
Lecture 2

Specifying Requirements

Natalia Sidorova

Overview of the lecture

The need for temporal logics

Temporal operators

Practical use

Typical requirements

– p.1

Mutual exclusion protocol

Typical properties of a mutual exclusion protocol

It is never the case that two (or more) processes
occupy their critical section at the same time

Whenever a process wants to enter its critical
section, it eventually will do so (absence of individual
starvation)

How to specify these properties in an unambiguous and
precise way?

– p.2

Traffic light

Typical properties of a traffic light:

Once green, the light cannot become immediately
red

Eventually the light will be red again

Once green, the light becomes red after being yellow
for some time between being green and being red

How to specify these properties in an unambiguous and
precise way?

– p.3

Elevator

Typical properties of an elevator:

Any elevator request must ultimately be satisfied

The elevator never misses a floor for which a request
is pending without satisfying this request

How to specify these properties in an unambiguous and
precise way?

Note that all these properties concern the dynamic
beheviour of the system!

– p.4

The need for temporal logics
Years 1950-s – 70-s: Sequential programs.
Pre- and post-conditions are enough to specify
requirements.

Nowadays: Reactive, distributed, concurrent systems:

Business processes

Telecommunication systems

Web-based systems

. . .

Not only begin- and end-states are of importance, but
also what happens during the computation

– p.5

Temporal and modal logics
Modal logics were originally developed by
philosophers to study different modes of truth
(“necessarily φ” or “possibly φ”).

Temporal logic (TL) is a special kind of modal logic
where truth values of assertions vary over time.

Typical modalities (temporal operators) are
“sometimes φ” is true if property φ holds at some
future moment
“always φ” is true if property φ holds at all future
moments

TL is often used to specify and verify reactive
systems, i.e. systems that continuously interact with
the environment (Pnueli, 1977)

– p.6

Two views on reactive systems

The system generates a set of traces.
the models of temporal logics are infinite
sequences of states or transitions
LTL (linear time temporal logic) [Manna, Pnueli]

The system generates a tree, where the branching
points represent nondeterminism.

the models of temporal logics are infinite trees
CTL (computation tree logic) [Clarke, Emerson]

– p.7

Temporal logics

Basic building blocks: atomic propositions
on states (used in this lecture), or
on actions (out of consideration in this lecture)

TL; (P)LTL (linear time)

CTL (branching time) - is not considered here

CTL∗ (includes both LTL and CTL)

– p.8

Atomic propositions
are declarative sentences that can be true or false

“The sun is shining today.”

“There is a party tonight.”

“x+y = z”

Atomic propositions are boolean expressions that can
use

data variables (integers, sets, etc.),

control variables (locations),

constants (0,1,2,. . . ,∅,. . .) and

predicate symbols (≤,≥,∈,⊆).

– p.9

State formulas (assertions)
are formulas that are evaluated over a single state of a
system

For state s and formula p

s � p iff s[p] = T

We say

p holds at s

s satisfies p

s is a p-state

– p.10

State formulas (example)

For state s : {x : 4, y : 1}

s � x = 0 ∨ y = 1

s 6� x = 0 ∧ y = 1

– p.11

Temporal logic (TL)
is a formalism for specifying sequences of states.

TL = state formulas + temporal operators

Future temporal operators to express e.g. that
something good will eventually happen in the future,
or nothing bad will happen in the future.

Past temporal operators: to express the properties
about the past of the system.

past
 future

present

– p.12

Future temporal operators

past
 future

present

♦p — Eventually p

�p — Henceforth p (always p)

p Uq — p until q

p

p p p p p ...

p p p p p q

pWq — p waiting-for (unless) q — �p ∨ p Uq

©p — Next p, i.e. p holds in the next state

– p.13

Past temporal operators

♦- p — Once p

�- p — So-far p

p Sq — p since q

p

p p p p p p p

q p p p p

0

0

0

pBq — p back-to q — �- p ∨ p Sq

©- p — Previously p (at the previous state, p holds)
(false at position 0)

©∼ p — Before p (true at position 0)

– p.14

Examples

�(x > 0 → ♦- y = x)

p Uq → ♦q

– p.15

Temporal logic: semantics
Temporal formulas are evaluated over a model which is
an infinite sequence of states
σ : s0, s1, s2, . . .

The semantics of TL-formula p at a position j ≥ 0 in a
model σ,
(σ, j) � p — formula p holds at position j of model σ —

is defined by induction on p.

– p.16

Temporal logic: semantics (2)
For a state formula p, (σ, j) � p ⇔ sj � p

(σ, j) � p ∨ q ⇔ sj � p or sj � q,

etc.

(σ, j) � �p ⇔ for all k ≥ j, (σ, k) � p

(σ, j) � ♦p ⇔ for some k ≥ j, (σ, k) � p

(σ, j) � p Uq ⇔ for some k ≥ j, (σ, k) � q,
and for all i, j ≤ i < k, (σ, i) � p

(σ, j) � pWq ⇔ (σ, j) � p Uq or (σ, j) � �p

(σ, j) � ©p ⇔ (σ, j + 1) � p

– p.17

Temporal logic: semantics (3)

(σ, j) � �- p ⇔ for all 0 ≤ k ≤ j, (σ, k) � p

(σ, j) � ♦- p ⇔ for some 0 ≤ k ≤ j, (σ, k) � p

(σ, j) � pSq ⇔ for some k, 0 ≤ k ≤ j, (σ, k) � q,
and for all i, j < i ≤ k, (σ, i) � p

(σ, j) � pBq ⇔ (σ, j) � pSq or (σ, j) � �- p

(σ, j) � ©- p ⇔ (σ, j − 1) � p

(σ, j) � ©∼ p ⇔ either j = 0 or else (σ, j − 1) � p

– p.18

Simple examples

Given temporal formula φ, describe model σ such that
(σ, 0) � φ.

p → ♦q

O – p.19

Simple examples

Given temporal formula φ, describe model σ such that
(σ, 0) � φ.

p → ♦q

if initially p then eventually q

O – p.19

Simple examples

Given temporal formula φ, describe model σ such that
(σ, 0) � φ.

p → ♦q

if initially p then eventually q

�(p → ♦q)

O – p.19

Simple examples

Given temporal formula φ, describe model σ such that
(σ, 0) � φ.

p → ♦q

if initially p then eventually q

�(p → ♦q)
every p is eventually followed by a q

O – p.19

Simple examples

Given temporal formula φ, describe model σ such that
(σ, 0) � φ.

p → ♦q

if initially p then eventually q

�(p → ♦q)
every p is eventually followed by a q

�♦q

O – p.19

Simple examples

Given temporal formula φ, describe model σ such that
(σ, 0) � φ.

p → ♦q

if initially p then eventually q

�(p → ♦q)
every p is eventually followed by a q

�♦q

every state is eventually followed by a q, i.e.,
infinitely many q’s

– p.19

Some more examples

Given temporal formula φ, describe model σ such that
(σ, 0) � φ.

♦�q

O – p.20

Some more examples

Given temporal formula φ, describe model σ such that
(σ, 0) � φ.

♦�q

eventually permanently q, i.e., finitely many ¬q

O – p.20

Some more examples

Given temporal formula φ, describe model σ such that
(σ, 0) � φ.

♦�q

eventually permanently q, i.e., finitely many ¬q

�♦p → �♦q

O – p.20

Some more examples

Given temporal formula φ, describe model σ such that
(σ, 0) � φ.

♦�q

eventually permanently q, i.e., finitely many ¬q

�♦p → �♦q

if there are infinitely many p’s then there are infinitely
many q’s

O – p.20

Some more examples

Given temporal formula φ, describe model σ such that
(σ, 0) � φ.

♦�q

eventually permanently q, i.e., finitely many ¬q

�♦p → �♦q

if there are infinitely many p’s then there are infinitely
many q’s

(¬p)Wq

O – p.20

Some more examples

Given temporal formula φ, describe model σ such that
(σ, 0) � φ.

♦�q

eventually permanently q, i.e., finitely many ¬q

�♦p → �♦q

if there are infinitely many p’s then there are infinitely
many q’s

(¬p)Wq

q precedes p (if p occurs)

– p.20

And the last two examples

Given temporal formula φ, describe model σ such that
(σ, 0) � φ.

�(p → ©p)

O – p.21

And the last two examples

Given temporal formula φ, describe model σ such that
(σ, 0) � φ.

�(p → ©p)
once p, always p

O – p.21

And the last two examples

Given temporal formula φ, describe model σ such that
(σ, 0) � φ.

�(p → ©p)
once p, always p

�(q → ♦- p)

O – p.21

And the last two examples

Given temporal formula φ, describe model σ such that
(σ, 0) � φ.

�(p → ©p)
once p, always p

�(q → ♦- p)
every q is preceded by a p

– p.21

Classification of properties
[L. Lamport 1973]

Safety properties

All finite prefixes of a trace satisfy a certain
requirement

“No bad things will happen”

Violation can be detected in finite time

Liveness (progress) properties

“Something good will happen eventually”

depends on fairness conditions in non-trivial cases

– p.22

Most commonly used patterns

Statistics over 555 requirement specifications
[M. Dwyer et al., 1998]

response: �(p → ♦q) 43.4%
universality: �p 19.8%
global absence: �¬p 7.4%
precedence: �¬p ∨ ¬pUq 4.5%
absence between: �((p ∧ ¬q ∧ ♦q) → (¬r Uq)) 3.2%
absence after: �(q → �¬p) 2.1%
existence: ♦p 2.1%

– p.23

Fairness hypothesis

Alternating bit protocol: channels may loose
messages.

Requirements:
every message received was earlier sent
the order of messages is preserved
any emitted message is eventually received

O – p.24

Fairness hypothesis

Alternating bit protocol: channels may loose
messages.

Requirements:
every message received was earlier sent
the order of messages is preserved
any emitted message is eventually received
— does not hold in general, since channels may
systematically loose all the messages

O – p.24

Fairness hypothesis

Alternating bit protocol: channels may loose
messages.

Requirements:
every message received was earlier sent
the order of messages is preserved
any emitted message is eventually received
— does not hold in general, since channels may
systematically loose all the messages

Fairness hypothesis: from time to time channels do
deliver messages

O – p.24

Fairness hypothesis

Alternating bit protocol: channels may loose
messages.

Requirements:
every message received was earlier sent
the order of messages is preserved
any emitted message is eventually received
— does not hold in general, since channels may
systematically loose all the messages

Fairness hypothesis: from time to time channels do
deliver messages
�♦¬loss → �(emmited → ♦received)

– p.24

Fairness and nondeterminism

Nondeterminism: a free choice between several
actions leading to different states.

Such a choice is often assumed to be fair: not
inclined to omit one option.

A die with six faces is repeatedly thrown.
In fact we have equiprobability then (ideally).
Modelling that would require stochastic propositions
and models.

Fairness is a simple abstraction of probabilistic
properties.

– p.25

Strong and weak fairness

Fairness properties:
“If S is continually requested, then S will be (infinitely
often) granted.

Weak fairness:
continually requested = without interruption
♦�requested → �♦granted

Strong fairness:
continually requested = infinitely often
�♦requested → �♦granted

Strong fairness implies weak fairness

– p.26

Variations in requirement style

Allowable behaviour: define what a correctly
functioning system is able to do

Violations: define what a correctly functioning system
can never do

– p.27

Checking PLTL-properties in Spin

PLTL: propositional linear time temporal logic
requirements on sequences of states should hold for all
traces

Only future time temporal operations

No next state operator

– p.28

Does linear time always suffice?

Often but not always

At any instant of any execution it is possible to reach
a state where p holds.

– p.29

CTL ∗

Extended Computation Tree Logic

Temporal combinators:
Xp — the next state satisfies p (©p)
Fp — a future state satisfies p (♦p)
Gp — all future states satisfy p (�p)
U and W with the same meaning as before

Path quantifiers:
Aφ — all the execution out of the current state
satisfy φ

Eφ — there exists an execution out of the current
state that satisfy φ

– p.30

Examples

– p.31

Which formula expresses this?

At any instant of any execution it is possible to reach
a state where p holds.

O – p.32

Which formula expresses this?

At any instant of any execution it is possible to reach
a state where p holds.

AG EF p

– p.32

Strong and weak fairness in CTL∗

Fairness properties:
“If S is continually requested, then S will be (infinitely
often) granted.

Weak fairness:
continually requested = without interruption

O – p.33

Strong and weak fairness in CTL∗

Fairness properties:
“If S is continually requested, then S will be (infinitely
often) granted.

Weak fairness:
continually requested = without interruption
FG enabled → GF executed

O – p.33

Strong and weak fairness in CTL∗

Fairness properties:
“If S is continually requested, then S will be (infinitely
often) granted.

Weak fairness:
continually requested = without interruption
FG enabled → GF executed

Strong fairness:
continually requested = infinitely often

O – p.33

Strong and weak fairness in CTL∗

Fairness properties:
“If S is continually requested, then S will be (infinitely
often) granted.

Weak fairness:
continually requested = without interruption
FG enabled → GF executed

Strong fairness:
continually requested = infinitely often
GF enabled → GF executed

– p.33

To know more:

Chapter 2 of

Berard et al. "Systems and Software Verification"

– p.34

Homework

Assignment 1:

Formulate (meaningful) requirements for some
systems. You may use TL, LTL, CTL∗.

Use Spin to check some properties of your models.

– p.35

Next lecture

Part 1: modelling: where to start?

Part 2: Spin tutorial

– p.36

	Overview of the lecture
	Mutual exclusion protocol
	Traffic light
	Elevator
	The need for temporal logics
	Temporal and modal logics
	Two views on reactive systems
	Temporal logics
	Atomic propositions
	State formulas (assertions)
	State formulas (example)
	Temporal logic (TL)
	Future temporal operators
	Past temporal operators
	Examples
	Temporal logic: semantics
	Temporal logic: semantics (2)
	Temporal logic: semantics (3)
	Simple examples
	Some more examples
	And the last two examples
	Classification of properties
	Most commonly used patterns
	Fairness hypothesis
	Fairness and nondeterminism
	Strong and weak fairness
	Variations in requirement style
	Checking PLTL-properties in Spin
	Does linear time always suffice?
	CTL$^ast $
	Examples
	Which formula expresses this?
	Strong and weak fairness in CTL$^ast $
	To know more:
	Homework
	Next lecture

