
Abstraction Techniques

Natalia Sidorova



More on abstractions

abstract guards

abstractions and deadlocks

abstraction by restriction

– p.1



Abstracting guards

We apply pos,0,neg abstraction for Z.
We want to abstract

if
:: (x > 3) -> dosomething1
:: (x < -3) -> dosomething2
:: else -> dosomething3
fi

What do we get then?

– p.2



Abstracting guards
We want to have more behaviour.

For all numbers abstracted to neg or 0, x > 3 is false.
There are numbers abstracted to pos such that x > 3 is
true. So, x > 3 is abstracted to x == pos.

For all numbers abstracted to pos or 0, x < -3 is false.
There are numbers abstracted to neg such that x < -3 is
true. So, x < -3 is abstracted to x == neg.

“else” means here -3 ≤ x ≤ 3.
There are numbers abstracted to pos, 0, and neg that
satisfy it. So “else” is abstracted to true.

– p.3



Abstracting guards
if
:: (x > 3) -> dosomething1
:: (x < -3) -> dosomething2
:: else -> dosomething3
fi
becomes
if
:: x == pos -> abstract-dosomething1
:: x == neg -> abstract-dosomething2
:: abstract-dosomething3
fi

Can you propose a (possibly) better abstraction for this
example?

– p.4



Abstracting guards
What about abstracting
if
:: (x == y) -> dosomething1
:: else -> dosomething2
fi

if you have pos, 0, neg abstraction?

O – p.5



Abstracting guards
What about abstracting
if
:: (x == y) -> dosomething1
:: else -> dosomething2
fi

if you have pos, 0, neg abstraction?

if
:: (x == y) -> abstract-dosomething1
:: !(x == 0 && y == 0) -> abstract-dosomething2
fi

– p.5



Abstraction and deadlocks
if
:: x > 0 -> dosomething1
:: x < 0 -> dosomething2
fi
Note that there is no “else” option and we get deadlock
when x == 0.

Now apply an abstraction that maps nonnegative
numbers to nonneg and negative numbers to neg.
What happens then?

O – p.6



Abstraction and deadlocks
if
:: x > 0 -> dosomething1
:: x < 0 -> dosomething2
fi
Note that there is no “else” option and we get deadlock
when x == 0.

Now apply an abstraction that maps nonnegative
numbers to nonneg and negative numbers to neg.
What happens then?

Conclusion: Abstracting a system, we can lose
deadlocks. Thus, the abstract system having no
deadlock does not imply the concrete system has none.

– p.6



Abstraction and deadlocks
Consider pos, 0, neg abstraction again and
/* invariant x == y here */
if
:: (x == y) -> dosomething1
:: else -> goto deadlock-state
fi

In the abstract system,

if
:: (x == y) -> abstract-dosomething1
:: !(x == 0 && y == 0) -> goto deadlock-state
fi

O – p.7



Abstraction and deadlocks
Consider pos, 0, neg abstraction again and
/* invariant x == y here */
if
:: (x == y) -> dosomething1
:: else -> goto deadlock-state
fi

In the abstract system,

if
:: (x == y) -> abstract-dosomething1
:: !(x == 0 && y == 0) -> goto deadlock-state
fi

Thus, we can introduce new deadlocks with abstraction,
namely, unreachable deadlocks can become reachable. – p.7



Abstraction by restriction

Goal: Forbid some behaviour.

Useful for the debugging: to prove that some LTL
property does not hold.

Done by removing states, transitions, or strengthening
the guards.

– p.8



More on abstractions

Chapter 11 of Berard et al., Systems and Software
Verification

– p.9



Abstraction for Petri nets

Data abstraction for coloured Petri nets: the same as
data abstraction we considered.

Place fusion and addition of transitions to add
behaviour

Place replacement and removing of transitions to
restrict the behaviour

– p.10



Place fusion
Let B ⊆ P × P be an equivalence relation. Then N can
be reduced by fusing B-equivalent places into a single
place. We get a new net N/B.
The transitions are untouched but the arcs between
places and transitions follow the fusion process:
if •t (resp. t•) is {p1, . . . , pk} in N ,
then in N/B, •t (resp. t•) is {p1/B, . . . , pk/B}.
A marking M in N is fused into a marking m = M/B.

We fused places p2 and p4 here.
– p.11



Place fusion
Fusing places only adds new behaviour.

If M
t

−→ M ′ in N , then M/B
t

−→ M ′/B in N/B.

– p.12



Place replacement
Let h : P → P be a projection, i.e. ∀p ∈ P : h(h(p)) = h(p).
Place p can be replaced by h(p) if h(p) 6= p.
The resulting net is denoted h(N).

h(N) is obtained by redirecting all output edges of
transitions to place projections:
if t• = M = {p1, . . . , pk} in N , h(M) = {h(p1), . . . , h(pk)} in
h(N).

All places not in h(P ) are removed, all transitions lost one
or more input places are removed.

A marking M in N yields a marking m = h(M) in h(N). m
and M have the same number of tokens.

– p.13



Place replacement

We replaced place p3 by place p4 here; t3 is removed
since it is an output transition of p3.

Replacing places modify the behaviour in the following
way:

If m
t

−→ m′ in h(N), then m
t

−→ M ′ in N for some M ′ s.t.
h(M ′) = m′.

– p.14



Petri net reduction techniques
Goal: to preserve such Petri net properties as liveness,
safeness and boundedness.
The simplest transformations: (see [Murata1989])

– p.15



Petri net reduction techniques
Goal: to preserve such Petri net properties as liveness,
safeness and boundedness.
The simplest transformations: (see [Murata1989])

– p.16



Fusion of series places/transitions

– p.17



Fusion of parallel places/transitions

– p.18



Elimination of self-loop places/trans.

– p.19



Homework

Prove that the Petri net given in Fig. 5.1 (the upper net),
p.90 of [Desel, Esparza] is live and bounded by applying
reduction techniques preserving liveness, boundedness
and safeness.

– p.20


	More on abstractions
	Abstracting guards
	Abstracting guards
	Abstracting guards
	Abstracting guards
	Abstraction and deadlocks
	Abstraction and deadlocks
	Abstraction by restriction
	More on abstractions
	Abstraction for Petri nets
	Place fusion
	Place fusion
	Place replacement
	Place replacement
	Petri net reduction techniques
	Petri net reduction techniques
	Fusion of series places/transitions
	Fusion of parallel places/transitions
	Elimination of self-loop places/trans.
	Homework

