
Behavioural Equivalences and
Abstraction Techniques

Natalia Sidorova

Part 1: Behavioural Equivalences

– p.1

The elevator example once more
How to compare this elevator model with some other?

0
 1
 2

?down
 ?up

?up
?up

?down
?down

The ith door

C
 O

?open_i

?close_i

?close_i
 ?open_i

The cabin

free

2

on

2

!close_2

!open_2

free

1

on

1

!close_1

!open_1

free

0

on

0

!close_0

!open_0

The controller

!d
o

w
n

!d

o
w

n

?
u

p

?
u

p

– p.2

System behaviour
How to compare different models?

Models can be described using state machines, known
as Labelled Transition Systems.
A labelled transition system T consists of:

a set S of states,

a set L of actions

a set→ of transitions of the form s
a
−→ t with s, t ∈ S

and a ∈ L or a = τ ,

an initial state s0 ∈ S.

We also write T = (S, L,→, s0).

– p.3

From your model to LTS

Thus, you can build a single LTS for the Petri net,
communicating finite state machines, etc. model you
have.
Usually, you don’t do it manually: tools do it for you.

From now on we assume that the systems are given by
LTSs and we compare them.

– p.4

The wish-list
1. Behavioural equivalence should be a reflexive,

symmetric, and transitive relation.

2. Processes that may terminate (deadlock) should not
be equivalent to processes that may not terminate
(deadlock).

3. If a component Q of P is replaced by an equivalent
component Q0 yielding P0, then P and P0 should also
be equivalent.

4. Two processes should be equivalent iff they satisfy
exactly the same properties expressible in a nice
modal or temporal logic.

5. Equivalence should abstract from silent actions.

– p.5

A first candidate: Trace equivalence

A trace of a process P is a sequence σ of actions such
that s0

σ
−→ s for some state s.

Two processes are trace-equivalent if they have the
same traces. We will write P ≡tr Q.
This notion satisfies (1) but not (2). The following two
clocks are trace-equivalent:

Cl0
 Cl0

Cl1

a
 a

a

– p.6

2: Completed-trace equivalence

A completed trace of a process P is a sequence σ of
actions such that s0

σ
−→ s for some state s at which no

action is enabled.

Two processes P and Q are completed-trace equivalent
if they are trace equivalent and have the same completed
traces.

This notion satisfies (1) and (2), but not (3).

– p.7

2: Completed-trace equivalence

Compare P1‖User with P2‖User

X

Y

Z

A

B

D
C

?20c

?20c
?tea
 ?coffee

T
 C

!dtea
 !dcoffee

C
T

!dtea
 !dcoffee

?20c

?20c

?20c
?tea
 ?coffee

1

2

3

!20c

!20c

4

!tea

5

?dtea

P1
 P2
User

– p.8

3: Bisimulation equivalence
A binary relation B between states is a bisimulation
provided that
whenever (s, q) ∈ B and a ∈ A,

1. if s
a
−→ s′ then q

a
−→ q′ for some q′ such that

(s′, q′) ∈ B, and

2. if q
a
−→ q′ then s

a
−→ s′ for some s′ such that

(s′, q′) ∈ B.

Two processes P and Q with initial states s0, q0 are
bisimilar if there is a bisimulation relation B such that
(s0, q0) ∈ B.
We write then P ∼ Q.

– p.9

Example

– p.10

Game interpretation

Board: Transition systems of P and Q.

Material: Two (identical) pebbles, initially on the initial
states s0 and q0.

Players: R (refuter) and V (verifier), R and V take turns,
R moves first.

R-move: Choose any of the two pebbles. Take any
transition.

V -move: Choose the other pebble. Take any transition
having the same label than the one chosen by R.

– p.11

Game interpretation (2)

R wins if: V cannot reply to his last move.

V wins if: R cannot move or the game goes on forever.
(i.e., a draw counts as a win for V).

Theorem: R can force a win iff P and Q are not bisimilar
(R refutes).
V can force a win iff P and Q are bisimilar (V verifies).

– p.12

Bisimilarity is an equivalence relation

Theorem: For all processes E, E ∼ E.

Theorem: For all processes E and F , if E ∼ F then
F ∼ E.

Theorem: For all processes E,F and G, if E ∼ F and
F ∼ G, then E ∼ G.

– p.13

Property preservation

Theorem: Let E ≡tr F . Then E |= φ iff F |= φ, where φ is
an LTL-property.

Theorem: Let E ∼ F . Then E |= φ iff F |= φ, where φ is a

CTL∗-property.

– p.14

Equiv.-preserving transf. and Software Design

Design can start with a very abstract specification,
representing the requirements.

Then, using equivalence-preserving transformations, this
specification can be gradually transformed into an
implementation-oriented specification.

This one can be transformed into code.

Maintenance may require to replace some components
with others, while maintaining the same behaviour.

You may use behaviour-preserving transformations to
make model checking, testing, etc. possible.

– p.15

Part 2: Abstraction Techniques

– p.16

Abstractions in our life

Cat: ←−

Dog: ←−

– p.17

Abstractions in our life

Feline: ←−

Canine: ←−

– p.18

Abstractions in computing

2

>1
 {2,3,5,7,...}

{0,...,9}
even positive

non-negative

integer

rational

– p.19

Why abstractions?
To cope with complexity

To describe underspecified or uncertain things
Open models: under-specified or abstracted
environment
A model can describe a set of implementations

flexibility for implementor
verification of a set of implementations

Connecting interfaces of components makes global
model more abstract through hiding internal
computation

Weak (bi)simulations in process algebras
[Milner’89].

– p.20

Abstract to verify
You can

try to keep the behaviour of the system unchanged,

overapproximate the behaviour of the system, or

underapproximate the behaviour of the system

Potential problems:

False negatives: your analyser will report the
property violation while there is no any on the
concrete system

False positives: your analyser will report that the
system is correct while it is wrong

– p.21

Abstraction

Does system
S
 satisfy property
f
?

abstract

interpretation

“preservation
”

 f

f

abstraction

– p.22

Bisimulation and trace equivalence

Preservation results:

Theorem: Let E ≡tr F . Then E |= φ iff F |= φ, where φ is
an LTL-property.

Theorem: Let E ∼ F . Then E |= φ iff F |= φ, where φ is a
CTL∗-property.

Bisimulation is too much to require;
trace equivalence is difficult to prove.

We might wish the preservation result in one direction
only: from the abstract to the concrete system.

– p.23

Simulation preorder
Let T1 = (S1, L1,→1, s01

) and T2 = (S2, L2,→2, s02
) be two

transition systems.

A binary relation H ⊆ S1 × S2 is a simulation iff
(s01

, s02
) ∈ H and for every (s1, s2) ∈ H:

1. s1 and s2 satisfy the same atomic propositions

2. if s1 −→1 s′
1

then s2 −→2 s′
2

for some s′
2
∈ S2 such that

(s′
1
, s′

2
) ∈ H.

We write s1 ≤ s2 when (s1, s2) ∈ H.

We write T1 ≤ T2 when there exists a simulation H.

– p.24

Property preservation

If T2 ≥ T1 then for every LTL formula φ, T2 |= φ implies
T1 |= φ.

Thus our goal is to build for a given system T its abstract
version Tα such that Tα ≥ T .

– p.25

Basic idea

Given a transition system T ,
define some description function ρ : S → Sα:

p

p

p
Ø

Ø p
Ø

p

p

p

r

– p.26

Basic idea

Now define the abstract transition relation in such a way
that whenever s −→ s′, we have ρ(s) −→ ρ(s′).

p

p

p
Ø

Ø p
Ø

p

p

p

r

– p.27

Basic idea

Sometimes we get even bisimilar systems this way

p

p

p
Ø

Ø p
Ø

p

p

p

r

. . . but not always.

– p.28

Another example

p

p

p
Ø

Ø p
Ø

p

p

p

r

Can you formulate a property that holds on T but not on
Tα (thus, you get a false negative when you verify this
property on Tα)?

– p.29

Data abstractions

It is not always handy to define ρ on states.

Idea: Replace data values by their descriptions (abstract
values) and "mimic" operations on data with
overapproximations. In general, abstract operations can
be nondeterministic.

Then every LTL property checked to be true on the
abstract system holds for the concrete system as well.

– p.30

An example of data abstraction

Consider the abstraction of integers into their signs:

.

.

.

3

2

1

0

-1

-2

-3

.

.

.

pos

0

neg

pos +α pos = {pos}
neg +α neg = {neg}
pos +α neg = {pos, 0,neg}
neg +α pos = {pos, 0,neg}
pos +α 0 = {pos}
0 +α pos = {pos}
neg +α 0 = {pos}
0 +α neg = {neg}
0 +α 0 = {0}

– p.31

Safety statement

The formal requirement for the abstraction of a binary
function is:

∀x ∈ Dx, y ∈ Dy ∃z ∈ fabs(ρ(x), ρ(y)) : ρ(fconc(x, y)) = z

where Dx, Dy are corresponding data domains.

– p.32

In practice
We will use nondeterminism to define abstract functions.
For example,

#define sum(x,y,z) \
if \
:: x == pos && y == pos -> z = pos \
:: x == pos && y == neg -> \

if \
:: z = pos \
:: z = neg \
:: z = 0 \
fi \

:: . . .

.

fi
– p.33

Timer abstraction for PAR
Goal: Given message and acknowledgment channel
delays mc_delay and ac_delay, prove that the protocol
works correctly for any sender_delay such that
sender_delay > mc_delay + ac_delay.

Problem: We can (in theory) perform checks for any
value of sender_delay, but we cannot perform an infinite
number of checks.

Solution: Use a timer abstraction for the timer at the
sender side.

– p.34

Timer abstraction

sender

delay

sender

delay -

1

mc_dly

+ac_dly

+1

mc_dly

+

ac_dly

-1
0

large

mc_dly

+

ac_dly

-1
0
tick

tick
 tick
 tick
 tick
 tick
 tick
 tick

tick
 tick
 tick
 tick

– p.35

Timer abstraction
typedef abstract_timer
{ short val = OFF;
bit plus = false;
}

#define abstract_set(tmr,value) \
tmr.val = value; tmr.plus = true
.
#define abstract_tick(tmr) \
if \
:: tmr.plus==true -> skip; \
:: tmr.val != OFF -> tmr.val = tmr.val - 1; tmr.plus=false; \
:: tmr.val == OFF -> skip; \
fi

– p.36

PAR verification
Goal: to prove that PAR works correctly (when the delays
meet the constraint) in any environment.
“Correctly” means “If the sender environment is
transmitting a sequence l of messages and the first
element of l arrives at least once at the receiver, then the
sequence of elements that the receiving client gets (“the
output list”), forms a prefix of l”.

– p.37

Data independence

Problem: Any environment means that the environment
is able to send any signals from any finite alphabet in any
order, which requires an infinite number of checks when
handled directly.

Solution: use data independence.

– p.38

Data independence

Intuitively, data independence means that the system just
moves data around without looking at it. In particular,
there are no conditionals that depend on the data values.
All data values come from data sources.

More formally, a system is data-independent w.r.t. a
variable if

it only assigns values to/from that variable, or

tests the identity of that variable;

no other operation on this variable is allowed.

[Wolper 1986]

– p.39

PAR property

It can be shown that the prefix property holds if for any
list of non-repeating naturals the following properties
hold:

1. for any two values e1 and e2 on positions i and j resp.
in the input list, with i < j, either e2 does not occur in
the output list, or e1 and e2 occur in the output list on
positions i′, j′ resp., with i′ < j′.

2. For any two values e1 and e2 on positions i′ and j′

resp. in the output list, with i′ < j′, e1 and e2 occur on
positions i and j resp. in the input list with i < j.

– p.40

Environment abstraction for PAR

That gives the following idea of an abstraction:
we distinguish two natural numbers n1, n2, which are
abstracted into e1, e2 respectively, while all the other
naturals are non-distinguishable and they are abstracted
into an abstract element ne.

– p.41

Environment abstraction for PAR

Thus the abstract version of PAR can transmit messages
e1, e2, ne.

The sender environment sends sequences
ne*e1ne*e2ne*.

The receiver environment expects to receive sequences
ne*e1ne*e2ne* and reports an error in case it gets an
unexpected message.

– p.42

Assignement 2

Abstract the timer at the sender side in your Promela
model of PAR, define an abstract environment, formulate
the correctness property first in the textual form, then
formalise it, check it with Spin for several timer settings.

– p.43

Assignement 2

List abstraction. We abstract naturals p1, p2 into e1, e2 resp., while all
the other naturals are abstracted into ne.
An arbitrary list of naturals is represented by its abstracted head
element, an abstract representation of the whole list, which is of the
form epsl, e1l, e2l, e1e2l, e2e1l, error, and, the information whether it
is an empty or a one-element list. Here, error is an abstraction for an
"incorrect" list, i.e. a list with duplicated elements; epsl represents
correct lists where no e1 and no e2 occur, e1l, e2l are representations
of correct lists where only e1 (e2 resp.) occurs; e1e2l, e2e1l represent
lists where both e1 and e2 occur, in the corresponding orders. Define a
data type for abstract lists in Promela and abstract versions the
operation of removing the head element from the list.

– p.44

	
	The elevator example once more
	System behaviour
	From your model to LTS
	The wish-list
	A first candidate: Trace equivalence
	2: Completed-trace equivalence
	2: Completed-trace equivalence
	3: Bisimulation equivalence
	Example
	Game interpretation
	Game interpretation (2)
	Bisimilarity is an equivalence relation
	Property preservation
	
ormalsize {Equiv.-preserving transf. and Software Design}
	
	Abstractions in our life
	Abstractions in our life
	Abstractions in computing
	Why abstractions?
	Abstract to verify
	Abstraction
	Bisimulation and trace equivalence
	Simulation preorder
	Property preservation
	Basic idea
	Basic idea
	Basic idea
	Another example
	Data abstractions
	An example of data abstraction
	Safety statement
	In practice
	Timer abstraction for PAR
	Timer abstraction
	Timer abstraction
	PAR verification
	Data independence
	Data independence
	PAR property
	Environment abstraction for PAR
	Environment abstraction for PAR
	Assignement 2
	Assignement 2

