# **Abstraction Techniques**

Natalia Sidorova

#### More on abstractions

- abstract guards
- abstractions and deadlocks
- abstraction by restriction



We apply pos,0,neg abstraction for  $\mathbb{Z}$ . We want to abstract

```
if
:: (x > 3) -> dosomething1
:: (x < -3) -> dosomething2
:: else -> dosomething3
fi
```

What do we get then?

We want to have more behaviour.

For all numbers abstracted to neg or 0, x > 3 is false. There are numbers abstracted to pos such that x > 3 is true. So, x > 3 is abstracted to x == pos.

For all numbers abstracted to pos or 0, x < -3 is false. There are numbers abstracted to neg such that x < -3 is true. So, x < -3 is abstracted to x ==neg.

"else" means here  $-3 \le x \le 3$ .

There are numbers abstracted to pos, 0, and neg that satisfy it. So "else" is abstracted to true.



```
if
:: (x > 3) \rightarrow dosomething 1
:: (x < -3) \rightarrow dosomething 2
:: else -> dosomething3
fi
becomes
if
:: x == pos -> abstract-dosomething1
:: x == neg -> abstract-dosomething2
:: abstract-dosomething3
fi
```

Can you propose a (possibly) better abstraction for this example?

```
What about abstracting
```

```
if
:: (x == y) -> dosomething1
:: else -> dosomething2
fi
```

if you have pos, 0, neg abstraction?

```
What about abstracting
if
:: (x == y) \rightarrow dosomething1
:: else -> dosomething2
fi
if you have pos, 0, neg abstraction?
if
:: (x == y) -> abstract-dosomething1
:: !(x == 0 \&\& y == 0) \rightarrow abstract-dosomething2
fi
```

```
if
:: x > 0 -> dosomething1
:: x < 0 -> dosomething2
fi
```

Note that there is no "else" option and we get deadlock when x == 0.

Now apply an abstraction that maps nonnegative numbers to nonneg and negative numbers to neg. What happens then?



```
if
:: x > 0 -> dosomething1
:: x < 0 -> dosomething2
fi
```

Note that there is no "else" option and we get deadlock when x == 0.

Now apply an abstraction that maps nonnegative numbers to nonneg and negative numbers to neg. What happens then?

Conclusion: Abstracting a system, we can lose deadlocks. Thus, the abstract system having no deadlock does not imply the concrete system has none.

Consider pos, 0, neg abstraction again and /\* invariant x == y here \*/
if
:: (x == y) -> dosomething1
:: else -> goto deadlock-state
fi

In the abstract system,

```
if
:: (x == y) -> abstract-dosomething1
:: !(x == 0 && y == 0) -> goto deadlock-state
fi
```

Consider pos, 0, neg abstraction again and /\* invariant x == y here \*/
if
:: (x == y) -> dosomething1
:: else -> goto deadlock-state
fi

In the abstract system,

```
if
:: (x == y) -> abstract-dosomething1
:: !(x == 0 && y == 0) -> goto deadlock-state
fi
```

Thus, we can introduce new deadlocks with abstraction, namely, unreachable deadlocks can become reachable.

### Abstraction by restriction

Goal: Forbid some behaviour.

Useful for the debugging: to prove that some LTL property does not hold.

Done by removing states, transitions, or strengthening the guards.



#### More on abstractions

Chapter 11 of Berard et al., Systems and Software Verification



#### **Abstraction for Petri nets**

- Data abstraction for coloured Petri nets: the same as data abstraction we considered.
- Place fusion and addition of transitions to add behaviour
- Place replacement and removing of transitions to restrict the behaviour



#### Place fusion

Let  $B \subseteq P \times P$  be an equivalence relation. Then N can be reduced by fusing B-equivalent places into a single place. We get a new net N/B.

The transitions are untouched but the arcs between places and transitions follow the fusion process:

if  ${}^{\bullet}t$  (resp.  $t^{\bullet}$ ) is  $\{p_1,\ldots,p_k\}$  in N,

then in N/B,  $\bullet t$  (resp.  $t^{\bullet}$ ) is  $\{p_1/B, \ldots, p_k/B\}$ .

A marking M in N is fused into a marking m = M/B.



We fused places  $p_2$  and  $p_4$  here.

### **Place fusion**

Fusing places only adds new behaviour.

If  $M \xrightarrow{t} M'$  in N, then  $M/B \xrightarrow{t} M'/B$  in N/B.



### Place replacement

Let  $h: P \to P$  be a projection, i.e.  $\forall p \in P: h(h(p)) = h(p)$ . Place p can be replaced by h(p) if  $h(p) \neq p$ . The resulting net is denoted h(N).

h(N) is obtained by redirecting all output edges of transitions to place projections:

if 
$$t^{\bullet} = M = \{p_1, \dots, p_k\}$$
 in  $N$ ,  $h(M) = \{h(p_1), \dots, h(p_k)\}$  in  $h(N)$ .

All places not in h(P) are removed, all transitions lost one or more input places are removed.

A marking M in N yields a marking m = h(M) in h(N). m and M have the same number of tokens.

### Place replacement



We replaced place  $p_3$  by place  $p_4$  here;  $t_3$  is removed since it is an output transition of  $p_3$ .

Replacing places modify the behaviour in the following way:

If  $m \xrightarrow{t} m'$  in h(N), then  $m \xrightarrow{t} M'$  in N for some M' s.t. h(M') = m'.

### Petri net reduction techniques

Goal: to preserve such Petri net properties as liveness, safeness and boundedness.

The simplest transformations: (see [Murata1989])



### Petri net reduction techniques

Goal: to preserve such Petri net properties as liveness, safeness and boundedness.

The simplest transformations: (see [Murata1989])



# Fusion of series places/transitions





# Fusion of parallel places/transitions



# Elimination of self-loop places/trans.



#### Homework

Prove that the Petri net given in Fig. 5.1 (the upper net), p.90 of [Desel, Esparza] is live and bounded by applying reduction techniques preserving liveness, boundedness and safeness.

