Liveness In free-choice systems

Natalia Sidorova

Free-choice nets (def.1)

AnetN = (S, T, F) is free-choicdff for every two
placess,r € S eithers* Nr®* =0 or s® = r°.

Free-choice nets (def.1)

AnetN = (S, T, F) is free-choicdff for every two
placess,r € S eithers* Nr®* =0 or s® = r°.

o s

Free-choice nets (def.1)

AnetN = (S, T, F) is free-choicdff for every two
placess,r € S eithers* Nr®* =0 or s® = r°.

wowE

Free-choice nets (def.1)

AnetN = (S, T, F) is free-choicdff for every two
placess,r € S eithers* Nr®* =0 or s® = r°.

wowE

Free-choice nets (def.1)

AnetN = (S, T, F) is free-choicdff for every two
placess,r € S eithers* Nr®* =0 or s® = r°.

wowE

Property of free-choice nets (4.3)
If a marking M/ enables some transition gf
then it enables every transition #f.

Free-choice nets (def.2)

AnetN = (S, T, F) is free-choicdff for every two
transitions, v € T either®t N *u = () or *t = *w.

Free-choice nets (def.2)

AnetN = (S, T, F) is free-choicdff for every two
transitions, v € T either®t N *u = () or *t = *w.

$ e

t u

Free-choice nets (def.2)

AnetN = (S, T, F) is free-choicdff for every two
transitions, v € T either®t N *u = () or *t = *w.

IR

t u

Free-choice nets (def.2)

AnetN = (S, T, F) is free-choicdff for every two
transitions, v € T either®t N *u = () or *t = *w.

IR

t u

o

o [=) i =o [} 0%

Vs,reS:s*Nr*=0Vvs*=r° (1)
VibueT :*tN°u=0V"°="u (2)

o [=) i =o [} 0%

Vs,reS:s*Nr*=0Vvs®*=r* (1)
VibueT :*tN°u=0V"°="u (2)

(=): Let (1) hold and, u € T.
If *t N *u = () then done.

If °t N *u # () then we must prov& = *u, i.e.
°t C *uwand®u C °t.

o [=) i =o [} 0%

Vs,reS:s*Nr*=0Vvs®*=r* (1)
VibueT :*tN°u=0V"°="u (2)

(=): Let (1) hold and, u € T.
If *t N *u = () then done.

If °t N *u # () then we must prov& = *u, i.e.
°t C *uwand®u C °t.

Lets € *t N *u. We must provelr : r € *t . r € *u.

o [=) i =o [} 0%

Vs,reS:s*Nr*=0Vvs®*=r* (1)
VibueT :*tN°u=0V"°="u (2)

(=): Let (1) holdand,u € T'.

If *¢ N *u = () then done.

If °t N *u # () then we must prov& = *u, i.e.
°t C *uwand®u C °t.

Lets € *t N *u. We must provelr : r € *t . r € *u.
Letr € *t. We havet € s*,u € s*,t € r°.

o [=) i =o [} 0%

Vs,reS:s*Nr*=0Vvs®*=r* (1)
VibueT :*tN°u=0V"°="u (2)

(=): Let (1) hold and, u € T.
If *t N *u = () then done.

If °t N *u # () then we must prov& = *u, i.e.
°t C *uwand®u C °t.

ets e *tN®u. We must prover'r : r € *t . r € *u.
Letr € °t. We havet € s*,u € s*,t € r°.

Hencet € (s*Nr*),i.e.s*Nre #£ 0.

o [=) i =o [} 0%

Vs,reS:s*Nr*=0Vvs®*=r* (1)
VibueT :*tN°u=0V"°="u (2)

(=): Let (1) hold and, u € T.
If *t N *u = () then done.

If °t N *u # () then we must prov& = *u, i.e.
°t C *uwand®u C °t.

ets e *tN®u. We must prover'r : r € *t . r € *u.
Letr € °t. We havet € s*,u € s*,t € r°.
Hencet € (s*Nr*),i.e.s*Nre # 0.

(1) implies thats® = r*°.

o [=) i =o [} 0%

Vs,reS:s*Nr*=0Vvs®*=r* (1)
VibueT :*tN°u=0V"°="u (2)

(=): Let (1) holdand,u € T'.

If *¢ N *u = () then done.

If °t N *u # () then we must prov& = *u, i.e.
°t C *uwand®u C °t.

ets e *tN®u. We must prover'r : r € *t . r € *u.
Letr € °t. We havet € s*,u € s*,t € r°.
Hencet € (s*Nr*),i.e.s*Nre # 0.

(1) implies thats® = r*°.

Sinceu € s°*, u € r* as well.

o [=) i =o [} 0%

Vs,reS:s*Nr*=0Vvs®*=r* (1)
VibueT :*tN°u=0V"°="u (2)

(=): Let (1) holdand,u € T'.

If *¢ N *u = () then done.

If °t N *u # () then we must prov& = *u, i.e.
°t C *uwand®u C °t.

ets e *tN®u. We must prover'r : r € *t . r € *u.
Letr € °t. We havet € s*,u € s*,t € r°.
Hencet € (s*Nr*),i.e.s*Nre # 0.

(1) implies thats® = r*°.

Sinceu € s*,u € r* as well. Hencey € *u

o [=) i =o [} 0%

Vs,reS:s*Nr*=0Vvs®*=r* (1)
VibueT :*tN°u=0V"°="u (2)

(=): Let (1) holdand,u € T'.

If *¢ N *u = () then done.

If °t N *u # () then we must prov& = *u, i.e.
°t C *uwand®u C °t.

ets e *tN®u. We must prover'r : r € *t . r € *u.
Letr € °t. We havet € s*,u € s*,t € r°.
Hencet € (s*Nr*),i.e.s*Nre # 0.

(1) implies thats® = r*°.

Sinceu € s*, u € r* as well. Hencey € *u and
°t C *u.

o [=) i =o [} 0%

Vs,reS:s*Nr*=0Vvs®*=r* (1)
VibueT :*tN°u=0V"°="u (2)

(=): Let (1) holdand,u € T'.

If *¢ N *u = () then done.

If °t N *u # () then we must prov& = *u, i.e.
°t C *uwand®u C °t.

ets e *tN®u. We must prover'r : r € *t . r € *u.
Letr € °t. We havet € s*,u € s*,t € r°.
Hencet € (s*Nr*),i.e.s*Nre # 0.

(1) implies thats® = r*°.

Sinceu € s*, u € r* as well. Hencey € *u and
°t C *u.

Proof for®u C °¢ Is similar.

Proof for (<) is similar to &).

Free-choice nets (def.3,4)

AnetN = (S, T, F) is free-choicdff
for every places € S and transitiont € 7,
(s,t) € F'implies®t x s* C F.

Free-choice nets (def.3,4)

AnetN = (S, T, F) is free-choicdff
for every places € S and transitiont € 7,
(s,t) € F'implies®t x s* C F.

~ -
~ —
~ -
>
~ ~
~ S~
N

t u

Free-choice nets (def.3,4)

AnetN = (S, T, F) is free-choicdff
for every places € S and transitiont € 7,
(s,t) € F'implies®t x s* C F.

S? FC
~ —
~_ _-
<
- G
y

t u

AnetN = (S, T, F) is free-choicaff for every two
placess, » € S and two transitions, u € 7T,

{(s,1),(r,t),(s,u)} C Fimplies(r,u) € F.

Free-choice nets (def.3,4)

AnetN = (S, T, F) is free-choicdff
for every places € S and transitiont € 7,
(s,t) € F'implies®t x s* C F.

S? FC
~ ~
\\ //
>
// \\
J N

t u

AnetN = (S, T, F) is free-choicaff for every two
placess, » € S and two transitions, u € 7T,

{(s,1),(r,t),(s,u)} C Fimplies(r,u) € F.
def.3 = def.4

Free-choice nets (def.3,4)

AnetN = (S, T, F) is free-choicdff
for every places € S and transitiont € 7,

(s,t) € F'implies®t x s* C F.

T

f

u

AnetN = (S, T, F) is free-choicaff for every two
placess, » € S and two transitions, u € 7T,

{(s,1),(r,t),(s,u)} C Fimplies(r,u) € F.

def.3 = def.4

Exercise:Prove thadef.1 = def.3

Siphons

A set R of places is asiphonif *R C R°.
A siphon is aoroper siphonf it is not empty.

Siphons

A set R of places is asiphonif *R C R°.
A siphon is aoroper siphonf it is not empty.

N
N
I

!

I
|
|

Q_©

Siphons

A set R of places is asiphonif *R C R°.
A siphon is aoroper siphonf it is not empty.

j
|
|

Q_©

Siphons

A set R of places is asiphonif *R C R°.
A siphon is aoroper siphonf it is not empty.

4
N I
S

-
S
-
2. ©

Siphons

A set R of places is asiphonif *R C R°.
A siphon is aoroper siphonf it is not empty.

Unmarked siphons remain unmarked

Siphons

A set R of places is asiphonif *R C R°.
A siphon is aoroper siphonf it is not empty.

Unmar

Ked siphons remain unmarked

Live systems have no unmarked siphons.

Siphons (2)

Deadlocked systems have an unmarked proper si

Siphons (2)
Deadlocked systems have an unmarked proper si

Let (IV, M,) be a deadlocked system (no transition
can fire). Then the sdt of places unmarked dt/ Is
aproper siphon

Siphons (2)
Deadlocked systems have an unmarked proper si

Let (IV, M,) be a deadlocked system (no transition
can fire). Then the s&t of places unmarked &/, Is
aproper siphon

Every transition has an unmarked input placé/&t
(otherwise it would be enabled).

Siphons (2)
Deadlocked systems have an unmarked proper si

Let (IV, M,) be a deadlocked system (no transition
can fire). Then the s&t of places unmarked &/, Is
aproper siphon

Every transition has an unmarked input placé/&t
(otherwise it would be enabled).
Hence all transitions are IR®.

Siphons (2)
Deadlocked systems have an unmarked proper si

Let (IV, M,) be a deadlocked system (no transition
can fire). Then the s&t of places unmarked &/, Is
aproper siphon

Every transition has an unmarked input placé/&t
(otherwise it would be enabled).

Hence all transitions are IR®.

Then*R C R*

Siphons (2)
Deadlocked systems have an unmarked proper si

Let (IV, M,) be a deadlocked system (no transition
can fire). Then the s&t of places unmarked &/, Is
aproper siphon

Every transition has an unmarked input placé/&t
(otherwise it would be enabled).

Hence all transitions are IR®.

Then*R C R* andR is a proper siphor.

Siphons (2)
Deadlocked systems have an unmarked proper si

Let (IV, M,) be a deadlocked system (no transition
can fire). Then the sdt of places unmarked dt/ Is
aproper siphon

Every transition has an unmarked input placé/&t
(otherwise it would be enabled).

Hence all transitions are IR®.

Then*R C R* andR is a proper siphor.

If all proper siphons are marked at every reach
marking, the system is deadlock-free.

Traps

A set R of places is drapif R* C *R.
A trap Is aproper tragf it Is not empty.

Traps

A set R of places is drapif R* C *R.
A trap is aproper tragf it Is not empty.

e
\@> ﬁCF
4

Traps

A set R of places is drapif R* C *R.
A trap is aproper tragf it Is not empty.

=
¢><l

Traps

A set R of places is drapif R* C *R.
A trap is aproper tragf it Is not empty.

rE
-

- =

Traps

A set R of places is drapif R* C *R.
A trap is aproper tragf it Is not empty.

e
-

- =

Marked traps remain marked.

Sutricient condadition 1or deadlock
freedom

If every proper siphon of a system includes an Initi
marked trap, then the system is deadlock-free.

Sutricient condadition 1or deadlock
freedom

If every proper siphon of a system includes an Initi
marked trap, then the system is deadlock-free.

Assume some reachable markihgis dead.

Sutricient condition 1or deadlocCkK
freedom
If every proper siphon of a system includes an Initi
marked trap, then the system is deadlock-free.

Assume some reachable markimfis dead.
The setR of places unmarked &t/ is proper siphon.

SUitTicient condition 1or aeadlock
freedom

If every proper siphon of a system includes an Initi
marked trap, then the system is deadlock-free.

Assume some reachable markimfis dead.

The setR of places unmarked &t/ is proper siphon.
Every marked trap remains marked.

Hence,R includes no initially marked trap.]

Commoner’s Theorem

A free-choice system is live if and only Iif every
proper syphon includes an initially marked trap.

Property of free-choice systems:

Place-liveness and liveness coincide in free-choic
systems.

—p.1

Example

y

_

siphons (R C R°®):
Rl — {p17p47p3}1
RQ — {p17p27p37p4}

—p.1

Example

y

_

siphons (R C R°®):
Rl — {plap4ap3}1
RZ — {p17p27p37p4}

Is there marked tra@: () C R;?

—p.1

Example

GV

_

() Is atrap. Hencep*® C *Q).
Q L= R11 Ie Q L= {p17p47p3}

Example

V

_

() Is atrap. Hencep*® C *Q).

Q L= Rh .e. Q L= {p17p47p3}

Check If there exists € () andt € s°*
such that &€ °Q).

Ifyes,Q .= Q\ {s).

Example

V

_

() Is atrap. Hencep*® C *Q).

Q L= R11 .e. Q L= {p17p47p3}

Check If there exists € () andt € s°*
such that &€ °Q).

Ifyes,@ = Q \ {s}.
Q) = Ry, @ is marked,N is live.

—p.1

Algorithm for deciding liveness

Given: a free-choice systemV, M,).
Question is N not live?

Algorithm for deciding liveness

Given: a free-choice systemV, M,).
Question is N not live?

1. take a set of place’ C Py,

—p.1

Algorithm for deciding liveness

Given: a free-choice systemmV, M,).
Question is N not live?

1. take a set of place’ C Py,
2. check IfR I1s syphon;

—p.1

Algorithm for deciding liveness

Given: a free-choice systemmV, M,).
Question is N not live?

1. take a set of places C Py;
2. check IfR I1s syphon;

3. If RIs syphon, compute the maximal trgp
Included InR,;

—p.1

Algorithm for deciding liveness

Given: a free-choice systemmV, M,).
Question is N not live?

1. take a set of places C Py;
2. check IfR I1s syphon;

3. If RIs syphon, compute the maximal trgp
Included InR,;

4. if My(Q) = 0 thenN isnot live.

—p.1

Algorithm for deciding liveness

Given: a free-choice systemmV, M,).
Question is N not live?

1. take a set of places C Py;
2. check IfR I1s syphon;

3. If RIs syphon, compute the maximal trgp
Included InR,;

4. if My(Q) = 0 thenN isnot live.

Non-liveness problem of free-choice systems is
NP-complete

—p.1

Minimal siphons

A siphon isminimalif it is proper and does not
Include any other proper siphon.

—p.1

Minimal siphons

A siphon isminimalif it is proper and does not
Include any other proper siphon.

The union of siphons is a siphon.

Every proper siphon contains a minimal one.

—p.1

Minimal siphons

A siphon isminimalif it is proper and does not
Include any other proper siphon.

The union of siphons is a siphon.
Every proper siphon contains a minimal one.

A free-choice system is live if and only If every
minimal siphon includes an initially marked trap

—p.1

Clusters

Theclusterof a noder, |z], is a minimal set of node
such that

o x € |x],
o if a places € |z] thens® C |x],

o if a transitiont € [x| then®t C |z].

—p.1

Clusters

Theclusterof a noder, |z], is a minimal set of node
such that

o x € |x],
o if a places € |z] thens® C |x],

o if a transitiont € [x| then®t C |z].

/?

.

l
L]
QLY

—p.1

Clusters

Theclusterof a noder, |z], is a minimal set of node
such that

o x € |x],
o if a places € |z] thens® C |x],

o if a transitiont € [x| then®t C |z].
@
1Al

!

Q ¢

—p.1

Clusters

Theclusterof a noder, |z], is a minimal set of node
such that

o x € |x],
o if a places € |z] thens® C |x],

o if a transitiont € [x| then®t C |z].

/@
QH 4 \l
Q

l

>

—p.1

Clusters

Theclusterof a noder, |z], is a minimal set of node
such that

o x € |x],
o if a places € |z] thens® C |x],

o if a transitiont € [x| then®t C |z].

/@
—]
<L

|
>

—p.1

Property of clusters

The set{|z]| = is a node ofV} is a partition of the
nodes ofN.

Property of clusters

The set{|z]| = is a node ofV} is a partition of the
nodes ofN.

/?
o i
<

l
S

Property of clusters

The set{|z]| = is a node ofV} is a partition of the
nodes ofN.

/?
o i
<

l
S

Property of clusters

The set{|z]| = is a node ofV} is a partition of the
nodes ofN.

/?
o i
<

l
S

Property of clusters

The set{|z]| = is a node ofV} is a partition of the
nodes ofN.

/?
o i
<

l
S

Property of clusters

The set{|z]| = is a node ofV} is a partition of the
nodes ofN.

/@
e

l
S

Property of clusters

The set{|z]| = is a node ofV} is a partition of the
nodes ofN.

/@
@

l
S

Property of clusters

The set{|z]| = is a node ofV} is a partition of the
nodes ofN.

/@
@

l
>

Property of clusters

The set{|z]| = is a node ofV} is a partition of the
nodes ofN.

/@
@

l
b

Property of clusters

The set{|z]| = is a node ofV} is a partition of the
nodes ofN.

/@
@

l

>

In free-choice nets, each place of a clustey
connected to every transitiarof c.

—p.1

Property of clusters

The set{|z]| = is a node ofV} is a partition of the
nodes ofN.

/@
@

l

>

If a marking of a free-choice net enables a transitig
then it enables every transition of the clugter

—p.1

Minimal siphons (2)

A nonempty set of placeB of a free-choice ned is
aminimal siphoniff:

1. every cluster: of N contains at most one place
R and

2. the subnet generated B * R Is strongly
connected.

—p.1

Minimal siphons (2)

A nonempty set of placeB of a free-choice neV is
aminimal siphonff:

1. every cluster: of N contains at most one place
R and

2. the subnet generated B * R Is strongly
connected.

h

o2y
R

—p.1

Literature
Chapter 4 in [Desel, Esparza]

—p.1

Structural analysis for
Workflow nets

Workflow nets
A Petri netNV is aWorkflow net (WF-net)ff:

e N has two special places (or transitions):
aninitial place (transitionj: *; = (), and
afinal place (transition): f* = 0.

e For any noder € (P U T) there exists a path
from: to n and a path fromm to f.

A

O~

Applications:business process modelling,
software engineering,

O-

N
o,

- p.2

Soundness
Desired property: proper completion

A WF-net NV Is soundiff:

« For every markingy/ reachable frony], there
exists a firing sequence leading|10.

e There are no dead transitions(i, |i|).

- p.2

Refinement of Workflow Nets

Place refinementN = L ®, M
Being at some location (place of the net) resource
(tokens) undergo a number of operations.

Transition refinementN = L @, M
A single task on a higher level becomes a sequen

subtasks also involving choice and parallelism.

- p.2

Refilnements and soundness

Refilnements and soundness

Refilnements and soundness

N: C M:

BEye s EnoRi et

b

s =t

Refilnements and soundness

Refilnements and soundness

Refilnements and soundness

Refilnements and soundness

Refilnements and soundness

Refilnements and soundness

Refilnements and soundness

Refilnements and soundness

-
XK

Refilnements and soundness

Refilnements and soundness

Refilnements and soundness

Refilnements and soundness

Refilnements and soundness

Refilnements and soundness

N and M are “sound”, butV @, M 1S not!

—p.2

Generalised soundness

A sWF-netN with initial and final places and f
resp. isk-sound for k € N iff [f*] is reachable from
all markingsm from M(N, [i*]).

A tWF-net NV with initial and final transitions;, ¢
respectively Is k-sound iff the sWF-net formed by
adding toSy placesp;, p with

*pi = 0,p; = [ti], *ps = [ts], p} = 0 is k-sound.

A WF-net issound iff it Is £-sound for every natural.

- p.2

rRerinements and generalised
soundness

Soundness preservation
Let N = L ®,, M be a refinement built of sound
WF-netsL, M. Then/N Is sound.

—p.2

Old vs. new soundness

A WF-net NV Is soundiff:

| f] is reachable from any marking from
M(N, [i]).
e There are no dead transitions(i, [i|).

A WF-net N is soundiff [f*] is reachable from all
markingsm from M (N, [i*]), for any fork € N.

- p.2

Structural non-redundancy

OG-

fd/

Bl

Q-

0

 Non-redundancyevery transition can potentiall
fire and every place can potentially obtain toke
provided that there are enough tokens on the

Initial place.

« Persistencyit should be possible for every plac

(except forf) to become unmarked again—

otherwise the net is guaranteed to be not sout

- p.2

Siphons

A set R of places is asiphonif *R C R°.
A siphon is aoroper siphonf it is not empty.

—-p.2

Siphons

A set R of places is asiphonif *R C R°.
A siphon is aoroper siphonf it is not empty.

N
N
I

!

I
|
|

Q_©

Siphons

A set R of places is asiphonif *R C R°.
A siphon is aoroper siphonf it is not empty.

j
|
|

Q_©

—p.2

Siphons

A set R of places is asiphonif *R C R°.
A siphon is aoroper siphonf it is not empty.

4
N I
S

-
S
-
2. ©

Siphons

A set R of places is asiphonif *R C R°.
A siphon is aoroper siphonf it is not empty.

Unmarked siphons remain unmarked

Non-redundancy criterion

« A WF-net has no redundant placesHf\ {:}
contains no proper siphon.

A WF-net has no redundant places iff it has nc
redundant transitions.

O~

o

-0

B

5 B8

- p.2

Non-redundancy check

Compute the largest siphotiin P\ {:} in a standar
manner [Starke]:

input : A PetrinetN = (P, T, F*, F~)andS C P;
output: X C S,

X =5,

while there exisp € X andt € *p such that € X*
do X =X \{p};

return(X);

-p.3

Traps

A set R of places is drapif R* C *R.
A trap Is aproper tragf it Is not empty.

- p.3

Traps

A set R of places is drapif R* C *R.
A trap is aproper tragf it Is not empty.

e
\@> ﬁCF
4

—p.3

Traps

A set R of places is drapif R* C *R.
A trap is aproper tragf it Is not empty.

=
¢><l

- p.3

Traps

A set R of places is drapif R* C *R.
A trap is aproper tragf it Is not empty.

rE
-

- =

—p.3

Traps

A set R of places is drapif R* C *R.
A trap is aproper tragf it Is not empty.

e
-

- =

Marked traps remain marked.

—p.3

Non-persistency criterion

A WEF-net has no persistent placesff\ { f}
contains no proper trap.

OG-

8/

TR

~O

G-

0

Correcting workflow nets

Let a WF-netV be given.

First, find a maximal siphoX in P \ {i}.
All places fromX are redundant=
Transitions fromX* are redundant as wekl>

(N1, k|t]) obtained by removing places froi and
transitions fromX*® is WF-bisimilar to(/V, k|i|) for
anyk.

Nj is either not a WF-net any more and Sowas
ll-designed,
or V; Is a WF-net, which is an improved version gt

Check whetherV; has persistent places. If yes,; Is
not a sound WF-net. Otherwise, we can work wkh
Instead ofV.

-p.3

Petri net reduction technigues

Goal:to preserve such Petri net properties as liver
safeness and boundedness.
The simplest transformations: (see [Muratal989])

-p.3

Fusion of series places/transitions

-p.3

Fusion of parallel places/transitions

Elimination of self-loop places/trans.

- €3~

	Free-choice nets (def.1)
	Free-choice nets (def.2)
	def.1 = def.2
	Free-choice nets (def.3,4)
	Siphons
	Siphons (2)
	Traps
	Sufficient condition for deadlock freedom
	Commoner's Theorem
	Example
	Example
	Algorithm for deciding liveness
	Minimal siphons
	Clusters
	Property of clusters
	Minimal siphons (2)
	Literature
	
	Workflow nets
	Soundness
	Refinement of Workflow Nets
	Refinements and soundness
	Generalised soundness
	Refinements and generalised soundness
	Old vs. new soundness
	Structural non-redundancy
	Siphons
	Non-redundancy criterion
	Non-redundancy check
	Traps
	Non-persistency criterion
	Correcting workflow nets
	Petri net reduction techniques
	{large Fusion of series places/transitions}
	{large Fusion of parallel places/transitions }
	{large Elimination of self-loop places/trans.}

