Liveness In free-choice systems

Natalia Sidorova



Free-choice nets (def.1)

AnetN = (S, T, F) is free-choicdff for every two
placess,r € S eithers* Nr®* =0 or s® = r°.



Free-choice nets (def.1)

AnetN = (S, T, F) is free-choicdff for every two
placess,r € S eithers* Nr®* =0 or s® = r°.

o s




Free-choice nets (def.1)

AnetN = (S, T, F) is free-choicdff for every two
placess,r € S eithers* Nr®* =0 or s® = r°.

wowE




Free-choice nets (def.1)

AnetN = (S, T, F) is free-choicdff for every two
placess,r € S eithers* Nr®* =0 or s® = r°.

wowE




Free-choice nets (def.1)

AnetN = (S, T, F) is free-choicdff for every two
placess,r € S eithers* Nr®* =0 or s® = r°.

wowE

Property of free-choice nets (4.3)
If a marking M/ enables some transition gf
then it enables every transition #f.
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AnetN = (S, T, F) is free-choicdff
for every places € S and transitiont € 7,

(s,t) € F'implies®t x s* C F.
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AnetN = (S, T, F) is free-choicaff for every two
placess, » € S and two transitions, u € 7T,

{(s,1),(r,t),(s,u)} C Fimplies(r,u) € F.

def.3 = def.4

Exercise:Prove thadef.1 = def.3
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A set R of places is asiphonif *R C R°.
A siphon is aoroper siphonf it is not empty.

Unmar

Ked siphons remain unmarked

Live systems have no unmarked siphons.
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Siphons (2)
Deadlocked systems have an unmarked proper si

Let (IV, M,) be a deadlocked system (no transition
can fire). Then the sdt of places unmarked dt/ Is
aproper siphon

Every transition has an unmarked input placé/&t
(otherwise it would be enabled).

Hence all transitions are IR®.

Then*R C R* andR is a proper siphor.

If all proper siphons are marked at every reach
marking, the system is deadlock-free.
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Marked traps remain marked.
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SUitTicient condition 1or aeadlock
freedom

If every proper siphon of a system includes an Initi
marked trap, then the system is deadlock-free.

Assume some reachable markimfis dead.

The setR of places unmarked &t/ is proper siphon.
Every marked trap remains marked.

Hence,R includes no initially marked trap.]



Commoner’s Theorem

A free-choice system is live if and only Iif every
proper syphon includes an initially marked trap.

Property of free-choice systems:

Place-liveness and liveness coincide in free-choic
systems.
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siphons (R C R°®):
Rl — {plap4ap3}1
RZ — {p17p27p37p4}

Is there marked tra@: () C R;?
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Example
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() Is atrap. Hencep*® C *Q).

Q L= R11 .e. Q L= {p17p47p3}

Check If there exists € () andt € s°*
such that &€ °Q).

Ifyes,@ = Q \ {s}.
Q) = Ry, @ is marked,N is live.
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Algorithm for deciding liveness

Given: a free-choice systemmV, M,).
Question is N not live?

1. take a set of places C Py;
2. check IfR I1s syphon;

3. If RIs syphon, compute the maximal trgp
Included InR,;

4. if My(Q) = 0 thenN isnot live.

Non-liveness problem of free-choice systems is
NP-complete
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Minimal siphons

A siphon isminimalif it is proper and does not
Include any other proper siphon.

The union of siphons is a siphon.
Every proper siphon contains a minimal one.

A free-choice system is live if and only If every
minimal siphon includes an initially marked trap
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Property of clusters

The set{|z]| = is a node ofV} is a partition of the
nodes ofN.
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In free-choice nets, each place of a clustey
connected to every transitiarof c.
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Property of clusters

The set{|z]| = is a node ofV} is a partition of the
nodes ofN.

/@
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If a marking of a free-choice net enables a transitig
then it enables every transition of the clugter
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Minimal siphons (2)

A nonempty set of placeB of a free-choice ned is
aminimal siphoniff:

1. every cluster: of N contains at most one place
R and

2. the subnet generated B * R Is strongly
connected.
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Minimal siphons (2)

A nonempty set of placeB of a free-choice neV is
aminimal siphonff:

1. every cluster: of N contains at most one place
R and

2. the subnet generated B * R Is strongly
connected.
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Literature
Chapter 4 in [Desel, Esparza]

—p.1



Structural analysis for
Workflow nets



Workflow nets
A Petri netNV is aWorkflow net (WF-net)ff:

e N has two special places (or transitions):
aninitial place (transitionj: *; = (), and
afinal place (transition): f* = 0.

e For any noder € (P U T) there exists a path
from: to n and a path fromm to f.

A

O~

Applications:business process modelling,
software engineering, ....

O-

N
o,
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Soundness
Desired property: proper completion

A WF-net NV Is soundiff:

« For every markingy/ reachable frony], there
exists a firing sequence leading|10.

e There are no dead transitions(i, |i|).

- p.2



Refinement of Workflow Nets

Place refinementN = L ®, M
Being at some location (place of the net) resource
(tokens) undergo a number of operations.

Transition refinementN = L @, M
A single task on a higher level becomes a sequen

subtasks also involving choice and parallelism.

- p.2
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Refilnements and soundness

N and M are “sound”, butV @, M 1S not!
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Generalised soundness

A sWF-netN with initial and final places and f
resp. isk-sound for k € N iff [f*] is reachable from
all markingsm from M(N, [i*]).

A tWF-net NV with initial and final transitions;, ¢
respectively Is k-sound iff the sWF-net formed by
adding toSy placesp;, p with

*pi = 0,p; = [ti], *ps = [ts], p} = 0 is k-sound.

A WF-net issound iff it Is £-sound for every natural.
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rRerinements and generalised
soundness

Soundness preservation
Let N = L ®,, M be a refinement built of sound
WF-netsL, M. Then/N Is sound.

—p.2



Old vs. new soundness

A WF-net NV Is soundiff:

| f] is reachable from any marking from
M(N, [i]).
e There are no dead transitions(i, [i|).

A WF-net N is soundiff [f*] is reachable from all
markingsm from M (N, [i*]), for any fork € N.

- p.2



Structural non-redundancy

OG-

fd/

Bl

Q-

0

 Non-redundancyevery transition can potentiall
fire and every place can potentially obtain toke
provided that there are enough tokens on the

Initial place.

« Persistencyit should be possible for every plac

(except forf) to become unmarked again—

otherwise the net is guaranteed to be not sout
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Siphons

A set R of places is asiphonif *R C R°.
A siphon is aoroper siphonf it is not empty.
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Siphons

A set R of places is asiphonif *R C R°.
A siphon is aoroper siphonf it is not empty.

Unmarked siphons remain unmarked



Non-redundancy criterion

« A WF-net has no redundant placesHf\ {:}
contains no proper siphon.

A WF-net has no redundant places iff it has nc
redundant transitions.

O~

o

-0

B

5 B8
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Non-redundancy check

Compute the largest siphotiin P\ {:} in a standar
manner [Starke]:

input : A PetrinetN = (P, T, F*, F~)andS C P;
output: X C S,

X =5,

while there exisp € X andt € *p such that € X*
do X =X \{p};

return(X);

-p.3



Traps

A set R of places is drapif R* C *R.
A trap Is aproper tragf it Is not empty.
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A set R of places is drapif R* C *R.
A trap is aproper tragf it Is not empty.
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Traps

A set R of places is drapif R* C *R.
A trap is aproper tragf it Is not empty.
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Marked traps remain marked.
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Non-persistency criterion

A WEF-net has no persistent placesff\ { f}
contains no proper trap.
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Correcting workflow nets

Let a WF-netV be given.

First, find a maximal siphoX in P \ {i}.
All places fromX are redundant=
Transitions fromX* are redundant as wekl>

(N1, k|t]) obtained by removing places froi and
transitions fromX*® is WF-bisimilar to(/V, k|i|) for
anyk.

Nj is either not a WF-net any more and Sowas
ll-designed,
or V; Is a WF-net, which is an improved version gt

Check whetherV; has persistent places. If yes,; Is
not a sound WF-net. Otherwise, we can work wkh
Instead ofV.
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Petri net reduction technigues

Goal:to preserve such Petri net properties as liver
safeness and boundedness.
The simplest transformations: (see [Muratal989])
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Fusion of series places/transitions
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Fusion of parallel places/transitions




Elimination of self-loop places/trans.
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