc.

– p.7



What is here to model?

Think which components of
the phone are relevant,

which characteristics of those
components we care about,

which assumptions about the
environment of the system
we can make,

. . .

– p.8



Place of modelling in SE

– p.9



Can it be any better?

– p.10



Some figures from 1986(and still valid)

“Observed ranges of defect removal efficiency for programming defect removal methods.”

Efficiency (%)

Removal Step Lowest Modal Highest

Personal checking of design or docs 15 35 70

Informal group design reviews 30 40 60

Formal design inspections 35 55 75

Formal code inspections 30 60 70

Modelling or prototyping 35 65 80

Desk checking of code 20 40 60

Unit testing (single modules) 10 25 50

Function testing (related modules) 20 35 55

Integration testing (full system) 25 45 60

Field testing (live data) 35 50 65

Cumulative efficiency 93 99 99

Capers Jones, Programming Productivity, 1986, Table 3-25, p. 179
– p.11



Failing software costs money

Thousands of dollars for each minute of factory
down-time

Huge losses of monetary and intellectual investment
Rocket boost failure (e.g., Arianne 5)

Business failures associated with buggy software
(Ashton-Tate dBase)

Think what the losses can be due to a failure of
e-business applications

– p.12



Ariane 5 crash (1996)

The launcher began to disintegrate at about 39 seconds
because of high aerodynamic loads resulting from an
angle of attack of more than 20 degrees.

– p.13



The cause of the crash
Ariane 5 software reused old code from Ariane 4 that
was not respecified and retested in new environment

Ariane 5 (being more powerful than Ariane 4) caused
unanticipated floating-point exception (which would
have never occurred on Ariane 4), causing an
exception to be thrown which was not caught

The operand error occurred because of an
unexpected high value of the horizontal velocity
sensed by the platform: The early part of the
trajectory of Ariane 5 differs from that of Ariane 4 and
results in higher horizontal velocity values.

Direct cost 500.000.000 EUR, indirect cost
2.000.000.000 EUR

– p.14



Loss of Mars Climate Orbiter (1999)

Cause: unchecked type mismatch of metric and imperial
units

– p.15



Power shutdown of USS Yorktown

Cause: A sailor mistakenly typed 0 in a field of the
kitchen inventory application. Subsequent division by this
field cause an arithmetic exception, which propagated
through the system, crashed all LAN consoles and
remote terminal units, and lead to power shutdown for
about 3 hours.

– p.16



To find about other bugs. . .

http://wwwzenger.informatik.tu-muenchen.de/

persons/huckle/bugse.html

– p.17



In the future ...
the danger is only growing.

Software is becoming the dominant component of
society’s infrastructure.

Everything will be monitored/controlled
networked watches, devices, . . .
autonomous vehicles, intelligent highways,. . .
virtual X rather than physical X

These systems may not have manual backup

Failures will be very costly and dangerous

Your job may depend on your ability to produce
reliable systems

– p.18



A success story: Paris metro

Line 14 (Meteor) of the Paris metro:
The traffic is entirely controlled by software.
Both driverless and conventional trains are supported.

– p.19



A success story: Paris metro
The safety-critical software components (on board,
along the track, on the ground) are developed by
Matra Transport using the B abstract machine
method [Abrial96].

Abstract models of components are refined to
concrete models, which are then automatically
translated to ADA code (87 000 lines).

The refinement was entirely validated by formal
proofs (automatic, or interactive).

Errors were found and corrected at the modelling
phase.

No single error was found during the conventional
testing of the system.

– p.20



Process modelling in Comp. Sci.
Reactive systems: Infinite processes responding to
their environment.

Main categories of process modelling reflect the
objectives to:

facilitate human understanding and
communication which requires that a group is able
to share a common representation format;

models of processes in the system to be built
models of (e.g. business-) processes that the
software should support

support process improvement which requires a
basis for defining and analysing processes;
reason upon the process correctness.

– p.21



Correctness(1)

A system is correct when it meets its requirements.
“A design without requirements cannot be right or
wrong, it can only be surprising.”

Verification always starts with the identification of the
relevant correctness requirements.

It is best to assume that the system is incorrect
until the opposite can be shown.
Reason: common sense can be misleading,
especially in distributed systems design.

– p.22



Correctness(2)

You cannot prove a system correct in any absolute
sense.

You can only prove that a system (or a model of a
system) does or does not have certain properties.

It is human judgment to conclude whether having or
not having those properties constitutes “correctness”
of the design.

Getting the properties (requirements) right is as
important as getting the (model of the) system right.

– p.23



Validation vs. verification

Model validation = check if the model is true or not,
i.e. compare with reality

Model verification = check that the model does what
we think it does

– p.24



Requirements

Some requirements are standard:
– a system should not deadlock
– no process starvation
– no explicitly stated assertion should fail

others are application specific:
– required system invariants, process assertions
– effective progress requirements
– proper termination states (other than the default)
– general causal and temporal relations on states,

e.g., when a request is issued eventually a reply
is returned

– p.25



The model-checking approach

Requirements
 Process


Modelling
Formalising


Property


specification


Process


model


Model


Checking


satisfied

violated+


counterexample


insufficient


memory
 Simulation


error


location

– p.26



Potentially added value

– p.27



Is it feasible? (some trends)

– p.28



Some history

Most of the necessary theory was developed in the 60s and 70s

but not fully exploited until fairly recently

– p.29



Describing models and requirements

Requirements: Temporal logics

Models: automata, shared variable automata,
communicating automata, Petri nets, process
algebra, UML activity diagrams, etc.

graphical of textual
synchronous or asynchronous communication
timed or untimed
. . .

– p.30



Variations in modelling style

State-based: a condition or mode of being
phone is off the hook
call is connected

Event-based: something that happens at a given
place and time

lifting a phone
dialing number 112

O – p.31



Variations in modelling style

State-based: a condition or mode of being
phone is off the hook
call is connected

Event-based: something that happens at a given
place and time

lifting a phone
dialing number 112

Changes in state are caused by events

Not all events cause a change in state

– p.31



Events

Event: an occurrence at a specific time and place,
that can be described and is worth remembering

Analyse what events will occur that the system will
have to respond to.

Advantages:

O – p.32



Events

Event: an occurrence at a specific time and place,
that can be described and is worth remembering

Analyse what events will occur that the system will
have to respond to.

Advantages:
Allows you to focus on external environment to
keep you at high level view of system (not the
functioning of it)
End users can easily describe system needs in
terms of events that affect their work, so useful
when working with users

– p.32



Automata / transition systems

Microwave oven:

The machine evolves from one state into another by
performing actions given by transitions.

Both states and transitions may be labelled.

We may designate initial and final states.

– p.33



Introducing state variables

Assignments: a transition may modify the value of
variables

Guards: a transition may be guarded by a condition
on the variables.

– p.34



Interprocess communication

Concurrent processes: collection of two or more
sequential processes in operation executing concurrently.

Communication via:

Shared variables

Message passing

– p.35



Synchronization by message passing
A smallish elevator:

0
 1
 2


?down
 ?up


?up
?up


?down
?down


The ith door


C
 O


?open_i


?close_i


?close_i
 ?open_i


The cabin


free

2


on

2


!close_2


!open_2


free

1


on

1


!close_1


!open_1


free

0


on

0


!close_0


!open_0


The controller


!d
o

w
n



!d

o
w

n



!u
p



!u

p



– p.36



Types of message passing (1)

Asynchronous: using buffers with unbounded
capacity.

sender may race ahead an unbounded number of
steps;
sender never blocks;
receiver blocks on empty queues.

Synchronous: no buffering between sender and
receiver.

sender blocks until receiver is ready to receive;
receiver blocks until sender is ready to send.

– p.37



Types of message passing (2)

Buffered: using buffers with bounded capacity.
sender may race ahead a finite, bounded number
of steps;
sender blocks on full buffer;
receiver blocks on empty buffer.

Communication channels may be lossy.

– p.38



The Spin model checker

Proving correctness of process interactions specified
using buffered channels, shared variables, or a
combination

Focus — asynchronous control in software systems

Spin has “program-like” notation for specifying design
choices (Promela)

Interactive and random simulation options

Powerful notation for expressing general correctness
requirements (LTL)

Methodology for establishing logical consistency of
the design choices against correctness requirements

– p.39



Homework for this week (part 1)
Read the information about Spin at
http://spinroot.com/spin/whatispin.html,
http://spinroot.com/spin/Man/Quick.html and
http://spinroot.com/spin/Man/Manual.html

Download a copy of Spin; downloading and
installation instructions:
http://wwwis.win.tue.nl/ rpost/spin/

Start experimenting with Spin a little (just simulation
and checks for deadlocks);
follow the instructions from
http://spinroot.com/spin/Man/GettingStarted.html
Take (at least) examples 2 and 5 from
http://spinroot.com/spin/Man/Exercises.html
Make a model of a simple elevator (see the
description on the website)

– p.40



Homework for this week (part 2)
read J. Ludewig "Models in software engineering"

read J.M. Wing "Hints to Specifiers"

Write down 3 well-reasoned statements for each
paper.
That could be something you especially liked/unliked,
something you believe to be very important in
process modelling, . . .

– p.41



Next week:

How to specify requirements formally?

– p.42


	Process modelling (2II30)
	Why to model?
	What is a model?
	Types of models
	How does modelling work?
	What is a process?
	What is there to model?
	What is here to model?
	Place of modelling in SE
	Can it be any better?
	Some figures from 1986 small {(and still valid)}
	Failing software costs money
	Ariane 5 crash (1996)
	The cause of the crash
	Loss of Mars Climate Orbiter (1999)
	Power shutdown of USS Yorktown
	To find about other bugsldots 
	In the future ...
	A success story: Paris metro
	A success story: Paris metro
	Process modelling in Comp. Sci.
	Correctness(1)
	Correctness(2)
	Validation vs. verification
	Requirements
	The model-checking approach
	Potentially added value
	Is it feasible? (some trends)
	Some history
	Describing models and requirements
	Variations in modelling style
	Events
	Automata / transition systems
	Introducing state variables
	Interprocess communication
	Synchronization by message passing
	Types of message passing (1)
	Types of message passing (2)
	The Spin model checker
	Homework for this week (part 1)
	Homework for this week (part 2)
	Next week:

