
Modelling Timed Systems

Natalia Sidorova



What is time?

Webster’s Collegiate Dictionary:

“time is the measured or measurable period during which

an action, process, or condition exists or continues."

– p.1



Folk definition of timed systems

Time-critical systems are systems in which correctness
depends:

not only on the logical result of the computation, but

also on the time at which the results are produced.

– p.2



What are timed systems?

Computer systems where the timing of input and output
is relevant for its correctness.

Hard real time systems: hard deadlines

Soft real-time systems: average time constraints

Safety critical systems: missing a deadline might
have disastrous effects.

Time easily enters development process too early as
a solution, especially in specification.
Related question: are special timed formalisms
needed, or untimed ones are sufficient?

– p.3



Discrete time

A discrete time-domain:

time has a discrete nature, i.e., time is advanced by
discrete steps

time is modelled by non-negative integers

specific tick events are used to model the advance of
one time unit

events can only happen at integer time values

delay between any two events is always a multiple of
the minimal delay of one time unit

– p.4



A discrete-time coffee machine

– p.5



A discrete time-domain

Main advantage is conceptual simplicity:

just one new event needed to measure time in model
(tick-event)

no need to adapt temporal logic, as next-operator
“measures” time

�(red ⇒ (©© green))
exactly 2 time-units after red, the light is green
�(red ⇒ (green ∧©green ∧©© green))
within 2 time-units after red, the light is green

– p.6



A discrete time-domain

Main application areas:

systems in which components proceed in a lock-step
fashion, i.e., at each tick each component performs a
step for example, synchronous hardware circuits

systems where timers are only used to model
timeouts

– p.7



Limitations of discrete time

(minimal) delay between any pair of events is some
multiple of an a priori fixed minimal delay

difficult (or impossible) to determine this in practice

can be inadequate for asynchronous systems such
as distributed systems and communication protocols

– p.8



Dense time

A continuous time-domain

time has a continuous nature, i.e., time advances
continuously

time is modelled by real numbers

delay between two events can be arbitrarily small

invariance against changes of time scale

often, more adequate representation of reality

often, more suited for asynchronous systems

but . . . more complicated too!

– p.9



Dense time
If time is continuous, state changes can happen at any
point in time

how to check a property like once in a yellow state,
eventually the system is in a blue state within π

time-units?

– p.10



How to cope with these problems?

restrict expressivity of the property language
(= temporal logic)

model behaviour of timed systems symbolically
rather than explicitly (= infinite-state)
(see Timed Automata [Alur & Dill, 1989])

realise a discretisation of the infinite (underlying)
state space on-demand, i.e., depending on the
property and model under consideration
(see Region Automata [Alur et al., 1991])

– p.11



What is a timed automaton?

a finite-state automaton with locations and edges

a location is labelled with atomic propositions that
are valid in that location

taking an edge is instantaneous, i.e, consumes no
time

– p.12



What is a timed automaton?

equipped with real-valued clocks x, y, z, . . .

clocks advance implicitly, all at the same speed

logical constraints on clocks can be used as enabling
conditions (called guards) of edges

– p.13



What is a timed automaton?

x 
:
=0, y
:
=0


x 
:
=0


x 
:
=0


y 
=9,


x
 2,


2,
x


clocks can be reset when taking an edge

assumption: all clocks start when entering the initial
location initially

– p.14



What is a timed automaton?

x

x 
:
=0, y
:
=0


x 
:
=0

y 
=9,


x
 2,

x 
:
=0


x
 2


2,


y
 9


guards indicate when an edge may be taken,
(location) invariants are used to force an edge to be
taken

an invariant is a clock constraint that specifies the
amount of time that may be spent in a location

– p.15



Guards vs. invariants

x 
:
=0

x
 2,


– p.16



Guards vs. invariants

x 
:
=0

x
2
 3


– p.17



Guards vs. invariants

x 
:
=0

x
 2


x
 3


– p.18



Arbitrary clock differences

y 
:
=0

y
 2


x 
:
=0

x
 2


In a discrete-time model, the difference between two
concurrent clocks is always a multiple of one unit of time.
That’s not the case with dense time.

– p.19



Some example paths

3


3


3


– p.20



A dense-time coffee machine

– p.21



Back to discrete time
A less expensive, discrete time solution is for many
systems as good as dense time in the modelling sense,
and better than the dense one when the verification is
concerned.

It suffices for a large and important class of systems and
properties including all systems that can be modelled as
timed transition systems and such properties as
time-bounded invariance and time-bounded response.

Discrete time automata can be analysed using any
representation scheme used for dense time, and in
addition can benefit from enumerative and symbolic
techniques which are not naturally applicable to dense
time.

– p.22



Clocks of timers?

Clocks: growing when time progresses, possibly to ∞.

Timers: decreasing when time progresses, until
expiration.

Expiration of a timer is a natural way to model e.g. a
trigger for a software event.

If this event is to be handled exactly once,
with taking an event guarded by a timer condition,
the timer which triggered this event should become
deactivated.

– p.23



Time semantics

We consider systems where delays are significantly
larger than the duration of normal events within the
system.

⇒ we assume system transitions to be instantaneous.

⇒ time progress can never take place if there is still an
untimed action enabled

⇒ the time-progress transition has the least priority in the
system and may take place only when the system is
blocked: there is no any transition enabled except for
time progress and communication with the environment.

– p.24



Introducing discrete time in Spin
is based on the use of timeout — a system defined
condition.

Timeout is a predefined global read-only variable, that
has the value true in all global system states where no
statement is executable in any active process, and false
in all other states.

We assume all “normal” actions to be instantaneous.
expire(timer_name) is used as a guard for some actions.
We define the special process Timers, which decreases
all active timers by 1 when there is no any action
enabled. It does so until some timer gets expired, which
enables some “normal” action.

– p.25



Introducing discrete time in Spin
#define OFF -1 /* inactive timer*/
#define EXP 0 /* expiration point*/

typedef timer
{
short val = OFF;
}

#define set(tmr,value) tmr.val = value;
#define reset(tmr) tmr.val = OFF;

#define expire(tmr) (tmr.val == EXP) /*timeout*/
#define tick(tmr) if :: tmr.val != OFF -> tmr.val=tmr.val -1;\

:: tmr.val == OFF-> skip; fi
backslash \ at the end of a line in #define ... means continuation of the macro;

otherwise the macro is supposed to consist of a single line

– p.26



Introducing discrete time in Spin
Define timers as global variables:

timer mc_timer; /* timer for the message channel */
timer ac_timer; /* timer for the ack channel */
timer s_timer; /* timer for the sender */

Specify a process that ticks down all active timers:

active proctype Timers()
{
do

:: timeout -> atomic{tick(mc_timer); tick(ac_timer);
tick(s_timer); };

od
}

– p.27



Positive Acknowledgment with Retransmission protocol

Positive Acknowledgment Retransmission protocol: PAR
(Tanenbaum: Computer Networks)
is used in the Transmission Control Protocol (TCP).

PAR involves a sender, a receiver, a message
channel and an acknowledgment channel.

The sender receives a frame from the upper layer,
sends it to the receiver via the message channel and
waits for a positive acknowledgment from the
receiver via the acknowledgment channel.

When the receiver gets the frame, it delivers it to the
upper layer, and sends the acknowledgment to the
sender.

After the positive acknowledgment is received, the
sender becomes ready to send the next frame. – p.28



Positive Acknowledgment with Retransmission protocol

The channels delay the delivery of messages.

They can lose or corrupt messages.

ENV_SENDER ENV_RECEIVER

RECEIVER

msg msg msg msg

ackack

T_SENDER

T_MSG_CHAN

T_ACK_CHAN

SENDER 

ACK_CHAN

MSG_CHAN

– p.29



Positive Acknowledgment with Retransmission protocol

The sender handles lost frames by timing out. If the
acknowledgement is not received in certain time, the
sender re-sends the message. This process is
repeated until an acknowledgement is received by
the sender.

Potential problem: the receiver receives both the
original frame and the re-transmitted frame.
Solution: The sender sends a sequence number with
every message. Each frame has a unique sequence
number. The re-transmitted frame(s) carry the same
sequence number as the original one.

We assume the transmission order is preserved, i.e.
the early transmitted frames will arrive earlier than
later transmitted ones. Thus only one bit sequence
number is needed.

Danger: premature timeout, the sender times out

– p.30



Modelling PAR

Components: Sender, Receiver, Message Channel,
Acknowledgement Channel, Environment.

Channels are lossy
⇒ we model them as “channel plus process plus
channel” combination, where the process decides
whether to deliver message properly or not.

– p.31



Modelling PAR: fragment
/* delays */
#define mc_delay 3
#define ac_delay 4
#define sender_delay 5

/* message type */
mtype={a, b, c, ack}

/* internal channels */
chan S2MC = [2] of {mtype, bit}
chan MC2R = [2] of {mtype, bit}
chan R2AC = [2] of {mtype}
chan AC2S = [2] of {mtype}

/* external channels */
chan IN = [2] of mtype
chan OUT = [2] of mtype

– p.32



Modelling PAR: fragment
/* message channel */
active proctype MChannel(){
mtype msg;
bit sn;

get_msg: S2MC?msg,sn -> set(mc_timer, mc_delay); goto msg_wait;

msg_wait:
atomic{
if
:: expire(mc_timer) -> MC2R!msg,sn; goto get_msg;
:: expire(mc_timer) -> goto get_msg;
fi }
}

– p.33



Modelling PAR: fragment
/*Environment process supplying messages to the IN channel*/

active proctype Env1(){

A: atomic{IN!a; goto B;}

B: atomic{IN!b; goto C;}

C: atomic{IN!c; goto A; }
}

/*Environment process reading messages from the OUT channel*/

active proctype Env2(){

A: atomic{OUT?a; goto B;}

B: atomic{OUT?b; goto C;}

C: atomic{OUT?c; goto A; }
}

– p.34



Properties of interest (examples)
No deadlock happens

No overflow for internal buffers

Every message sent is eventually delivered (under
the fairness assumption on the channel behaviour)

. . .

– p.35



Homework for this week

Finish the Promela model of PAR

Investigate what the setting for the Sender’s timer
should be, depending on the given channels’ delays,
to guarantee the proper functioning of the protocol (at
least, properties from the previous slide should hold).
Give examples of “good” and “bad” settings.

Which inequation characterises “good settings” from
your point of view?
(check it for some boundary case)

– p.36



Soldiers problem (1)
Four soldiers who are heavily injured, try to flee to their
home land. The enemy is chasing them and in the
middle of the night they arrive at a bridge that spans a
river which is the border between the two countries at
war. The bridge has been damaged and can only carry
two soldiers at a time. Furthermore, several land-mines
have been placed on the bridge and a torch is needed to
sidestep all the mines. The enemy is on their trail, so the
soldiers know that they have only 60 minutes to cross the
bridge. The soldiers only have a single torch and they
are not equally injured.

– p.37



Soldiers problem (2)
The following table lists the crossing times (one-way!) for
each of the soldiers:

soldier S0 5 minutes
soldier S1 10 minutes
soldier S2 20 minutes
soldier S3 25 minutes

Does a schedule exist which gets all four soldiers to the
safe side within 60 minutes?

(Ruys & Brinksma 1998)

– p.38



Soldiers problem

 


Unsafe Side
 
 Safe Side
 


<=
 

2 pers
 


mines
 


5
 
 10
 
 20
 
 25
 


<= 60 min?
 


– p.39



A task from Assignment 2

Build a Promela model describing all possible
behaviours of soldiers

Define a property postulating that there exists a trace
such that all four soldiers reach the safe side. (we will
check that its negation gets violated when working
with LTL!)

Find a solution (“good trace”) to the problem using
Spin.

– p.40



Next lecture:

process equivalences,

Spin tutorial (continued)

– p.41


	What is time?
	Folk definition of timed systems
	What are timed systems?
	Discrete time
	A discrete-time coffee machine
	A discrete time-domain
	A discrete time-domain
	Limitations of discrete time
	Dense time
	Dense time
	How to cope with these problems?
	What is a timed automaton?
	What is a timed automaton?
	What is a timed automaton?
	What is a timed automaton?
	Guards vs. invariants
	Guards vs. invariants
	Guards vs. invariants
	Arbitrary clock differences
	Some example paths
	A dense-time coffee machine
	Back to discrete time
	Clocks of timers?
	Time semantics
	Introducing discrete time in Spin
	Introducing discrete time in Spin
	Introducing discrete time in Spin
	small {Positive Acknowledgment with Retransmission protocol}
	small {Positive Acknowledgment with Retransmission protocol}
	small {Positive Acknowledgment with Retransmission protocol}
	Modelling PAR
	Modelling PAR: fragment
	Modelling PAR: fragment
	Modelling PAR: fragment
	Properties of interest (examples)
	Homework for this week
	Soldiers problem (1)
	Soldiers problem (2)
	Soldiers problem
	A task from Assignment 2
	Next lecture:

