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Property of free-choice nets (4.3)

If a markingM enables some transition ofs•

then it enables every transition ofs•.
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def.1 = def.2
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placess, r ∈ S and two transitionst, u ∈ T ,
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Exercise:Prove thatdef.1 = def.3.
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Siphons
A setR of places is asiphonif •R ⊆ R•.
A siphon is aproper siphonif it is not empty.
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Siphons (2)
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Let (N, M0) be a deadlocked system (no transition
can fire). Then the setR of places unmarked atM0 is
aproper siphon.

Every transition has an unmarked input place atM0

(otherwise it would be enabled).
Hence all transitions are inR•.
Then•R ⊆ R• andR is a proper siphon.�

If all proper siphons are marked at every reachable

marking, the system is deadlock-free.
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Traps
A setR of places is atrapif R• ⊆ •R.
A trap is aproper trapif it is not empty.
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Sufficient condition for deadlock
freedom
If every proper siphon of a system includes an initially
marked trap, then the system is deadlock-free.
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Sufficient condition for deadlock
freedom
If every proper siphon of a system includes an initially
marked trap, then the system is deadlock-free.

Assume some reachable markingM is dead.
The setR of places unmarked atM is proper siphon.
Every marked trap remains marked.

Hence,R includes no initially marked trap.�
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Commoner’s Theorem
A free-choice system is live if and only if every
proper syphon includes an initially marked trap.

Property of free-choice systems:
Place-liveness and liveness coincide in free-choice
systems.
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Q := R1, i.e. Q := {p1, p4, p3}

Check if there existss ∈ Q andt ∈ s•

such thatt 6∈ •Q.
If yes,Q := Q \ {s}.

Q = R1, Q is marked,N is live. – p.12
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Algorithm for deciding liveness
Given: a free-choice system(N, M0).
Question: is N not live?

1. take a set of placesR ⊆ PN ;

2. check ifR is syphon;

3. if R is syphon, compute the maximal trapQ
included inR;

4. if M0(Q) = ∅ thenN is not live.

Non-liveness problem of free-choice systems is
NP-complete.
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Minimal siphons
A siphon isminimal if it is proper and does not
include any other proper siphon.

– p.14



Minimal siphons
A siphon isminimal if it is proper and does not
include any other proper siphon.

The union of siphons is a siphon.

Every proper siphon contains a minimal one.

– p.14



Minimal siphons
A siphon isminimal if it is proper and does not
include any other proper siphon.

The union of siphons is a siphon.

Every proper siphon contains a minimal one.

A free-choice system is live if and only if every
minimal siphon includes an initially marked trap.
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Clusters
Theclusterof a nodex, [x], is a minimal set of nodes
such that

• x ∈ [x],
• if a places ∈ [x] thens• ⊆ [x],
• if a transitiont ∈ [x] then•t ⊆ [x].

– p.15



Clusters
Theclusterof a nodex, [x], is a minimal set of nodes
such that

• x ∈ [x],
• if a places ∈ [x] thens• ⊆ [x],
• if a transitiont ∈ [x] then•t ⊆ [x].

x

– p.15



Clusters
Theclusterof a nodex, [x], is a minimal set of nodes
such that

• x ∈ [x],
• if a places ∈ [x] thens• ⊆ [x],
• if a transitiont ∈ [x] then•t ⊆ [x].

x

– p.15



Clusters
Theclusterof a nodex, [x], is a minimal set of nodes
such that

• x ∈ [x],
• if a places ∈ [x] thens• ⊆ [x],
• if a transitiont ∈ [x] then•t ⊆ [x].

x

– p.15



Clusters
Theclusterof a nodex, [x], is a minimal set of nodes
such that

• x ∈ [x],
• if a places ∈ [x] thens• ⊆ [x],
• if a transitiont ∈ [x] then•t ⊆ [x].

x

– p.15



Property of clusters
The set{[x]| x is a node ofN} is a partition of the
nodes ofN .
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connected to every transitiont of c.

– p.16



Property of clusters
The set{[x]| x is a node ofN} is a partition of the
nodes ofN .

If a marking of a free-choice net enables a transitiont,
then it enables every transition of the cluster[t].
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Minimal siphons (2)
A nonempty set of placesR of a free-choice netN is
aminimal siphoniff:

1. every clusterc of N contains at most one place of
R and

2. the subnet generated byR ∪ •R is strongly
connected.

– p.17



Minimal siphons (2)
A nonempty set of placesR of a free-choice netN is
aminimal siphoniff:

1. every clusterc of N contains at most one place of
R and

2. the subnet generated byR ∪ •R is strongly
connected.

p3

p1

p4

t1

t3

t4

t2

p2

– p.17



Literature
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Structural analysis for

Workflow nets

– p.19



Workflow nets
A Petri netN is aWorkflow net (WF-net)iff:

• N has two special places (or transitions):
aninitial place (transition)i: •i = ∅, and
afinal place (transition)f : f • = ∅.

• For any noden ∈ (P ∪ T ) there exists a path
from i to n and a path fromn to f .

Applications:business process modelling,
software engineering, . . . .
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Soundness
Desired property: proper completion

A WF-netN is soundiff:
• For every markingM reachable from[i], there

exists a firing sequence leading to[f ].
• There are no dead transitions in(N, [i]).

– p.21



Refinement of Workflow Nets
Place refinement:N = L ⊗p M
Being at some location (place of the net) resources
(tokens) undergo a number of operations.

Transition refinement:N = L ⊗t M
A single task on a higher level becomes a sequence of
subtasks also involving choice and parallelism.
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Generalised soundness
A sWF-netN with initial and final placesi andf

resp. isk-sound for k ∈ N iff [fk] is reachable from
all markingsm fromM(N, [ik]).

A tWF-netN with initial and final transitionsti, tf
respectively is k-sound iff the sWF-net formed by
adding toSN placespi, pf with
•pi = ∅, p•i = [ti],

•pf = [tf ], p
•
f = ∅ is k-sound.

A WF-net issound iff it is k-sound for every naturalk.
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Refinements and generalised
soundness

Soundness preservation
Let N = L ⊗n M be a refinement built of sound
WF-netsL, M . ThenN is sound.

– p.25



Old vs. new soundness
A WF-netN is soundiff:

• [f ] is reachable from any markingm from
M(N, [i]).

• There are no dead transitions in(N, [i]).

A WF-netN is soundiff [fk] is reachable from all
markingsm fromM(N, [ik]), for any fork ∈ N.

– p.26



Structural non-redundancy
N1 N2

a

  i

c

b

  p

  f
d

s

a

  i

b

  p

  f
d

s

c

• Non-redundancy:every transition can potentially
fire and every place can potentially obtain tokens,
provided that there are enough tokens on the
initial place.

• Persistency:it should be possible for every place
(except forf ) to become unmarked again—
otherwise the net is guaranteed to be not sound.
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Siphons
A setR of places is asiphonif •R ⊆ R•.
A siphon is aproper siphonif it is not empty.
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Siphons
A setR of places is asiphonif •R ⊆ R•.
A siphon is aproper siphonif it is not empty.

Unmarked siphons remain unmarked
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Non-redundancy criterion
• A WF-net has no redundant places iffP \ {i}

contains no proper siphon.
• A WF-net has no redundant places iff it has no

redundant transitions.

N1 N2
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d

s

c
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Non-redundancy check
Compute the largest siphonX in P \ {i} in a standard
manner [Starke]:

input : A Petri netN = (P, T, F+, F−) andS ⊆ P ;
output:X ⊆ S;
X = S;
while there existp ∈ X andt ∈ •p such thatt 6∈ X•

do X = X \ {p};
return(X);

– p.30



Traps
A setR of places is atrapif R• ⊆ •R.
A trap is aproper trapif it is not empty.
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Traps
A setR of places is atrapif R• ⊆ •R.
A trap is aproper trapif it is not empty.

Marked traps remain marked.
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Non-persistency criterion
A WF-net has no persistent places iffP \ {f}
contains no proper trap.

N1 N2
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Correcting workflow nets
Let a WF-netN be given.

First, find a maximal siphonX in P \ {i}.
All places fromX are redundant.⇒
Transitions fromX• are redundant as well.⇒

(N1, k[i]) obtained by removing places fromX and
transitions fromX• is WF-bisimilar to(N, k[i]) for
anyk.

N1 is either not a WF-net any more and soN was
ill-designed,
or N1 is a WF-net, which is an improved version ofN .

Check whetherN1 has persistent places. If yes,N1 is
not a sound WF-net. Otherwise, we can work withN1

instead ofN .
– p.33



Petri net reduction techniques
Goal: to preserve such Petri net properties as liveness,
safeness and boundedness.
The simplest transformations: (see [Murata1989])
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Fusion of series places/transitions

– p.35



Fusion of parallel places/transitions
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Elimination of self-loop places/trans.

– p.37
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