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More on abstractions

abstract guards

abstractions and deadlocks

abstraction by restriction
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Abstracting guards

We apply pos,0,neg abstraction for Z.
We want to abstract

if
:: (x > 3) -> dosomething1
:: (x < -3) -> dosomething2
:: else -> dosomething3
fi

What do we get then?
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Abstracting guards
We want to have more behaviour.

For all numbers abstracted to neg or 0, x > 3 is false.
There are numbers abstracted to pos such that x > 3 is
true. So, x > 3 is abstracted to x == pos.

For all numbers abstracted to pos or 0, x < -3 is false.
There are numbers abstracted to neg such that x < -3 is
true. So, x < -3 is abstracted to x == neg.

“else” means here -3 ≤ x ≤ 3.
There are numbers abstracted to pos, 0, and neg that
satisfy it. So “else” is abstracted to true.
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Abstracting guards
if
:: (x > 3) -> dosomething1
:: (x < -3) -> dosomething2
:: else -> dosomething3
fi
becomes
if
:: x == pos -> abstract-dosomething1
:: x == neg -> abstract-dosomething2
:: abstract-dosomething3
fi

Can you propose a (possibly) better abstraction for this
example?
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Abstracting guards
What about abstracting
if
:: (x == y) -> dosomething1
:: else -> dosomething2
fi

if you have pos, 0, neg abstraction?
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Abstracting guards
What about abstracting
if
:: (x == y) -> dosomething1
:: else -> dosomething2
fi

if you have pos, 0, neg abstraction?

if
:: (x == y) -> abstract-dosomething1
:: !(x == 0 && y == 0) -> abstract-dosomething2
fi
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Abstraction and deadlocks
if
:: x > 0 -> dosomething1
:: x < 0 -> dosomething2
fi
Note that there is no “else” option and we get deadlock
when x == 0.

Now apply an abstraction that maps nonnegative
numbers to nonneg and negative numbers to neg.
What happens then?
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Abstraction and deadlocks
if
:: x > 0 -> dosomething1
:: x < 0 -> dosomething2
fi
Note that there is no “else” option and we get deadlock
when x == 0.

Now apply an abstraction that maps nonnegative
numbers to nonneg and negative numbers to neg.
What happens then?

Conclusion: Abstracting a system, we can lose
deadlocks. Thus, the abstract system having no
deadlock does not imply the concrete system has none.
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Abstraction and deadlocks
Consider pos, 0, neg abstraction again and
/* invariant x == y here */
if
:: (x == y) -> dosomething1
:: else -> goto deadlock-state
fi

In the abstract system,

if
:: (x == y) -> abstract-dosomething1
:: !(x == 0 && y == 0) -> goto deadlock-state
fi
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Abstraction and deadlocks
Consider pos, 0, neg abstraction again and
/* invariant x == y here */
if
:: (x == y) -> dosomething1
:: else -> goto deadlock-state
fi

In the abstract system,

if
:: (x == y) -> abstract-dosomething1
:: !(x == 0 && y == 0) -> goto deadlock-state
fi

Thus, we can introduce new deadlocks with abstraction,
namely, unreachable deadlocks can become reachable. – p.7



Abstraction by restriction

Goal: Forbid some behaviour.

Useful for the debugging: to prove that some LTL
property does not hold.

Done by removing states, transitions, or strengthening
the guards.
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More on abstractions

Chapter 11 of Berard et al., Systems and Software
Verification
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Abstraction for Petri nets

Data abstraction for coloured Petri nets: the same as
data abstraction we considered.

Place fusion and addition of transitions to add
behaviour

Place replacement and removing of transitions to
restrict the behaviour
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Place fusion
Let B ⊆ P × P be an equivalence relation. Then N can
be reduced by fusing B-equivalent places into a single
place. We get a new net N/B.
The transitions are untouched but the arcs between
places and transitions follow the fusion process:
if •t (resp. t•) is {p1, . . . , pk} in N ,
then in N/B, •t (resp. t•) is {p1/B, . . . , pk/B}.
A marking M in N is fused into a marking m = M/B.

We fused places p2 and p4 here.
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Place fusion
Fusing places only adds new behaviour.

If M
t

−→ M ′ in N , then M/B
t

−→ M ′/B in N/B.
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Place replacement
Let h : P → P be a projection, i.e. ∀p ∈ P : h(h(p)) = h(p).
Place p can be replaced by h(p) if h(p) 6= p.
The resulting net is denoted h(N).

h(N) is obtained by redirecting all output edges of
transitions to place projections:
if t• = M = {p1, . . . , pk} in N , h(M) = {h(p1), . . . , h(pk)} in
h(N).

All places not in h(P ) are removed, all transitions lost one
or more input places are removed.

A marking M in N yields a marking m = h(M) in h(N). m
and M have the same number of tokens.

– p.13



Place replacement

We replaced place p3 by place p4 here; t3 is removed
since it is an output transition of p3.

Replacing places modify the behaviour in the following
way:

If m
t

−→ m′ in h(N), then m
t

−→ M ′ in N for some M ′ s.t.
h(M ′) = m′.
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Petri net reduction techniques
Goal: to preserve such Petri net properties as liveness,
safeness and boundedness.
The simplest transformations: (see [Murata1989])
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Petri net reduction techniques
Goal: to preserve such Petri net properties as liveness,
safeness and boundedness.
The simplest transformations: (see [Murata1989])
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Fusion of series places/transitions
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Fusion of parallel places/transitions
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Elimination of self-loop places/trans.
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Homework

Prove that the Petri net given in Fig. 5.1 (the upper net),
p.90 of [Desel, Esparza] is live and bounded by applying
reduction techniques preserving liveness, boundedness
and safeness.
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