
Liveness in free-choice systems

Natalia Sidorova

– p.1

Free-choice nets (def.1)
A netN = 〈S, T, F 〉 is free-choiceiff for every two
placess, r ∈ S eithers• ∩ r• = ∅ or s• = r•.

– p.2

Free-choice nets (def.1)
A netN = 〈S, T, F 〉 is free-choiceiff for every two
placess, r ∈ S eithers• ∩ r• = ∅ or s• = r•.

t

s

u v

r

– p.2

Free-choice nets (def.1)
A netN = 〈S, T, F 〉 is free-choiceiff for every two
placess, r ∈ S eithers• ∩ r• = ∅ or s• = r•.

t

s

u v

r

t

s

u v

r

– p.2

Free-choice nets (def.1)
A netN = 〈S, T, F 〉 is free-choiceiff for every two
placess, r ∈ S eithers• ∩ r• = ∅ or s• = r•.

t

s

u v

r

t

s

u v

r

t

s

u v

r

– p.2

Free-choice nets (def.1)
A netN = 〈S, T, F 〉 is free-choiceiff for every two
placess, r ∈ S eithers• ∩ r• = ∅ or s• = r•.

t

s

u v

r

t

s

u v

r

t

s

u v

r

Property of free-choice nets (4.3)

If a markingM enables some transition ofs•

then it enables every transition ofs•.
– p.2

Free-choice nets (def.2)
A netN = 〈S, T, F 〉 is free-choiceiff for every two
transitionst, u ∈ T either•t ∩ •u = ∅ or •t = •u.

– p.3

Free-choice nets (def.2)
A netN = 〈S, T, F 〉 is free-choiceiff for every two
transitionst, u ∈ T either•t ∩ •u = ∅ or •t = •u.

t

s

u

r q

– p.3

Free-choice nets (def.2)
A netN = 〈S, T, F 〉 is free-choiceiff for every two
transitionst, u ∈ T either•t ∩ •u = ∅ or •t = •u.

t

s

u

r q

t

s

u

r q

– p.3

Free-choice nets (def.2)
A netN = 〈S, T, F 〉 is free-choiceiff for every two
transitionst, u ∈ T either•t ∩ •u = ∅ or •t = •u.

t

s

u

r q

t

s

u

r q

t

s

u

r q

– p.3

def.1 = def.2
∀s, r ∈ S : s• ∩ r• = ∅ ∨ s• = r•. (1)
∀t, u ∈ T : •t ∩ •u = ∅ ∨ •t = •u. (2)

– p.4

def.1 = def.2
∀s, r ∈ S : s• ∩ r• = ∅ ∨ s• = r•. (1)
∀t, u ∈ T : •t ∩ •u = ∅ ∨ •t = •u. (2)

(⇒): Let (1) hold andt, u ∈ T .
If •t ∩ •u = ∅ then done.
If •t ∩ •u 6= ∅ then we must prove•t = •u, i.e.
•t ⊆ •u and•u ⊆ •t.

– p.4

def.1 = def.2
∀s, r ∈ S : s• ∩ r• = ∅ ∨ s• = r•. (1)
∀t, u ∈ T : •t ∩ •u = ∅ ∨ •t = •u. (2)

(⇒): Let (1) hold andt, u ∈ T .
If •t ∩ •u = ∅ then done.
If •t ∩ •u 6= ∅ then we must prove•t = •u, i.e.
•t ⊆ •u and•u ⊆ •t.

Let s ∈ •t ∩ •u. We must prove∀r : r ∈ •t : r ∈ •u.

– p.4

def.1 = def.2
∀s, r ∈ S : s• ∩ r• = ∅ ∨ s• = r•. (1)
∀t, u ∈ T : •t ∩ •u = ∅ ∨ •t = •u. (2)

(⇒): Let (1) hold andt, u ∈ T .
If •t ∩ •u = ∅ then done.
If •t ∩ •u 6= ∅ then we must prove•t = •u, i.e.
•t ⊆ •u and•u ⊆ •t.

Let s ∈ •t ∩ •u. We must prove∀r : r ∈ •t : r ∈ •u.
Let r ∈ •t. We havet ∈ s•, u ∈ s•, t ∈ r•.

– p.4

def.1 = def.2
∀s, r ∈ S : s• ∩ r• = ∅ ∨ s• = r•. (1)
∀t, u ∈ T : •t ∩ •u = ∅ ∨ •t = •u. (2)

(⇒): Let (1) hold andt, u ∈ T .
If •t ∩ •u = ∅ then done.
If •t ∩ •u 6= ∅ then we must prove•t = •u, i.e.
•t ⊆ •u and•u ⊆ •t.

Let s ∈ •t ∩ •u. We must prove∀r : r ∈ •t : r ∈ •u.
Let r ∈ •t. We havet ∈ s•, u ∈ s•, t ∈ r•.
Hence,t ∈ (s• ∩ r•), i.e. s• ∩ r• 6= ∅.

– p.4

def.1 = def.2
∀s, r ∈ S : s• ∩ r• = ∅ ∨ s• = r•. (1)
∀t, u ∈ T : •t ∩ •u = ∅ ∨ •t = •u. (2)

(⇒): Let (1) hold andt, u ∈ T .
If •t ∩ •u = ∅ then done.
If •t ∩ •u 6= ∅ then we must prove•t = •u, i.e.
•t ⊆ •u and•u ⊆ •t.

Let s ∈ •t ∩ •u. We must prove∀r : r ∈ •t : r ∈ •u.
Let r ∈ •t. We havet ∈ s•, u ∈ s•, t ∈ r•.
Hence,t ∈ (s• ∩ r•), i.e. s• ∩ r• 6= ∅.
(1) implies thats• = r•.

– p.4

def.1 = def.2
∀s, r ∈ S : s• ∩ r• = ∅ ∨ s• = r•. (1)
∀t, u ∈ T : •t ∩ •u = ∅ ∨ •t = •u. (2)

(⇒): Let (1) hold andt, u ∈ T .
If •t ∩ •u = ∅ then done.
If •t ∩ •u 6= ∅ then we must prove•t = •u, i.e.
•t ⊆ •u and•u ⊆ •t.

Let s ∈ •t ∩ •u. We must prove∀r : r ∈ •t : r ∈ •u.
Let r ∈ •t. We havet ∈ s•, u ∈ s•, t ∈ r•.
Hence,t ∈ (s• ∩ r•), i.e. s• ∩ r• 6= ∅.
(1) implies thats• = r•.
Sinceu ∈ s•, u ∈ r• as well.

– p.4

def.1 = def.2
∀s, r ∈ S : s• ∩ r• = ∅ ∨ s• = r•. (1)
∀t, u ∈ T : •t ∩ •u = ∅ ∨ •t = •u. (2)

(⇒): Let (1) hold andt, u ∈ T .
If •t ∩ •u = ∅ then done.
If •t ∩ •u 6= ∅ then we must prove•t = •u, i.e.
•t ⊆ •u and•u ⊆ •t.

Let s ∈ •t ∩ •u. We must prove∀r : r ∈ •t : r ∈ •u.
Let r ∈ •t. We havet ∈ s•, u ∈ s•, t ∈ r•.
Hence,t ∈ (s• ∩ r•), i.e. s• ∩ r• 6= ∅.
(1) implies thats• = r•.
Sinceu ∈ s•, u ∈ r• as well. Hence,r ∈ •u

– p.4

def.1 = def.2
∀s, r ∈ S : s• ∩ r• = ∅ ∨ s• = r•. (1)
∀t, u ∈ T : •t ∩ •u = ∅ ∨ •t = •u. (2)

(⇒): Let (1) hold andt, u ∈ T .
If •t ∩ •u = ∅ then done.
If •t ∩ •u 6= ∅ then we must prove•t = •u, i.e.
•t ⊆ •u and•u ⊆ •t.

Let s ∈ •t ∩ •u. We must prove∀r : r ∈ •t : r ∈ •u.
Let r ∈ •t. We havet ∈ s•, u ∈ s•, t ∈ r•.
Hence,t ∈ (s• ∩ r•), i.e. s• ∩ r• 6= ∅.
(1) implies thats• = r•.
Sinceu ∈ s•, u ∈ r• as well. Hence,r ∈ •u and
•t ⊆ •u.

– p.4

def.1 = def.2
∀s, r ∈ S : s• ∩ r• = ∅ ∨ s• = r•. (1)
∀t, u ∈ T : •t ∩ •u = ∅ ∨ •t = •u. (2)

(⇒): Let (1) hold andt, u ∈ T .
If •t ∩ •u = ∅ then done.
If •t ∩ •u 6= ∅ then we must prove•t = •u, i.e.
•t ⊆ •u and•u ⊆ •t.

Let s ∈ •t ∩ •u. We must prove∀r : r ∈ •t : r ∈ •u.
Let r ∈ •t. We havet ∈ s•, u ∈ s•, t ∈ r•.
Hence,t ∈ (s• ∩ r•), i.e. s• ∩ r• 6= ∅.
(1) implies thats• = r•.
Sinceu ∈ s•, u ∈ r• as well. Hence,r ∈ •u and
•t ⊆ •u.
Proof for•u ⊆ •t is similar.
Proof for (⇐) is similar to (⇒). – p.4

Free-choice nets (def.3,4)
A netN = 〈S, T, F 〉 is free-choiceiff
for every places ∈ S and transitiont ∈ T ,
(s, t) ∈ F implies•t × s• ⊆ F .

– p.5

Free-choice nets (def.3,4)
A netN = 〈S, T, F 〉 is free-choiceiff
for every places ∈ S and transitiont ∈ T ,
(s, t) ∈ F implies•t × s• ⊆ F .

t

s

u

r

– p.5

Free-choice nets (def.3,4)
A netN = 〈S, T, F 〉 is free-choiceiff
for every places ∈ S and transitiont ∈ T ,
(s, t) ∈ F implies•t × s• ⊆ F .

t

s

u

r

A netN = 〈S, T, F 〉 is free-choiceiff for every two
placess, r ∈ S and two transitionst, u ∈ T ,
{(s, t), (r, t), (s, u)} ⊆ F implies(r, u) ∈ F .

– p.5

Free-choice nets (def.3,4)
A netN = 〈S, T, F 〉 is free-choiceiff
for every places ∈ S and transitiont ∈ T ,
(s, t) ∈ F implies•t × s• ⊆ F .

t

s

u

r

A netN = 〈S, T, F 〉 is free-choiceiff for every two
placess, r ∈ S and two transitionst, u ∈ T ,
{(s, t), (r, t), (s, u)} ⊆ F implies(r, u) ∈ F .

def.3 = def.4

– p.5

Free-choice nets (def.3,4)
A netN = 〈S, T, F 〉 is free-choiceiff
for every places ∈ S and transitiont ∈ T ,
(s, t) ∈ F implies•t × s• ⊆ F .

t

s

u

r

A netN = 〈S, T, F 〉 is free-choiceiff for every two
placess, r ∈ S and two transitionst, u ∈ T ,
{(s, t), (r, t), (s, u)} ⊆ F implies(r, u) ∈ F .

def.3 = def.4

Exercise:Prove thatdef.1 = def.3.
– p.5

Siphons
A setR of places is asiphonif •R ⊆ R•.
A siphon is aproper siphonif it is not empty.

– p.6

Siphons
A setR of places is asiphonif •R ⊆ R•.
A siphon is aproper siphonif it is not empty.

– p.6

Siphons
A setR of places is asiphonif •R ⊆ R•.
A siphon is aproper siphonif it is not empty.

– p.6

Siphons
A setR of places is asiphonif •R ⊆ R•.
A siphon is aproper siphonif it is not empty.

– p.6

Siphons
A setR of places is asiphonif •R ⊆ R•.
A siphon is aproper siphonif it is not empty.

Unmarked siphons remain unmarked

– p.6

Siphons
A setR of places is asiphonif •R ⊆ R•.
A siphon is aproper siphonif it is not empty.

Unmarked siphons remain unmarked

Live systems have no unmarked siphons.
– p.6

Siphons (2)
Deadlocked systems have an unmarked proper siphon.

– p.7

Siphons (2)
Deadlocked systems have an unmarked proper siphon.

Let (N, M0) be a deadlocked system (no transition
can fire). Then the setR of places unmarked atM0 is
aproper siphon.

– p.7

Siphons (2)
Deadlocked systems have an unmarked proper siphon.

Let (N, M0) be a deadlocked system (no transition
can fire). Then the setR of places unmarked atM0 is
aproper siphon.

Every transition has an unmarked input place atM0

(otherwise it would be enabled).

– p.7

Siphons (2)
Deadlocked systems have an unmarked proper siphon.

Let (N, M0) be a deadlocked system (no transition
can fire). Then the setR of places unmarked atM0 is
aproper siphon.

Every transition has an unmarked input place atM0

(otherwise it would be enabled).
Hence all transitions are inR•.

– p.7

Siphons (2)
Deadlocked systems have an unmarked proper siphon.

Let (N, M0) be a deadlocked system (no transition
can fire). Then the setR of places unmarked atM0 is
aproper siphon.

Every transition has an unmarked input place atM0

(otherwise it would be enabled).
Hence all transitions are inR•.
Then•R ⊆ R•

– p.7

Siphons (2)
Deadlocked systems have an unmarked proper siphon.

Let (N, M0) be a deadlocked system (no transition
can fire). Then the setR of places unmarked atM0 is
aproper siphon.

Every transition has an unmarked input place atM0

(otherwise it would be enabled).
Hence all transitions are inR•.
Then•R ⊆ R• andR is a proper siphon.�

– p.7

Siphons (2)
Deadlocked systems have an unmarked proper siphon.

Let (N, M0) be a deadlocked system (no transition
can fire). Then the setR of places unmarked atM0 is
aproper siphon.

Every transition has an unmarked input place atM0

(otherwise it would be enabled).
Hence all transitions are inR•.
Then•R ⊆ R• andR is a proper siphon.�

If all proper siphons are marked at every reachable

marking, the system is deadlock-free.

– p.7

Traps
A setR of places is atrapif R• ⊆ •R.
A trap is aproper trapif it is not empty.

– p.8

Traps
A setR of places is atrapif R• ⊆ •R.
A trap is aproper trapif it is not empty.

– p.8

Traps
A setR of places is atrapif R• ⊆ •R.
A trap is aproper trapif it is not empty.

– p.8

Traps
A setR of places is atrapif R• ⊆ •R.
A trap is aproper trapif it is not empty.

– p.8

Traps
A setR of places is atrapif R• ⊆ •R.
A trap is aproper trapif it is not empty.

Marked traps remain marked.

– p.8

Sufficient condition for deadlock
freedom
If every proper siphon of a system includes an initially
marked trap, then the system is deadlock-free.

– p.9

Sufficient condition for deadlock
freedom
If every proper siphon of a system includes an initially
marked trap, then the system is deadlock-free.

Assume some reachable markingM is dead.

– p.9

Sufficient condition for deadlock
freedom
If every proper siphon of a system includes an initially
marked trap, then the system is deadlock-free.

Assume some reachable markingM is dead.
The setR of places unmarked atM is proper siphon.

– p.9

Sufficient condition for deadlock
freedom
If every proper siphon of a system includes an initially
marked trap, then the system is deadlock-free.

Assume some reachable markingM is dead.
The setR of places unmarked atM is proper siphon.
Every marked trap remains marked.

Hence,R includes no initially marked trap.�

– p.9

Commoner’s Theorem
A free-choice system is live if and only if every
proper syphon includes an initially marked trap.

Property of free-choice systems:
Place-liveness and liveness coincide in free-choice
systems.

– p.10

Example

p3

p1

p4

t1

t3

t4

t2

p2

– p.11

Example

p3

p1

p2

p4

t1

t3

t4

t2

siphons (•R ⊆ R•):
R1 = {p1, p4, p3},
R2 = {p1, p2, p3, p4}

– p.11

Example

p3

p1

p2

p4

t1

t3

t4

t2

siphons (•R ⊆ R•):
R1 = {p1, p4, p3},
R2 = {p1, p2, p3, p4}

Is there marked trapQ: Q ⊆ R1?

– p.11

Example

p3

p1

p2

p4

t1

t3

t4

t2

Q is a trap. Hence,Q• ⊆ •Q.

Q := R1, i.e. Q := {p1, p4, p3}

– p.12

Example

p3

p1

p2

p4

t1

t3

t4

t2

Q is a trap. Hence,Q• ⊆ •Q.

Q := R1, i.e. Q := {p1, p4, p3}

Check if there existss ∈ Q andt ∈ s•

such thatt 6∈ •Q.
If yes,Q := Q \ {s}.

– p.12

Example

p3

p1

p2

p4

t1

t3

t4

t2

Q is a trap. Hence,Q• ⊆ •Q.

Q := R1, i.e. Q := {p1, p4, p3}

Check if there existss ∈ Q andt ∈ s•

such thatt 6∈ •Q.
If yes,Q := Q \ {s}.

Q = R1, Q is marked,N is live. – p.12

Algorithm for deciding liveness
Given: a free-choice system(N, M0).
Question: is N not live?

– p.13

Algorithm for deciding liveness
Given: a free-choice system(N, M0).
Question: is N not live?

1. take a set of placesR ⊆ PN ;

– p.13

Algorithm for deciding liveness
Given: a free-choice system(N, M0).
Question: is N not live?

1. take a set of placesR ⊆ PN ;

2. check ifR is syphon;

– p.13

Algorithm for deciding liveness
Given: a free-choice system(N, M0).
Question: is N not live?

1. take a set of placesR ⊆ PN ;

2. check ifR is syphon;

3. if R is syphon, compute the maximal trapQ
included inR;

– p.13

Algorithm for deciding liveness
Given: a free-choice system(N, M0).
Question: is N not live?

1. take a set of placesR ⊆ PN ;

2. check ifR is syphon;

3. if R is syphon, compute the maximal trapQ
included inR;

4. if M0(Q) = ∅ thenN is not live.

– p.13

Algorithm for deciding liveness
Given: a free-choice system(N, M0).
Question: is N not live?

1. take a set of placesR ⊆ PN ;

2. check ifR is syphon;

3. if R is syphon, compute the maximal trapQ
included inR;

4. if M0(Q) = ∅ thenN is not live.

Non-liveness problem of free-choice systems is
NP-complete.

– p.13

Minimal siphons
A siphon isminimal if it is proper and does not
include any other proper siphon.

– p.14

Minimal siphons
A siphon isminimal if it is proper and does not
include any other proper siphon.

The union of siphons is a siphon.

Every proper siphon contains a minimal one.

– p.14

Minimal siphons
A siphon isminimal if it is proper and does not
include any other proper siphon.

The union of siphons is a siphon.

Every proper siphon contains a minimal one.

A free-choice system is live if and only if every
minimal siphon includes an initially marked trap.

– p.14

Clusters
Theclusterof a nodex, [x], is a minimal set of nodes
such that

• x ∈ [x],
• if a places ∈ [x] thens• ⊆ [x],
• if a transitiont ∈ [x] then•t ⊆ [x].

– p.15

Clusters
Theclusterof a nodex, [x], is a minimal set of nodes
such that

• x ∈ [x],
• if a places ∈ [x] thens• ⊆ [x],
• if a transitiont ∈ [x] then•t ⊆ [x].

x

– p.15

Clusters
Theclusterof a nodex, [x], is a minimal set of nodes
such that

• x ∈ [x],
• if a places ∈ [x] thens• ⊆ [x],
• if a transitiont ∈ [x] then•t ⊆ [x].

x

– p.15

Clusters
Theclusterof a nodex, [x], is a minimal set of nodes
such that

• x ∈ [x],
• if a places ∈ [x] thens• ⊆ [x],
• if a transitiont ∈ [x] then•t ⊆ [x].

x

– p.15

Clusters
Theclusterof a nodex, [x], is a minimal set of nodes
such that

• x ∈ [x],
• if a places ∈ [x] thens• ⊆ [x],
• if a transitiont ∈ [x] then•t ⊆ [x].

x

– p.15

Property of clusters
The set{[x]| x is a node ofN} is a partition of the
nodes ofN .

– p.16

Property of clusters
The set{[x]| x is a node ofN} is a partition of the
nodes ofN .

x

– p.16

Property of clusters
The set{[x]| x is a node ofN} is a partition of the
nodes ofN .

– p.16

Property of clusters
The set{[x]| x is a node ofN} is a partition of the
nodes ofN .

– p.16

Property of clusters
The set{[x]| x is a node ofN} is a partition of the
nodes ofN .

– p.16

Property of clusters
The set{[x]| x is a node ofN} is a partition of the
nodes ofN .

– p.16

Property of clusters
The set{[x]| x is a node ofN} is a partition of the
nodes ofN .

– p.16

Property of clusters
The set{[x]| x is a node ofN} is a partition of the
nodes ofN .

– p.16

Property of clusters
The set{[x]| x is a node ofN} is a partition of the
nodes ofN .

– p.16

Property of clusters
The set{[x]| x is a node ofN} is a partition of the
nodes ofN .

In free-choice nets, each place of a clusterc is
connected to every transitiont of c.

– p.16

Property of clusters
The set{[x]| x is a node ofN} is a partition of the
nodes ofN .

If a marking of a free-choice net enables a transitiont,
then it enables every transition of the cluster[t].

– p.16

Minimal siphons (2)
A nonempty set of placesR of a free-choice netN is
aminimal siphoniff:

1. every clusterc of N contains at most one place of
R and

2. the subnet generated byR ∪ •R is strongly
connected.

– p.17

Minimal siphons (2)
A nonempty set of placesR of a free-choice netN is
aminimal siphoniff:

1. every clusterc of N contains at most one place of
R and

2. the subnet generated byR ∪ •R is strongly
connected.

p3

p1

p4

t1

t3

t4

t2

p2

– p.17

Literature
Chapter 4 in [Desel, Esparza]

– p.18

Structural analysis for

Workflow nets

– p.19

Workflow nets
A Petri netN is aWorkflow net (WF-net)iff:

• N has two special places (or transitions):
aninitial place (transition)i: •i = ∅, and
afinal place (transition)f : f • = ∅.

• For any noden ∈ (P ∪ T) there exists a path
from i to n and a path fromn to f .

Applications:business process modelling,
software engineering,

– p.20

Soundness
Desired property: proper completion

A WF-netN is soundiff:
• For every markingM reachable from[i], there

exists a firing sequence leading to[f].
• There are no dead transitions in(N, [i]).

– p.21

Refinement of Workflow Nets
Place refinement:N = L ⊗p M
Being at some location (place of the net) resources
(tokens) undergo a number of operations.

Transition refinement:N = L ⊗t M
A single task on a higher level becomes a sequence of
subtasks also involving choice and parallelism.

– p.22

Refinements and soundness

i fd

c

e

a

b

g

h
i'

x

z

y f'

N: M:

i f

d

c

e

a

b

g

h

x

z

y

i df

– p.23

Refinements and soundness

i fd

c

e

a

b

g

h
i'

x

z

y f'

N: M:

i f

d

c

e

a

b

g

h

x

z

y

i df

– p.23

Refinements and soundness

i fd

c

e

a

b

g

h
i'

x

z

y f'

N: M:

i f

d

c

e

a

b

g

h

x

z

y

i df

– p.23

Refinements and soundness

i fd

c

e

a

b

g

h
i'

x

z

y f'

N: M:

i f

d

c

e

a

b

g

h

x

z

y

i df

– p.23

Refinements and soundness

i fd

c

e

a

b

g

h
i'

x

z

y f'

N: M:

i f

d

c

e

a

b

g

h

x

z

y

i df

– p.23

Refinements and soundness

i fd

c

e

a

b

g

h
i'

x

z

y f'

N: M:

i f

d

c

e

a

b

g

h

x

z

y

i df

– p.23

Refinements and soundness

i fd

c

e

a

b

g

h
i'

x

z

y f'

N: M:

i f

d

c

e

a

b

g

h

x

z

y

i df

– p.23

Refinements and soundness

i fd

c

e

a

b

g

h
i'

x

z

y f'

N: M:

i f

d

c

e

a

b

g

h

x

z

y

i df

– p.23

Refinements and soundness

i fd

c

e

a

b

g

h
i'

x

z

y f'

N: M:

i f

d

c

e

a

b

g

h

x

z

y

i df

– p.23

Refinements and soundness

i fd

c

e

a

b

g

h
i'

x

z

y f'

N: M:

i f

d

c

e

a

b

g

h

x

z

y

i df

– p.23

Refinements and soundness

i fd

c

e

a

b

g

h
i'

x

z

y f'

N: M:

i f

d

c

e

a

b

g

h

x

z

y

i df

– p.23

Refinements and soundness

i fd

c

e

a

b

g

h
i'

x

z

y f'

N: M:

i f

d

c

e

a

b

g

h

x

z

y

i df

– p.23

Refinements and soundness

i fd

c

e

a

b

g

h
i'

x

z

y f'

N: M:

i f

d

c

e

a

b

g

h

x

z

y

i df

– p.23

Refinements and soundness

i fd

c

e

a

b

g

h
i'

x

z

y f'

N: M:

i f

d

c

e

a

b

g

h

x

z

y

i df

– p.23

Refinements and soundness

i fd

c

e

a

b

g

h
i'

x

z

y f'

N: M:

i f

d

c

e

a

b

g

h

x

z

y

i df

– p.23

Refinements and soundness

i fd

c

e

a

b

g

h
i'

x

z

y f'

N: M:

i f

d

c

e

a

b

g

h

x

z

y

i df

– p.23

Refinements and soundness

i fd

c

e

a

b

g

h
i'

x

z

y f'

N: M:

i f

d

c

e

a

b

g

h

x

z

y

i df

N andM are “sound”, butN ⊗d M is not!

– p.23

Generalised soundness
A sWF-netN with initial and final placesi andf

resp. isk-sound for k ∈ N iff [fk] is reachable from
all markingsm fromM(N, [ik]).

A tWF-netN with initial and final transitionsti, tf
respectively is k-sound iff the sWF-net formed by
adding toSN placespi, pf with
•pi = ∅, p•i = [ti],

•pf = [tf], p
•
f = ∅ is k-sound.

A WF-net issound iff it is k-sound for every naturalk.

– p.24

Refinements and generalised
soundness

Soundness preservation
Let N = L ⊗n M be a refinement built of sound
WF-netsL, M . ThenN is sound.

– p.25

Old vs. new soundness
A WF-netN is soundiff:

• [f] is reachable from any markingm from
M(N, [i]).

• There are no dead transitions in(N, [i]).

A WF-netN is soundiff [fk] is reachable from all
markingsm fromM(N, [ik]), for any fork ∈ N.

– p.26

Structural non-redundancy
N1 N2

a

 i

c

b

 p

 f
d

s

a

 i

b

 p

 f
d

s

c

• Non-redundancy:every transition can potentially
fire and every place can potentially obtain tokens,
provided that there are enough tokens on the
initial place.

• Persistency:it should be possible for every place
(except forf) to become unmarked again—
otherwise the net is guaranteed to be not sound.

– p.27

Siphons
A setR of places is asiphonif •R ⊆ R•.
A siphon is aproper siphonif it is not empty.

– p.28

Siphons
A setR of places is asiphonif •R ⊆ R•.
A siphon is aproper siphonif it is not empty.

– p.28

Siphons
A setR of places is asiphonif •R ⊆ R•.
A siphon is aproper siphonif it is not empty.

– p.28

Siphons
A setR of places is asiphonif •R ⊆ R•.
A siphon is aproper siphonif it is not empty.

– p.28

Siphons
A setR of places is asiphonif •R ⊆ R•.
A siphon is aproper siphonif it is not empty.

Unmarked siphons remain unmarked

– p.28

Non-redundancy criterion
• A WF-net has no redundant places iffP \ {i}

contains no proper siphon.
• A WF-net has no redundant places iff it has no

redundant transitions.

N1 N2

a

 i

c

b

 p

 f
d

s

a

 i

b

 p

 f
d

s

c

– p.29

Non-redundancy check
Compute the largest siphonX in P \ {i} in a standard
manner [Starke]:

input : A Petri netN = (P, T, F+, F−) andS ⊆ P ;
output:X ⊆ S;
X = S;
while there existp ∈ X andt ∈ •p such thatt 6∈ X•

do X = X \ {p};
return(X);

– p.30

Traps
A setR of places is atrapif R• ⊆ •R.
A trap is aproper trapif it is not empty.

– p.31

Traps
A setR of places is atrapif R• ⊆ •R.
A trap is aproper trapif it is not empty.

– p.31

Traps
A setR of places is atrapif R• ⊆ •R.
A trap is aproper trapif it is not empty.

– p.31

Traps
A setR of places is atrapif R• ⊆ •R.
A trap is aproper trapif it is not empty.

– p.31

Traps
A setR of places is atrapif R• ⊆ •R.
A trap is aproper trapif it is not empty.

Marked traps remain marked.

– p.31

Non-persistency criterion
A WF-net has no persistent places iffP \ {f}
contains no proper trap.

N1 N2

a

 i

c

b

 p

 f
d

s

a

 i

b

 p

 f
d

s

c

– p.32

Correcting workflow nets
Let a WF-netN be given.

First, find a maximal siphonX in P \ {i}.
All places fromX are redundant.⇒
Transitions fromX• are redundant as well.⇒

(N1, k[i]) obtained by removing places fromX and
transitions fromX• is WF-bisimilar to(N, k[i]) for
anyk.

N1 is either not a WF-net any more and soN was
ill-designed,
or N1 is a WF-net, which is an improved version ofN .

Check whetherN1 has persistent places. If yes,N1 is
not a sound WF-net. Otherwise, we can work withN1

instead ofN .
– p.33

Petri net reduction techniques
Goal: to preserve such Petri net properties as liveness,
safeness and boundedness.
The simplest transformations: (see [Murata1989])

– p.34

Fusion of series places/transitions

– p.35

Fusion of parallel places/transitions

– p.36

Elimination of self-loop places/trans.

– p.37

	Free-choice nets (def.1)
	Free-choice nets (def.2)
	def.1 = def.2
	Free-choice nets (def.3,4)
	Siphons
	Siphons (2)
	Traps
	Sufficient condition for deadlock freedom
	Commoner's Theorem
	Example
	Example
	Algorithm for deciding liveness
	Minimal siphons
	Clusters
	Property of clusters
	Minimal siphons (2)
	Literature
	
	Workflow nets
	Soundness
	Refinement of Workflow Nets
	Refinements and soundness
	Generalised soundness
	Refinements and generalised soundness
	Old vs. new soundness
	Structural non-redundancy
	Siphons
	Non-redundancy criterion
	Non-redundancy check
	Traps
	Non-persistency criterion
	Correcting workflow nets
	Petri net reduction techniques
	{large Fusion of series places/transitions}
	{large Fusion of parallel places/transitions }
	{large Elimination of self-loop places/trans.}

