Liveness in free-choice systems

Natalia Sidorova

Free-choice nets (def.1)

A net $N=\langle S, T, F\rangle$ is free-choice iff for every two places $s, r \in S$ either $s^{\bullet} \cap r^{\bullet}=\emptyset$ or $s^{\bullet}=r^{\bullet}$.

Free-choice nets (def.1)

A net $N=\langle S, T, F\rangle$ is free-choice iff for every two places $s, r \in S$ either $s^{\bullet} \cap r^{\bullet}=\emptyset$ or $s^{\bullet}=r^{\bullet}$.

Free-choice nets (def.1)

A net $N=\langle S, T, F\rangle$ is free-choice iff for every two places $s, r \in S$ either $s^{\bullet} \cap r^{\bullet}=\emptyset$ or $s^{\bullet}=r^{\bullet}$.

Free-choice nets (def.1)

A net $N=\langle S, T, F\rangle$ is free-choice iff for every two places $s, r \in S$ either $s^{\bullet} \cap r^{\bullet}=\emptyset$ or $s^{\bullet}=r^{\bullet}$.

Free-choice nets (def.1)

A net $N=\langle S, T, F\rangle$ is free-choice iff for every two places $s, r \in S$ either $s^{\bullet} \cap r^{\bullet}=\emptyset$ or $s^{\bullet}=r^{\bullet}$.

Property of free-choice nets (4.3)
If a marking M enables some transition of s^{\bullet} then it enables every transition of s^{\bullet}.

Free-choice nets (def.2)

A net $N=\langle S, T, F\rangle$ is free-choice iff for every two transitions $t, u \in T$ either ${ }^{\bullet} t \cap^{\bullet} u=\emptyset$ or ${ }^{\bullet} t={ }^{\bullet} u$.

Free-choice nets (def.2)

A net $N=\langle S, T, F\rangle$ is free-choice iff for every two transitions $t, u \in T$ either ${ }^{\bullet} t \cap^{\bullet} u=\emptyset$ or ${ }^{\bullet} t={ }^{\bullet} u$.

Free-choice nets (def.2)

A net $N=\langle S, T, F\rangle$ is free-choice iff for every two transitions $t, u \in T$ either ${ }^{\bullet} t \cap^{\bullet} u=\emptyset$ or ${ }^{\bullet} t={ }^{\bullet} u$.

Free-choice nets (def.2)

A net $N=\langle S, T, F\rangle$ is free-choice iff for every two transitions $t, u \in T$ either ${ }^{\bullet} t \cap^{\bullet} u=\emptyset$ or ${ }^{\bullet} t={ }^{\bullet} u$.

def. 1 = def. 2

$\forall s, r \in S: s^{\bullet} \cap r^{\bullet}=\emptyset \vee s^{\bullet}=r^{\bullet}$. (1)
$\forall t, u \in T:{ }^{\bullet} t \cap^{\bullet} u=\emptyset \vee^{\bullet} t={ }^{\bullet} u$. (2)

def. $1=$ def. 2

$$
\begin{aligned}
& \forall s, r \in S: s^{\bullet} \cap r^{\bullet}=\emptyset \vee s^{\bullet}=r^{\bullet} \text {. (1) } \\
& \forall t, u \in T:{ }^{\bullet} t \cap \bullet u=\emptyset \vee \bullet t={ }^{\bullet} u .(2)
\end{aligned}
$$

(\Rightarrow) : Let (1) hold and $t, u \in T$.
If ${ }^{\bullet} t \cap{ }^{\bullet} u=\emptyset$ then done.
If ${ }^{\bullet} t \cap{ }^{\bullet} u \neq \emptyset$ then we must prove ${ }^{\bullet} t={ }^{\bullet} u$, i.e.
${ }^{\bullet} t \subseteq{ }^{\bullet} u$ and ${ }^{\bullet} u \subseteq{ }^{\bullet} t$.

def. $1=$ def. 2

$$
\begin{aligned}
& \forall s, r \in S: s^{\bullet} \cap r^{\bullet}=\emptyset \vee s^{\bullet}=r^{\bullet} .(1) \\
& \forall t, u \in T: \bullet \cap^{\bullet} u=\emptyset \vee \bullet t={ }^{\bullet} u .(2)
\end{aligned}
$$

(\Rightarrow) : Let (1) hold and $t, u \in T$.
If ${ }^{\bullet} t \cap^{\bullet} u=\emptyset$ then done.
If ${ }^{\bullet} t \cap{ }^{\bullet} u \neq \emptyset$ then we must prove ${ }^{\bullet} t={ }^{\bullet} u$, i.e.
${ }^{\bullet} t \subseteq{ }^{\bullet} u$ and ${ }^{\bullet} u \subseteq{ }^{\bullet} t$.
Let $s \in{ }^{\bullet} t \cap^{\bullet} u$. We must prove $\forall r: r \in{ }^{\bullet} t: r \in{ }^{\bullet} u$.

def. $1=$ def. 2

$$
\begin{aligned}
& \forall s, r \in S: s^{\bullet} \cap r^{\bullet}=\emptyset \vee s^{\bullet}=r^{\bullet} .(1) \\
& \forall t, u \in T:{ }^{\bullet} t \cap \bullet u=\emptyset \vee \bullet t={ }^{\bullet} u .(2)
\end{aligned}
$$

(\Rightarrow) : Let (1) hold and $t, u \in T$.
If ${ }^{\bullet} t \cap{ }^{\bullet} u=\emptyset$ then done.
If ${ }^{\bullet} t \cap{ }^{\bullet} u \neq \emptyset$ then we must prove ${ }^{\bullet} t={ }^{\bullet} u$, i.e.
${ }^{\bullet} t \subseteq{ }^{\bullet} u$ and ${ }^{\bullet} u \subseteq{ }^{\bullet} t$.
Let $s \in{ }^{\bullet} t \cap{ }^{\bullet} u$. We must prove $\forall r: r \in{ }^{\bullet} t: r \in{ }^{\bullet} u$. Let $r \in{ }^{\bullet} t$. We have $t \in s^{\bullet}, u \in s^{\bullet}, t \in r^{\bullet}$.

def. $1=$ def. 2

$$
\begin{aligned}
& \forall s, r \in S: s^{\bullet} \cap r^{\bullet}=\emptyset \vee s^{\bullet}=r^{\bullet} .(1) \\
& \forall t, u \in T:{ }^{\bullet} t \cap \bullet u=\emptyset \vee \bullet t=\bullet u .(2)
\end{aligned}
$$

(\Rightarrow) : Let (1) hold and $t, u \in T$.
If ${ }^{\bullet} t \cap^{\bullet} u=\emptyset$ then done.
If ${ }^{\bullet} t \cap{ }^{\bullet} u \neq \emptyset$ then we must prove ${ }^{\bullet} t={ }^{\bullet} u$, i.e.
${ }^{\bullet} t \subseteq{ }^{\bullet} u$ and ${ }^{\bullet} u \subseteq{ }^{\bullet} t$.
Let $s \in{ }^{\bullet} t \cap{ }^{\bullet} u$. We must prove $\forall r: r \in{ }^{\bullet} t: r \in{ }^{\bullet} u$. Let $r \in^{\bullet} t$. We have $t \in s^{\bullet}, u \in s^{\bullet}, t \in r^{\bullet}$. Hence, $t \in\left(s^{\bullet} \cap r^{\bullet}\right)$, i.e. $s^{\bullet} \cap r^{\bullet} \neq \emptyset$.

def. $1=$ def. 2

$$
\begin{aligned}
& \forall s, r \in S: s^{\bullet} \cap r^{\bullet}=\emptyset \vee s^{\bullet}=r^{\bullet} .(1) \\
& \forall t, u \in T:{ }^{\bullet} t \cap \bullet u=\emptyset \vee \bullet t=\bullet u .(2)
\end{aligned}
$$

(\Rightarrow) : Let (1) hold and $t, u \in T$.
If ${ }^{\bullet} t \cap^{\bullet} u=\emptyset$ then done.
If ${ }^{\bullet} t \cap{ }^{\bullet} u \neq \emptyset$ then we must prove ${ }^{\bullet} t={ }^{\bullet} u$, i.e.
${ }^{\bullet} t \subseteq{ }^{\bullet} u$ and ${ }^{\bullet} u \subseteq{ }^{\bullet} t$.
Let $s \in{ }^{\bullet} t \cap{ }^{\bullet} u$. We must prove $\forall r: r \in{ }^{\bullet} t: r \in{ }^{\bullet} u$. Let $r \in{ }^{\bullet} t$. We have $t \in s^{\bullet}, u \in s^{\bullet}, t \in r^{\bullet}$. Hence, $t \in\left(s^{\bullet} \cap r^{\bullet}\right)$, i.e. $s^{\bullet} \cap r^{\bullet} \neq \emptyset$.
(1) implies that $s^{\bullet}=r^{\bullet}$.

def. $1=$ def. 2

$$
\begin{aligned}
& \forall s, r \in S: s^{\bullet} \cap r^{\bullet}=\emptyset \vee s^{\bullet}=r^{\bullet} .(1) \\
& \forall t, u \in T:{ }^{\bullet} t \cap \bullet u=\emptyset \vee \bullet t={ }^{\bullet} u .(2)
\end{aligned}
$$

(\Rightarrow) : Let (1) hold and $t, u \in T$.
If ${ }^{\bullet} t \cap{ }^{\bullet} u=\emptyset$ then done.
If ${ }^{\bullet} t \cap{ }^{\bullet} u \neq \emptyset$ then we must prove ${ }^{\bullet} t={ }^{\bullet} u$, i.e.
${ }^{\bullet} t \subseteq{ }^{\bullet} u$ and ${ }^{\bullet} u \subseteq{ }^{\bullet} t$.
Let $s \in{ }^{\bullet} t \cap{ }^{\bullet} u$. We must prove $\forall r: r \in{ }^{\bullet} t: r \in{ }^{\bullet} u$. Let $r \in{ }^{\bullet} t$. We have $t \in s^{\bullet}, u \in s^{\bullet}, t \in r^{\bullet}$. Hence, $t \in\left(s^{\bullet} \cap r^{\bullet}\right)$, i.e. $s^{\bullet} \cap r^{\bullet} \neq \emptyset$.
(1) implies that $s^{\bullet}=r^{\bullet}$.

Since $u \in s^{\bullet}, u \in r^{\bullet}$ as well.

def. $1=$ def. 2

$$
\begin{aligned}
& \forall s, r \in S: s^{\bullet} \cap r^{\bullet}=\emptyset \vee s^{\bullet}=r^{\bullet} .(1) \\
& \forall t, u \in T:{ }^{\bullet} t \cap \bullet u=\emptyset \vee \bullet t={ }^{\bullet} u .(2)
\end{aligned}
$$

(\Rightarrow) : Let (1) hold and $t, u \in T$.
If ${ }^{\bullet} t \cap{ }^{\bullet} u=\emptyset$ then done.
If ${ }^{\bullet} t \cap{ }^{\bullet} u \neq \emptyset$ then we must prove ${ }^{\bullet} t={ }^{\bullet} u$, i.e.
${ }^{\bullet} t \subseteq{ }^{\bullet} u$ and ${ }^{\bullet} u \subseteq{ }^{\bullet} t$.
Let $s \in{ }^{\bullet} t \cap{ }^{\bullet} u$. We must prove $\forall r: r \in{ }^{\bullet} t: r \in{ }^{\bullet} u$. Let $r \in{ }^{\bullet} t$. We have $t \in s^{\bullet}, u \in s^{\bullet}, t \in r^{\bullet}$. Hence, $t \in\left(s^{\bullet} \cap r^{\bullet}\right)$, i.e. $s^{\bullet} \cap r^{\bullet} \neq \emptyset$.
(1) implies that $s^{\bullet}=r^{\bullet}$.

Since $u \in s^{\bullet}, u \in r^{\bullet}$ as well. Hence, $r \in^{\bullet} u$

def. $1=$ def. 2

$\forall s, r \in S: s^{\bullet} \cap r^{\bullet}=\emptyset \vee s^{\bullet}=r^{\bullet}$. (1)
$\forall t, u \in T:{ }^{\bullet} t \cap{ }^{\bullet} u=\emptyset \vee^{\bullet} t={ }^{\bullet} u$. (2)
(\Rightarrow) : Let (1) hold and $t, u \in T$.
If ${ }^{\bullet} t \cap^{\bullet} u=\emptyset$ then done.
If $t \cap{ }^{\bullet} u \neq \emptyset$ then we must prove ${ }^{\bullet} t={ }^{\bullet} u$, i.e.
${ }^{\bullet} t \subseteq{ }^{\bullet} u$ and ${ }^{\bullet} u \subseteq{ }^{\bullet} t$.
Let $s \in{ }^{\bullet} t \cap{ }^{\bullet} u$. We must prove $\forall r: r \in{ }^{\bullet} t: r \in{ }^{\bullet} u$. Let $r \in{ }^{\bullet} t$. We have $t \in s^{\bullet}, u \in s^{\bullet}, t \in r^{\bullet}$. Hence, $t \in\left(s^{\bullet} \cap r^{\bullet}\right)$, i.e. $s^{\bullet} \cap r^{\bullet} \neq \emptyset$.
(1) implies that $s^{\bullet}=r^{\bullet}$.

Since $u \in s^{\bullet}, u \in r^{\bullet}$ as well. Hence, $r \in{ }^{\bullet} u$ and ${ }^{\bullet} t \subseteq{ }^{\bullet} u$.

def. $1=$ def. 2

$\forall s, r \in S: s^{\bullet} \cap r^{\bullet}=\emptyset \vee s^{\bullet}=r^{\bullet}$. (1)
$\forall t, u \in T:{ }^{\bullet} t \cap{ }^{\bullet} u=\emptyset \vee^{\bullet} t={ }^{\bullet} u$. (2)
(\Rightarrow) : Let (1) hold and $t, u \in T$.
If ${ }^{\bullet} t \cap^{\bullet} u=\emptyset$ then done.
If ${ }^{\bullet} t \cap{ }^{\bullet} u \neq \emptyset$ then we must prove ${ }^{\bullet} t={ }^{\bullet} u$, i.e.
${ }^{\bullet} t \subseteq{ }^{\bullet} u$ and ${ }^{\bullet} u \subseteq{ }^{\bullet} t$.
Let $s \in{ }^{\bullet} t \cap{ }^{\bullet} u$. We must prove $\forall r: r \in{ }^{\bullet} t: r \in{ }^{\bullet} u$. Let $r \in{ }^{\bullet} t$. We have $t \in s^{\bullet}, u \in s^{\bullet}, t \in r^{\bullet}$. Hence, $t \in\left(s^{\bullet} \cap r^{\bullet}\right)$, i.e. $s^{\bullet} \cap r^{\bullet} \neq \emptyset$.
(1) implies that $s^{\bullet}=r^{\bullet}$.

Since $u \in s^{\bullet}, u \in r^{\bullet}$ as well. Hence, $r \in{ }^{\bullet} u$ and ${ }^{\bullet} t \subseteq{ }^{\bullet} u$.
Proof for ${ }^{\bullet} u \subseteq{ }^{\bullet} t$ is similar. Proof for (\Leftarrow) is similar to (\Rightarrow).

Free-choice nets (def.3,4)

A net $N=\langle S, T, F\rangle$ is free-choice iff for every place $s \in S$ and transition $t \in T$, $(s, t) \in F$ implies ${ }^{\bullet} t \times s^{\bullet} \subseteq F$.

Free-choice nets (def.3,4)

A net $N=\langle S, T, F\rangle$ is free-choice iff for every place $s \in S$ and transition $t \in T$, $(s, t) \in F$ implies ${ }^{\bullet} t \times s^{\bullet} \subseteq F$.

Free-choice nets (def.3,4)

A net $N=\langle S, T, F\rangle$ is free-choice iff for every place $s \in S$ and transition $t \in T$, $(s, t) \in F$ implies ${ }^{\bullet} t \times s^{\bullet} \subseteq F$.

A net $N=\langle S, T, F\rangle$ is free-choice iff for every two places $s, r \in S$ and two transitions $t, u \in T$, $\{(s, t),(r, t),(s, u)\} \subseteq F$ implies $(r, u) \in F$.

Free-choice nets (def.3,4)

A net $N=\langle S, T, F\rangle$ is free-choice iff for every place $s \in S$ and transition $t \in T$, $(s, t) \in F$ implies ${ }^{\bullet} t \times s^{\bullet} \subseteq F$.

A net $N=\langle S, T, F\rangle$ is free-choice iff for every two places $s, r \in S$ and two transitions $t, u \in T$, $\{(s, t),(r, t),(s, u)\} \subseteq F$ implies $(r, u) \in F$.

$$
\text { def. } 3=\text { def. } 4
$$

Free-choice nets (def.3,4)

A net $N=\langle S, T, F\rangle$ is free-choice iff for every place $s \in S$ and transition $t \in T$, $(s, t) \in F$ implies ${ }^{\bullet} t \times s^{\bullet} \subseteq F$.

A net $N=\langle S, T, F\rangle$ is free-choice iff for every two places $s, r \in S$ and two transitions $t, u \in T$, $\{(s, t),(r, t),(s, u)\} \subseteq F$ implies $(r, u) \in F$.

$$
\text { def. } 3=\operatorname{def} .4
$$

Exercise: Prove that def. $1=$ def. 3 .

Siphons

A set R of places is a siphon if ${ }^{\bullet} R \subseteq R^{\bullet}$. A siphon is a proper siphon if it is not empty.

Siphons

A set R of places is a siphon if ${ }^{\bullet} R \subseteq R^{\bullet}$. A siphon is a proper siphon if it is not empty.

Siphons

A set R of places is a siphon if ${ }^{\bullet} R \subseteq R^{\bullet}$. A siphon is a proper siphon if it is not empty.

Siphons

A set R of places is a siphon if ${ }^{\bullet} R \subseteq R^{\bullet}$. A siphon is a proper siphon if it is not empty.

Siphons

A set R of places is a siphon if ${ }^{\bullet} R \subseteq R^{\bullet}$. A siphon is a proper siphon if it is not empty.

Unmarked siphons remain unmarked

Siphons

A set R of places is a siphon if ${ }^{\bullet} R \subseteq R^{\bullet}$. A siphon is a proper siphon if it is not empty.

Unmarked siphons remain unmarked
Live systems have no unmarked siphons.

Siphons (2)

Deadlocked systems have an unmarked proper siphon.

Siphons (2)

Deadlocked systems have an unmarked proper siphon.
Let $\left(N, M_{0}\right)$ be a deadlocked system (no transition can fire). Then the set R of places unmarked at M_{0} is a proper siphon.

Siphons (2)

Deadlocked systems have an unmarked proper siphon.
Let $\left(N, M_{0}\right)$ be a deadlocked system (no transition can fire). Then the set R of places unmarked at M_{0} is a proper siphon.

Every transition has an unmarked input place at M_{0} (otherwise it would be enabled).

Siphons (2)

Deadlocked systems have an unmarked proper siphon.
Let $\left(N, M_{0}\right)$ be a deadlocked system (no transition can fire). Then the set R of places unmarked at M_{0} is a proper siphon.

Every transition has an unmarked input place at M_{0} (otherwise it would be enabled). Hence all transitions are in R^{\bullet}.

Siphons (2)

Deadlocked systems have an unmarked proper siphon.
Let $\left(N, M_{0}\right)$ be a deadlocked system (no transition can fire). Then the set R of places unmarked at M_{0} is a proper siphon.

Every transition has an unmarked input place at M_{0} (otherwise it would be enabled). Hence all transitions are in R^{\bullet}.
Then ${ }^{\bullet} R \subseteq R^{\bullet}$

Siphons (2)

Deadlocked systems have an unmarked proper siphon.
Let $\left(N, M_{0}\right)$ be a deadlocked system (no transition can fire). Then the set R of places unmarked at M_{0} is a proper siphon.

Every transition has an unmarked input place at M_{0} (otherwise it would be enabled). Hence all transitions are in R^{\bullet}.
Then ${ }^{\bullet} R \subseteq R^{\bullet}$ and R is a proper siphon. \square

Siphons (2)

Deadlocked systems have an unmarked proper siphon.
Let (N, M_{0}) be a deadlocked system (no transition can fire). Then the set R of places unmarked at M_{0} is a proper siphon.

Every transition has an unmarked input place at M_{0} (otherwise it would be enabled). Hence all transitions are in R^{\bullet}.
Then ${ }^{\bullet} R \subseteq R^{\bullet}$ and R is a proper siphon. \square
If all proper siphons are marked at every reachable marking, the system is deadlock-free.

Traps

A set R of places is a trap if $R^{\bullet} \subseteq{ }^{\bullet} R$. A trap is a proper trap if it is not empty.

Traps

A set R of places is a trap if $R^{\bullet} \subseteq{ }^{\bullet} R$. A trap is a proper trap if it is not empty.

Traps

A set R of places is a trap if $R^{\bullet} \subseteq{ }^{\bullet} R$. A trap is a proper trap if it is not empty.

Traps

A set R of places is a trap if $R^{\bullet} \subseteq{ }^{\bullet} R$. A trap is a proper trap if it is not empty.

Traps

A set R of places is a trap if $R^{\bullet} \subseteq{ }^{\bullet} R$. A trap is a proper trap if it is not empty.

Marked traps remain marked.

Sulficient condition for deadlock freedom

If every proper siphon of a system includes an initially marked trap, then the system is deadlock-free.

Sufficient condition for deadlock freedom

If every proper siphon of a system includes an initially marked trap, then the system is deadlock-free.

Assume some reachable marking M is dead.

Sulficient condition for deadlock freedom

If every proper siphon of a system includes an initially marked trap, then the system is deadlock-free.

Assume some reachable marking M is dead. The set R of places unmarked at M is proper siphon.

Sulficient condition for deadlock freedom

If every proper siphon of a system includes an initially marked trap, then the system is deadlock-free.

Assume some reachable marking M is dead. The set R of places unmarked at M is proper siphon. Every marked trap remains marked.
Hence, R includes no initially marked trap. \square

Commoner's Theorem

A free-choice system is live if and only if every proper syphon includes an initially marked trap.

Property of free-choice systems: Place-liveness and liveness coincide in free-choice systems.

Example

Example

Example

siphons $\left({ }^{\circ} R \subseteq R^{\bullet}\right)$:
$R_{1}=\left\{p_{1}, p_{4}, p_{3}\right\}$,
$R_{2}=\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$
Is there marked $\operatorname{trap} Q: Q \subseteq R_{1}$?

Example

Q is a trap. Hence, $Q^{\bullet} \subseteq{ }^{\bullet} Q$.
$Q:=R_{1}, \quad$ i.e. $Q:=\left\{p_{1}, p_{4}, p_{3}\right\}$

Example

Q is a trap. Hence, $Q^{\bullet} \subseteq{ }^{\bullet} Q$.
$Q:=R_{1}, \quad$ i.e. $Q:=\left\{p_{1}, p_{4}, p_{3}\right\}$
Check if there exists $s \in Q$ and $t \in s^{\bullet}$ such that $t \notin{ }^{\bullet} Q$.
If yes, $Q:=Q \backslash\{s\}$.

Example

Q is a trap. Hence, $Q^{\bullet} \subseteq{ }^{\bullet} Q$.
$Q:=R_{1}, \quad$ i.e. $Q:=\left\{p_{1}, p_{4}, p_{3}\right\}$
Check if there exists $s \in Q$ and $t \in s^{\bullet}$ such that $t \notin \bullet$.
If yes, $Q:=Q \backslash\{s\}$.
$Q=R_{1}, Q$ is marked, N is live.

Algorithm for deciding liveness

Given: a free-choice system $\left(N, M_{0}\right)$.
Question: is N not live?

Algorithm for deciding liveness

Given: a free-choice system $\left(N, M_{0}\right)$.
Question: is N not live?

1. take a set of places $R \subseteq P_{N}$;

Algorithm for deciding liveness

Given: a free-choice system $\left(N, M_{0}\right)$. Question: is N not live?

1. take a set of places $R \subseteq P_{N}$;
2. check if R is syphon;

Algorithm for deciding liveness

Given: a free-choice system $\left(N, M_{0}\right)$.
Question: is N not live?

1. take a set of places $R \subseteq P_{N}$;
2. check if R is syphon;
3. if R is syphon, compute the maximal trap Q included in R;

Algorithm for deciding liveness

Given: a free-choice system $\left(N, M_{0}\right)$. Question: is N not live?

1. take a set of places $R \subseteq P_{N}$;
2. check if R is syphon;
3. if R is syphon, compute the maximal trap Q included in R;
4. if $M_{0}(Q)=\emptyset$ then N is not live.

Algorithm for deciding liveness

Given: a free-choice system $\left(N, M_{0}\right)$.
Question: is N not live?

1. take a set of places $R \subseteq P_{N}$;
2. check if R is syphon;
3. if R is syphon, compute the maximal trap Q included in R;
4. if $M_{0}(Q)=\emptyset$ then N is not live.

Non-liveness problem of free-choice systems is NP-complete.

Minimal siphons

A siphon is minimal if it is proper and does not include any other proper siphon.

Minimal siphons

A siphon is minimal if it is proper and does not include any other proper siphon.

The union of siphons is a siphon.
Every proper siphon contains a minimal one.

Minimal siphons

A siphon is minimal if it is proper and does not include any other proper siphon.

The union of siphons is a siphon.
Every proper siphon contains a minimal one.
A free-choice system is live if and only if every minimal siphon includes an initially marked trap.

Clusters

The cluster of a node $x,[x]$, is a minimal set of nodes such that

- $x \in[x]$,
- if a place $s \in[x]$ then $s^{\bullet} \subseteq[x]$,
- if a transition $t \in[x]$ then ${ }^{\bullet} t \subseteq[x]$.

Clusters

The cluster of a node $x,[x]$, is a minimal set of nodes such that

- $x \in[x]$,
- if a place $s \in[x]$ then $s^{\bullet} \subseteq[x]$,
- if a transition $t \in[x]$ then ${ }^{\bullet} t \subseteq[x]$.

Clusters

The cluster of a node $x,[x]$, is a minimal set of nodes such that

- $x \in[x]$,
- if a place $s \in[x]$ then $s^{\bullet} \subseteq[x]$,
- if a transition $t \in[x]$ then ${ }^{\bullet} t \subseteq[x]$.

Clusters

The cluster of a node $x,[x]$, is a minimal set of nodes such that

- $x \in[x]$,
- if a place $s \in[x]$ then $s^{\bullet} \subseteq[x]$,
- if a transition $t \in[x]$ then ${ }^{\bullet} t \subseteq[x]$.

Clusters

The cluster of a node $x,[x]$, is a minimal set of nodes such that

- $x \in[x]$,
- if a place $s \in[x]$ then $s^{\bullet} \subseteq[x]$,
- if a transition $t \in[x]$ then ${ }^{\bullet} t \subseteq[x]$.

Property of clusters

The set $\{[x] \mid x$ is a node of $N\}$ is a partition of the nodes of N.

Property of clusters

The set $\{[x] \mid x$ is a node of $N\}$ is a partition of the nodes of N.

Property of clusters

The set $\{[x] \mid x$ is a node of $N\}$ is a partition of the nodes of N.

Property of clusters

The set $\{[x] \mid x$ is a node of $N\}$ is a partition of the nodes of N.

Property of clusters

The set $\{[x] \mid x$ is a node of $N\}$ is a partition of the nodes of N.

Property of clusters

The set $\{[x] \mid x$ is a node of $N\}$ is a partition of the nodes of N.

Property of clusters

The set $\{[x] \mid x$ is a node of $N\}$ is a partition of the nodes of N.

Property of clusters

The set $\{[x] \mid x$ is a node of $N\}$ is a partition of the nodes of N.

Property of clusters

The set $\{[x] \mid x$ is a node of $N\}$ is a partition of the nodes of N.

Property of clusters

The set $\{[x] \mid x$ is a node of $N\}$ is a partition of the nodes of N.

In free-choice nets, each place of a cluster c is connected to every transition t of c.

Property of clusters

The set $\{[x] \mid x$ is a node of $N\}$ is a partition of the nodes of N.

If a marking of a free-choice net enables a transition t, then it enables every transition of the cluster $[t]$.

Minimal siphons (2)

A nonempty set of places R of a free-choice net N is a minimal siphon iff:

1. every cluster c of N contains at most one place of R and
2. the subnet generated by $R \cup^{\bullet} R$ is strongly connected.

Minimal siphons (2)

A nonempty set of places R of a free-choice net N is a minimal siphon iff:

1. every cluster c of N contains at most one place of R and
2. the subnet generated by $R \cup^{\bullet} R$ is strongly connected.

Literature

Chapter 4 in [Desel, Esparza]

Structural analysis for

 Workflow nets
Workflow nets

A Petri net N is a Workflow net (WF-net) iff:

- N has two special places (or transitions): an initial place (transition) i : ${ }^{\bullet} i=\emptyset$, and a final place (transition) $f: f^{\bullet}=\emptyset$.
- For any node $n \in(P \cup T)$ there exists a path from i to n and a path from n to f.

Applications: business process modelling, software engineering,

Soundness

Desired property: proper completion
A WF-net N is sound iff:

- For every marking M reachable from $[i]$, there exists a firing sequence leading to $[f]$.
- There are no dead transitions in $(N,[i])$.

Refinement of Workflow Nets

Place refinement: $N=L \otimes_{p} M$
Being at some location (place of the net) resources (tokens) undergo a number of operations.

Transition refinement: $N=L \otimes_{t} M$
A single task on a higher level becomes a sequence of subtasks also involving choice and parallelism.

Refinements and soundness

Refinements and soundness

Refinements and soundness

Refinements and soundness

Refinements and soundness

Refinements and soundness

Refinements and soundness

Refinements and soundness

Refinements and soundness

Refinements and soundness

Refinements and soundness

Refinements and soundness

Refinements and soundness

Refinements and soundness

Refinements and soundness

Refinements and soundness

Refinements and soundness

N and M are "sound", but $N \otimes_{d} M$ is not!

Generalised soundness

A sWF-net N with initial and final places i and f resp. is k-sound for $k \in \mathbb{N}$ iff $\left[f^{k}\right]$ is reachable from all markings m from $\mathcal{M}\left(N,\left[i^{k}\right]\right)$.

A tWF-net N with initial and final transitions t_{i}, t_{f} respectively is k-sound iff the sWF-net formed by adding to S_{N} places p_{i}, p_{f} with
${ }^{\bullet} p_{i}=\emptyset, p_{i}^{\bullet}=\left[t_{i}\right], \cdot p_{f}=\left[t_{f}\right], p_{f}^{\bullet}=\emptyset$ is k-sound.
A WF-net is sound iff it is k-sound for every natural k.

Soundness preservation
Let $N=L \otimes_{n} M$ be a refinement built of sound WF-nets L, M. Then N is sound.

Old vs. new soundness

A WF-net N is sound iff:

- $[f]$ is reachable from any marking m from $\mathcal{M}(N,[i])$.
- There are no dead transitions in $(N,[i])$.

A WF-net N is sound iff $\left[f^{k}\right]$ is reachable from all markings m from $\mathcal{M}\left(N,\left[i^{k}\right]\right)$, for any for $k \in \mathbb{N}$.

Structural non-redundancy

- Non-redundancy: every transition can potentially fire and every place can potentially obtain tokens, provided that there are enough tokens on the initial place.
- Persistency: it should be possible for every place (except for f) to become unmarked againotherwise the net is guaranteed to be not sound.

Siphons

A set R of places is a siphon if ${ }^{\bullet} R \subseteq R^{\bullet}$. A siphon is a proper siphon if it is not empty.

Siphons

A set R of places is a siphon if ${ }^{\bullet} R \subseteq R^{\bullet}$. A siphon is a proper siphon if it is not empty.

Siphons

A set R of places is a siphon if ${ }^{\bullet} R \subseteq R^{\bullet}$. A siphon is a proper siphon if it is not empty.

Siphons

A set R of places is a siphon if ${ }^{\bullet} R \subseteq R^{\bullet}$. A siphon is a proper siphon if it is not empty.

Siphons

A set R of places is a siphon if ${ }^{\bullet} R \subseteq R^{\bullet}$. A siphon is a proper siphon if it is not empty.

Unmarked siphons remain unmarked

Non-redundancy criterion

- A WF-net has no redundant places iff $P \backslash\{i\}$ contains no proper siphon.
- A WF-net has no redundant places iff it has no redundant transitions.

Non-redundancy check

Compute the largest siphon X in $P \backslash\{i\}$ in a standard manner [Starke]:
input : A Petri net $N=\left(P, T, F^{+}, F^{-}\right)$and $S \subseteq P$; output: $X \subseteq S$;
$X=S$;
while there exist $p \in X$ and $t \in{ }^{\bullet} p$ such that $t \notin X^{\bullet}$ do $\quad X=X \backslash\{p\}$; return(X);

Traps

A set R of places is a trap if $R^{\bullet} \subseteq{ }^{\bullet} R$. A trap is a proper trap if it is not empty.

Traps

A set R of places is a trap if $R^{\bullet} \subseteq{ }^{\bullet} R$. A trap is a proper trap if it is not empty.

Traps

A set R of places is a trap if $R^{\bullet} \subseteq{ }^{\bullet} R$. A trap is a proper trap if it is not empty.

Traps

A set R of places is a trap if $R^{\bullet} \subseteq{ }^{\bullet} R$. A trap is a proper trap if it is not empty.

Traps

A set R of places is a trap if $R^{\bullet} \subseteq{ }^{\bullet} R$. A trap is a proper trap if it is not empty.

Marked traps remain marked.

Non-persistency criterion

A WF-net has no persistent places iff $P \backslash\{f\}$ contains no proper trap.

Correcting workflow nets

Let a WF-net N be given.
First, find a maximal siphon X in $P \backslash\{i\}$. All places from X are redundant. \Rightarrow Transitions from X^{\bullet} are redundant as well. \Rightarrow
($N_{1}, k[i]$) obtained by removing places from X and transitions from X^{\bullet} is WF-bisimilar to $(N, k[i])$ for any k.
N_{1} is either not a WF-net any more and so N was ill-designed, or N_{1} is a WF-net, which is an improved version of N.

Check whether N_{1} has persistent places. If yes, N_{1} is not a sound WF-net. Otherwise, we can work with N_{1} instead of N.

Petri net reduction techniques

Goal: to preserve such Petri net properties as liveness, safeness and boundedness.
The simplest transformations: (see [Murata1989])

Fusion of series places/transitions

Fusion of parallel places/transitions

Elimination of self-loop places/trans.

