
Lecture 3

Part 1: Modelling: where to start?

Part 2: Spin tutorial

Natalia Sidorova



Distributed systems

A distributed system consists of a collection of
distinct processes which are specially separated, and
which communicate with one another by exchanging
messages. . .

A system is distributed if the message transmission
delay is not negligible compared the time between
events in a single process

A distributed system is the one which prevents you
from working because of the failure of a machine that
you had never heard of.

Leslie Lamport

– p.1



Models in system development

Requirements Model: captures functional
requirements from user perspective

Analysis Model: maintainable with logical structure;
implementation-independent

Design Model: impose implementation constraints on
analysis model

Implementation Model: system code written from the
design model

Test Model: documentation and test results

– p.2



Where are we now?
We have specified our requirements and want to
start with modelling the system.

Still, we don’t have a global view on the system.

Traditional thinking maintains requirements describe
the "what" is required, whereas subsequent
development steps translate from the "what" to the
"how".

To get a better understanding of the system, we
consider use cases.

We DO NOT CONSIDER the use cases of UML here.

– p.3



Use cases

The level of use cases is in between the level of
requirements and the level of model.

Use cases constitute the complete course of events
initiated by the environment, define interaction
between the environment and the system.

Use cases describe specific scenarios for the
system, illustrating one or more key characteristics of
its functionality and processes.

You should describe use cases so that your client
can understand and validate them!

– p.4



Writing use cases
Consider some situation,

Identify main tasks,

Identify parties participating in the use case, (up to
this point you may model it as UML use case)

Draw allowed and explicitly forbidden scenarios
(event sequences) for each use case as a Sequence
Diagram of UML or as a Message Sequence Chart
(MSC),

Formulate complex use cases at an abstract level
first and then refine them.

Create Workflow nets for the use cases. Each
Workflow net should combine the allowed scenarios
for the use case and disallow the forbidden ones.

– p.5



MSC: Message Sequence Charts
. . . are precedence graphs with locality information.

Each vertical line represents a process (or the
environment), the arrows represent signals/messages,
the blocks represent (internal) process activities.

– p.6



MSC: Message Sequence Charts
. . . define sets of traces (with locality information).

An MSC represents (almost always) more than one trace.

coin
/
@
Environment


/
coin
@
Paybox


entryfee
/
@
Paybox


/
entryfee
@Controller


unlock
/
@Controller


/
unlock
@
Barrier


visitor
:= @Controller


push/ @
Environment


/push @
Environment


rotated
/ @
Environment


/
rotated
@
Barrier


locked
/ @
Barrier


/
locked
@Controller


– p.7



MSC: Message Sequence Charts
Can you distill some traces?

Is this a trace?
ev1@C
sig1/@C
ev3@A
ev2@B
sig2/@B
/sig2@C
sig3/@C
/sig1@A
/sig3@B
ev4@A

And how many traces are there?

– p.8



Definition: Basic MSC
A (basic) MSC M is a tuple (P,E, L, c, <) with

a set P of process labels (labelling the instance axis),

a finite set E events E = S ∪ R ∪ A, consisting of
send events S (buh/)
receive events R (/buh)
action events A (task executions etc)

a labeling function L : E → P (events on axis),

a bijection c : S → R (for send-receive edges)

precedence relation <⊆ E × E

Sending of a message occurs before its receipt
Events on the same instance are totally ordered

Must be well-formed: no cycles in precedence graph – p.9



MSC: Message Sequence Charts

Traces?
Traces?

Traces?
Traces?


Traces?
Traces?


– p.10



MSC: Message Sequence Charts

Traces?
Traces?

Traces?
Traces?


Traces?
Traces?


=


=



– p.11



MSC: timers

– p.12



Types of events (1)

Start modelling processes with identifying events in and
around your system:

External Events: events that occur outside the
system, usually initiated by the environment.
Naming events: Include the name of the external
agent in the name
E.g. events: “Customer places order”, “Management
checks order status”, “Customer reports change of
address”

External events usually have their counterparts
(responses) within the system.

– p.13



Types of events (2)

Temporal Events: events that occur as a result of
reaching a point in time.
E.g. payroll systems produce a paycheck every two
weeks (or once a month),
reports to management are generated regularly.
System automatically produces reports etc. at right
time (so no external agent needed)

– p.14



Types of events (3)

State Events: events that occur when something
happens inside the system that triggers the need for
processing.
E.g. the sale of a product results in an adjustment in
the inventory (event “Reorder point reached”)
This state change might occur as a result of external
events or of temporal events (so could be similar to
temporal event, but point in time can’t be defined)

– p.15



Technology-Dependent Events

System controls: checks or safety procedures put in
place to protect the integrity of the system
Logging on to a system (for security reasons)
Controls for keeping integrity of a database

To help decide which events apply to controls we
assume that technology is perfect (never the case!)

During analysis we should focus on events that are
required under “perfect” conditions – “perfect
technology assumption”

It is during the design phase that we deal with other
issues and events from a “non-perfect world” point of
view, e.g. events like “Time to back up the database”.

– p.16



Describing events
Event Table: A table that lists events in rows and key
pieces of information about each event in columns

The trigger: an occurrence that tells the system that
an event occurs (the arrival of data needing
processing or of a point in time)

The source: an external agent or actor that supplies
data to the system

The activity: behavior that the system performs when
an event occurs

The response: an output, produced by the system,
that goes to a destination

The destination: An external agent or actor that
receives data from the system

– p.17



Components/objects

By analysing use cases, you can identify
components/objects of your system,

Think who and when creates/destroys these
components, whether it is done statically or
dynamically,

List communication partners of each component,

Define interfaces of each component and check their
consistency with interfaces of other components,

List main tasks of each component,

Start modelling components.

– p.18



Modelling dynamic process creation

In Spin (and many others): directly,
run process name
you just create a new process instance according to
a given specification,

In Petri nets: define a process pattern for every type
of processes; by sending tokens to initial places, you
can start up a new process.

– p.19



Interprocess communication

Concurrent processes: collection of two or more
sequential processes in operation executing concurrently.

Interprocess communication: the transfer of information
between processes.

Note that the mere occurrence of communication can be
informative (synchronisation).

Communication via:

Shared variables

Message passing

– p.20



Shared variables

An attempt to model distributed
systems at the most primitive level.

Time-independent: a process
cannot refer to the amount of time
it has been waiting for a variable to
change.

Naturally asynchronous.

Not appropriate for modelling protocols.

Failure-free communication between processes,
while in the real world messages can become
garbled or lost.

– p.21



Types of message passing

Asynchronous:

Synchronous:

– p.22



Types of interprocess connection (1)

Names: single point for receiving messages per
process

Entries: several reception points per process

– p.23



Types of interprocess connection (2)

Ports: target messages not necessarily addressed to
a single process

Broadcasting: distributes a message to many
“appropriate” receivers

– p.24



To know more

1.6, 1.7 in Berard et al. “Systems and Software
Verification”

– p.25



What do you have by now?

Requirements,

Use cases

You have identified
main events,
main components involved,
their interfaces,
the way you model the communication between
components.

– p.26



Homework for this week
Read chapter 5 (Timed automata), pp. 59-68, from
B. Berard et al., Systems and Software Verification.
Model Checking Techniques and Tools.

Carry out Part 1 of Assignment 3

– p.27



Next week:

Timed Systems

– p.28


	Distributed systems 
	Models in system development
	Where are we now?
	Use cases
	Writing use cases
	MSC: Message Sequence Charts
	MSC: Message Sequence Charts
	MSC: Message Sequence Charts
	Definition: Basic MSC
	MSC: Message Sequence Charts
	MSC: Message Sequence Charts
	MSC: timers
	Types of events (1)
	Types of events (2)
	Types of events (3)
	Technology-Dependent Events
	Describing events
	Components/objects
	Modelling dynamic process creation
	Interprocess communication
	Shared variables
	Types of message passing
	Types of interprocess connection (1)
	Types of interprocess connection (2)
	To know more
	What do you have by now?
	Homework for this week
	Next week:

