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ABSTRACT

Sound transmission through straight circular ducts with a uniform inviscid mean flow and a con-
stant acoustic lining (impedance wall) is classically described by a modal expansion. A natural ex-
tension for ducts with axially slowly varying properties (diameter and mean flow, wall impedance)
is a multiple-scales solution. It is shown in the present paper that a consistent approximation of
boundary condition and isentropic mean flow allows the multiple-scales problem to have an ex-

act solution. Since the calculational complexities are no more than for the classical straight duct
model, the present solution provides an attractive alternative to a full numerical solution if diam-
eter variation is relevant. A unique feature of the present solution is that it provides a systematic
approximation to the hollow-to-annular cylinder transition problem in the turbofan engine inlet
duct.

1. INTRODUCTION

The theory of sound propagation in straight
ducts with constant impedance type bound-
ary conditions and a homogeneous stationary
medium is classical and well-established (Morse
and Ingard [7]; Pierce [14]). Per frequency
ω, the sound field, satisfying Helmholtz’ equa-
tion (∇2 + k2)φ = 0, may be built up by su-
perposition of eigensolutions or modes. These
are certain shape-preserving fundamental solu-
tions. The existence of these modes is a con-
sequence of the relatively simple geometry, al-
lowing separation of variables.

For cylindrical ducts, with associated cylin-
drical coordinate system (x, r, θ) the modes
are given, in the usual complex nota-
tion, by exponentials and Bessel functions:
NJm(αr)eiωt−imθ−ikx for a simple cylinder,
and [NJm(αr) +MYm(αr)]eiωt−imθ−ikx for an
annular cylinder.

The eigenvalue m, or circumferential wave
number, is, due to the periodicity in θ, an in-
teger; the eigenvalue α, or radial wave num-
ber, is determined by the appropriate bound-
ary condition at the duct wall(s), while the ax-
ial wave number k is related to α and ω via
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Figure 1: A turbofan engine

a dispersion relation. If we introduce a mean
flow in the duct (motivated by aircraft turbo-
fan engine applications, Nayfeh et al.[10], figure
1), the acoustic problem becomes rapidly much
more difficult. Spatially varying mean flow
velocities produce non-constant coefficients of
the acoustic equations, which usually spoils
the possibility of a modal expansion. Perhaps
the simplest non-trivial mean flow is a uniform
flow, in the limit of vanishing viscosity. Then
modal solutions are possible, of a form rather
similar to the one without flow.

A most important problem here is the way
the sound field is transmitted through the van-
ishing mean flow boundary layer at the wall,
which thus effectively modifies the impedance
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boundary condition at the duct wall into an
equivalent boundary condition in the limit to
the duct wall. This modified boundary condi-
tion was first proposed by Ingard [5], and later
on proved by Eversman and Beckemyer [2] and
Tester [17] to be indeed the correct limit for a
boundary layer which is much smaller than a
typical acoustic wave length.
In certain applications the geometry of a

cylindrical duct is only an approximate model,
and it is therefore of practical interest to con-
sider sound transmission through ducts of vary-
ing cross section. In general, this problem is,
again, very difficult, and one usually resorts to
numerical methods. However, quite often, es-
pecially when the duct carries a mean flow, the
diameter variations of the duct are only grad-
ual thus introducing prospects of perturbation
solutions. Indeed, several authors have utilized
the small parameter related to the slow cross
section variations (Eisenberg and Kao [1]; Tam
[16]; Huerre and Karamcheti [4]; Thompson
and Sen [18]). A particularly interesting and
systematic approach is the method of multi-
ple scales elaborated by Nayfeh and co-workers,
both for ducts without (Nayfeh and Telionis
[12]) and with flow (Nayfeh, Telionis and Lek-
oudis [13]; Nayfeh et al.[11]), and with hard
and impedance walls. The multiple-scales tech-
nique provides a very natural generalization of
modal solutions since a mode of a constant duct
is now assumed to vary its shape according to
the duct variations, in a way that amplitude
and wave numbers are slowly varying functions,
rather than constants.
In Rienstra [20] we proceeded along these

lines, and presented an explicit multiple-scales
solution of a problem similar to the one con-
sidered previously by Nayfeh et al. We consid-
ered a mode propagating in a slowly varying
duct with impedance walls and containing al-
most uniform (inviscid, isentropic, irrotational)
mean flow with vanishing boundary layer.
A somewhat puzzling aspect of Nayfeh et

al.’s solutions was that without flow the dif-
ferential equation for the slowly varying ampli-
tude could be solved exactly, whereas with flow
this was not the case. Also, in Rienstra [15] the
amplitude equation for a similar problem of a
duct with (slowly varying) porous walls could
be solved exactly. In [20] we showed that, at
least in the present type of problems, an ex-
act solution appears to be the rule rather than
an exception, if the entire perturbation analy-

sis is consistent at all levels. In the problem
under consideration, Nayfeh et al. used an ad
hoc mean flow velocity profile (quasi one di-
mensional with some assumed boundary layer)
which is not a solution of the mean flow equa-
tions, and, furthermore, in case of a vanishing
boundary layer they used an incorrect effec-
tive boundary condition, although at that time
this was not known. Myers [8] showed that In-
gard’s [5] effective boundary condition for an
impedance wall with uniform mean flow is to
be modified significantly in case of non-uniform
mean flow along curved surfaces.

Both Myers’ [8] boundary condition and a
consistent approximation of the mean flow is
essential for the explicit solution presented.

In the present study we continued along
these lines, and extended the theory to include
an annular cylindrical geometry, in particular
the transition from hollow to annular cylinder,
and included some illustrative examples. These
examples are taken from turbofan engine appli-
cations.

2. FORMULATION

OF THE PROBLEM

We consider a cylindrical duct with slowly vary-
ing cross section. Inside this duct we have a
compressible inviscid perfect isentropic irrota-
tional gas flow, consisting of a mean flow and
acoustic perturbations. To the mean flow the
duct is hard-walled, but for the acoustic field
the duct is lined with an impedance wall.

It is convenient to make dimensionless: spa-
tial dimensions on a typical duct radius R∞,
densities on a reference value ρ∞, velocities on
a reference sound speed c∞, time on R∞/c∞,
pressure on ρ∞c2

∞
, and velocity potential on

R∞c∞. Note that the corresponding reference
pressure p∞ satisfies ρ∞c2

∞
= γp∞.

We then have in the cylindrical coordinates
(x, r, θ), with unit vectors ex, er and eθ, the
duct inner wall radius R1 and outer wall radius
R2 given by

r = R1(X), r = R2(X), X = εx,

−∞ < x < ∞, 0 ≤ θ < 2π,

where ε is a small parameter, and R1,2 is by as-
sumption only dependent on ε through εx. As
we will see is ε absent in the final results, and
its rôle is only to legitimize and support the
present systematic perturbation method. The
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fluid in the duct is described by (see, for exam-
ple, Pierce [14]).

ρ̃t +∇.(ρ̃ṽ) = 0,

ρ̃(ṽt + ṽ .∇ṽ) +∇p̃ = 0,

γp̃ = ρ̃γ , c̃2 =
dp̃

dρ̃
= ρ̃γ−1

(2.1)

(with boundary and initial conditions), where ṽ
is particle velocity, ρ̃ is density, p̃ is pressure, c̃
is sound speed, and γ is the specific heat ratio, a
constant. Since we assumed the flow to be irro-
tational, we may introduce a velocity potential
φ̃, such that ṽ = ∇φ̃. Using the vector identity
(ṽ .∇)ṽ = 1

2∇|ṽ|2 + (∇ × ṽ) × ṽ = 1
2∇|ṽ|2,

and the relation between p̃ and ρ̃, the above
momentum equation may be integrated to a
variant of Bernoulli’s equation

∂φ̃

∂t
+

1

2
|ṽ|2 +

c2

γ − 1
= a constant (2.2)

This flow is split up into a stationary (mean)
flow part, and an acoustic perturbation. This
acoustic part varies harmonically in time with
circular frequency ω, and with small amplitude
to allow linearization. To avoid a complicat-
ing coupling between the two small parame-
ters (ε and the acoustic amplitude), we assume
this acoustic part much smaller than any rele-
vant power of ε. In the usual complex notation
(where the real part is assumed) we write then

ṽ = V + veiωt, φ̃ = Φ+ φeiωt,

ρ̃ = D + ρeiωt, p̃ = P + peiωt,

c̃ = C + ceiωt.

Substitution and linearization yields:
• mean flow field

∇.(DV) = 0

1
2 |V|2 +

C2

γ − 1
= E, a constant,

γP = Dγ , C2 = γP/D = Dγ−1,

(2.3)

• acoustic field

iωρ+∇.(D∇φ+ ρV) = 0,

iωφ+V.∇φ+
p

D
= 0,

p = C2ρ, c = 1
2 (γ − 1)D−

1

2
(γ+1)p.

(2.4)

The integration constant in the integrated mo-
mentum equation may be absorbed by φ. For
the mean flow the duct wall is solid, so the nor-
mal velocity vanishes

V.ni = 0 at r = Ri(X) (i = 1, 2) (2.5)

where the outward directed normal vectors at
the wall are given by

n1 = −
er − εR′

1ex

(1 + ε2R′2
1 )

1

2

, n2 =
er − εR′

2ex

(1 + ε2R′2
2 )

1

2

.

To define the mean flow an axial mass flux
πF will be assumed such that the flow is sub-
sonic everywhere. For the acoustic part the
duct walls are locally reacting impedance walls
with complex impedances Z1 = Z1(X) and
Z2 = Z2(X)–slow variations of Zi in X may
be included–, meaning that at the wall, at a
hypothetical point with zero mean flow,

p = Zi(v.ni).

However, this is not the boundary condition
needed here. Since we deal with a fluid of van-
ishing viscosity, the boundary layer along the
wall in which the mean flow tends to zero is
of vanishing thickness, and we cannot apply a
boundary condition at the wall. The required
condition is for a point near the wall but still
(just) inside the mean flow. For arbitrary mean
flow along a (smoothly) curved wall it was given
by Myers [8] (eq. 15):

iω(v.ni) =
[

iω +V.∇− ni .(ni .∇V)
]( p

Zi

)

at r = Ri(X) (i = 1, 2) (2.6)

with the remark that for simplicity we will
exclude here the case Zi = 0. Moreover, in
terms of our small parameter ε we will assume
Zi = O(1). The above equations and boundary
conditions are evidently still insufficient to de-
fine a unique solution, and we need additional
conditions for mean flow and sound field. This
will be done by assuming a certain behaviour.
Since we are studying axial variations due to
the geometry of the pipe, the natural choice is
to consider a mean flow, almost uniform with
axial variations only in X , and a sound field
consisting of a constant-duct mode perturbed
by the X-variations. Furthermore, this choice
indeed implies the absence of vorticity (apart
from the vortex sheet along the wall), allowing
the introduction of a velocity potential.

Before turning to the acoustic problem, we
will derive in the next section the solution of
the mean flow problem as a series expansion
in ε. As noted before, a consistent mean flow
expansion is necessary to obtain the explicit
multiple scale solution of the acoustic problem.
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3. MEAN FLOW

Since we assumed a mean flow, nearly uniform
with axial variations in X only, we have

V = U(X, r; ε)ex + V (X, r; ε)er.

The cross-sectional mass flux is given by

2π

∫ R2(X)

R1(X)

D(X, r; ε)U(X, r; ε)r dr = πF,

a constant. (3.1)

Since the variations in x are through X only,
we may assume the constants E and F to be
independent of ε. Furthermore, by writing out
the same mass equation (2.3a) in X and r, it
follows that the small axial mass variations can
only be balanced by small radial variations, so
V = O(ε), and hence

U(X, r; ε) = U0(X) +O(ε2),

V (X, r; ε) = εV1(X, r) +O(ε3),

and so, with equations (2.3b) and (2.3c),

P (X, r; ε) = P0(X) +O(ε2),

D(X, r; ε) = D0(X) +O(ε2),

C(X, r; ε) = C0(X) +O(ε2).

From equation (3.1) it follows now immediately
that

U0(X) =
F

D0(X)(R2
2(X)−R2

1(X))
(3.2)

with D0, P0 and C0 given by

1

2

( F

D0(R2
2 −R2

1)

)2

+
1

γ − 1
Dγ−1

0 = E,

P0 =
1

γ
Dγ

0 , C0 = D
γ−1

2

0 ,

(3.3)

where D0 is to be determined numerically, per
X . For V1, we return to the continuity equa-
tion, which is to leading order

∂

∂X
(D0U0) +

1

r

∂

∂r
(rD0V1) = 0.

Under the boundary conditions

−
dRi

dX
U0 + V1 = 0

at r = Ri(X) (i = 1, 2),

(one of which is already satisfied through the
application of (3.1) leading to (3.2)), we obtain
the solution

V1(X, r) = (3.4)

−
F

2rD0(X)

∂

∂X

( r2 −R2
1(X)

R2
2(X)−R2

1(X)

)

The above solutions U0, P0, D0 may be rec-
ognized as the well-known one dimensional gas
flow equations (e.g., Liepmann et al. [6]). It
should be stressed, however, that the radial ve-
locity component V1 is essential for a consistent
mean flow description, and therefore necessary
here.

4. THE ACOUSTIC FIELD

In this section we will derive the main result
of the present paper: the explicit multiple-
scales solution for a mode-like wave described
by equation (2.4) with (2.6). When we elimi-
nate p and ρ we have the following differential
equation and boundary conditions for φ.

∇.(D∇φ) −D
(

iω +V.∇
)

. . .

. . .

[

1

C2

(

iω +V.∇
)

φ

]

= 0,

iω(∇φ.ni) = −
(

iω +V.∇− ni .(ni .∇V)
)

. . .

. . .

[

D

Zi

(

iω +V.∇
)

φ

]

at r = Ri(X).

(4.1)

A straight-duct modal wave form would be a
function of r multiplied by a complex expo-
nential in θ and x. The mode-like wave we
are looking for here is obtained by assuming
the amplitude and axial and radial wave num-
bers to be slowly varying, i.e. depending on X
(Nayfeh et al.[12]). So we assume

φ(x, r, θ; ε) = A(X, r; ε) . . . (4.2)

. . . exp
(

−imθ − iε−1

∫ X

µ(ξ) dξ
)

Then the partial derivatives to x become for-
mally (suppressing the exponential)

∂

∂x
= −iµ(X) + ε

∂

∂X
,

∂2

∂x2
= −µ(X)2 − iε

dµ

dX
− 2iεµ(X)

∂

∂X

+ε2
∂2

∂X2
.
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Substitution in (4.1a), and collecting like pow-
ers of ε yield up to order ε2

D0L(A) =
iε

A

{

∂

∂X

[(U0Ω

C2
0

+ µ
)

D0A
2
]

+

1

r

∂

∂r

[

r
V1Ω

C2
0

D0A
2
]

}

(4.3)

where

Ω = ω − µU0,

and the operator L is defined by

L =
∂2

∂r2
+

1

r

∂

∂r
+

Ω2

C2
0

− µ2 −
m2

r2
.

The boundary conditions (4.1b), up to order
ε2, are now

iω
∂A

∂r
+

Ω2D0A

Z1
= εωµ

dR1

dX
A+

iε

A

[

U0
∂

∂X
+ V1

∂

∂r
−

∂V1

∂r

]

(ΩD0A
2

Z1

)

(r = R1),

iω
∂A

∂r
−

Ω2D0A

Z2
= εωµ

dR2

dX
A

−
iε

A

[

U0
∂

∂X
+ V1

∂

∂r
−

∂V1

∂r

]

(ΩD0A
2

Z2

)

(r = R2).

(4.4)

Now assume

A(X, r; ε) = A0(X, r) + εA1(X, r) + . . . ,

then substitution into equation (4.3) yields to
leading order L(A0) = 0, which is, up to a ra-
dial coordinate stretching, Bessel’s equation in
r, with X acting only as a parameter. The
mode-like solution we are looking for is then

A0(X, r) = N(X)Jm(α(X)r)+

M(X)Ym(α(X)r)

where Jm and Ym are the m-th order Bessel
function of the first and second kind (Watson
[19]). The reduced boundary conditions (4.4)
produce the following equation for ‘eigenvalue’
α (continuous in X)

αR2J
′

m(αR2)− ζ2Jm(αR2)

αR2Y ′

m(αR2)− ζ2Ym(αR2)
= (4.5)

αR1J
′

m(αR1) + ζ1Jm(αR1)

αR1Y ′

m(αR1) + ζ1Ym(αR1)
= −

M(X)

N(X)
,

where

ζ1 =
Ω2D0R1

iωZ1
, ζ2 =

Ω2D0R2

iωZ2
.

Expression (4.5) itself is equal to
−M(X)/N(X), so only N is to be determined.
α and µ are related by the dispersion relation

α2 + µ2 = Ω2/C2
0 .

It is convenient to introduce the reduced axial
wave number

σ =

√

1− (C2
0 − U2

0 )
α2

ω2

so that

µ = ω
C0σ − U0

C2
0 − U2

0

,
U0Ω

C2
0

+ µ =
ωσ

C0
,

Ω = ωC0
C0 − U0σ

C2
0 − U2

0

.

The branch (i.e. sign) of σ is to be selected
such, that Imσ ≤ 0, Reσ ≥ 0 (IV-th quad-
rant) if the mode is propagating in positive di-
rection, and Imσ ≥ 0, Reσ ≤ 0 (II-nd quad-
rant) if the mode is propagating in negative
direction. A single exception is to be made if
impedance, frequency, and mean flow are such
that the vortex sheet between mean flow and
impedance wall becomes (Helmholtz) unstable,
corresponding to a σ in either the I-st or III-d
quadrant ([21],[22],[23] and others). Although
it wouldn’t alter the present results, we will not
consider these cases here.

Note that in the cylindrical duct case, with
R1 = 0, we have just M(X) = 0 so that

A0(X, r) = N(X)Jm(α(X)r),

and α is determined from

αR2J
′

m(αR2)− ζ2Jm(αR2) = 0. (4.6)

The amplitude functions N(X) and M(X) are
determined from the condition that there exists
a solution A1. This is not trivial since we as-
sumed the solution to behave in a certain way,
namely, to depend on X rather than x. Now
suppose that we would proceed and solve the
equation for A1, and subsequently find the nec-
essary forms of N and M , then it would appear
that we end up with similarly undetermined
functions in A1. So this approach looks rather
inefficient. Indeed, it is not necessary to work
out the equations for A1 in detail. We only
need a solvability condition (Nayfeh [9]), suffi-
cient to yield the required equation for N .
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Since the operator rL is self-adjoint in r, we
have

∫ R2

R1

A0L(A1)r dr =

R2

[

A0
∂A1

∂r
−A1

∂A0

∂r

]

r=R2

−R1

[

A0
∂A1

∂r
−A1

∂A0

∂r

]

r=R1

.

Further evaluation of this expression (using
(4.4)) and the corresponding right-hand side of
(4.3) gives finally, after some calculation, the
following equation

d

dX

[

D0
ωσ

C0

∫ R2

R1

A2
0(X, r)r dr+ (4.7)

D0U0

Ω



ζ2A
2
0(X,R2) + ζ1A

2
0(X,R1)





]

= 0.

Use is made of equations (3.2) and (3.5), and
the identities

∫ R(X) ∂

∂X
f(X, r) dr =

d

dX

∫ R(X)

f(X, r) dr −
dR

dX
f(X,R),

and

U0
∂

∂X
+ V1

∂

∂r
= U0

d

dX
along r = R(X).

The above equation (4.7) can be integrated im-
mediately, with a constant of integration Q2

0.
This constant is determined by the initial am-
plitude of the mode entering the duct. Since
the solution is linear, it is further irrelevant
here. The integral of A2

0r, finally to be eval-
uated, is a well-known integral of Bessel func-
tions (Appendix), with the result (using (4.5))

∫ R2

R1

A2
0(X, r)r dr =

1

2
R2

2

(

1−
m2 − ζ22
α2R2

2

)

A2
0(X,R2)

−
1

2
R2

1

(

1−
m2 − ζ21
α2R2

1

)

A2
0(X,R1).

Using the following expressions

A0(X,R1) =
(2/π)N(X)

αR1Y ′

m(αR1) + ζ1Ym(αR1)

A0(X,R2) =
(2/π)N(X)

αR2Y ′

m(αR2)− ζ2Ym(αR2)

and some further simplifications we thus obtain
for N(X)

( 1
2πQ0

N

)2

= (4.8)

D0ωσR
2
2

2C0

(

1−
m2 − ζ22
α2R2

2

)

+
D0U0

Ω
ζ2

(

αR2Y ′

m(αR2)− ζ2Ym(αR2)
)2 . . .

−

D0ωσR
2
1

2C0

(

1−
m2 − ζ21
α2R2

1

)

−
D0U0

Ω
ζ1

(

αR1Y ′

m(αR1) + ζ1Ym(αR1)
)2 .

Expression (4.8) for N(X) is the principal re-
sult of the present paper. An interesting special
case is the hard-walled duct, where Zi = ∞,
ζi = 0. Then we have

( 1
2πQ0

N

)2

=
D0ωσ

2C0

(

R2
2 −m2/α2

[αR2Y ′

m(αR2)]2

−
R2

1 −m2/α2

[αR1Y ′

m(αR1)]2

)

(4.9)

Note that α is real here. For a hollow cylin-
der, without inner wall, the above general re-
sult (4.8) reduces, in the limit R1 → 0, to

(Q0

N

)2

=

(

D0ωσR
2
2

2C0

(

1−
m2 − ζ22
α2R2

2

)

+
D0U0

Ω
ζ2

)

Jm(αR2)
2 (4.10)

So the present solution is equally valid for hol-
low and annular cylindrical ducts, and hence
includes the unique feature that it provides (ap-
parently for the first time) a systematic approx-
imation to the hollow-to-annular cylinder tran-
sition problem in the turbofan engine duct in-
let. This aspect will be illustrated in the next
section by an example.

If convenient, we may observe that for a hard
walled hollow cylinder the combination αR2 is
a constant, independent of X , so we can absorb
some constant factors into Q0 to obtain

(Q0

N

)2

=
D0ωσR

2
2

C0
. (4.11)

Of course, with a transition from a hollow to
annular cylinder this is not advisable, because
then it is required that we deal with the same
Q0.
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5. EXAMPLE

In this section we will discuss an example of the
previous theory. A lined inlet duct of a CFM56-
inspired turbofan engine, from inlet plane via
(hard-walled) spinner to the inlet rotor plane,
is given by R2, R1, Z2 = 2− i and Z1 = ∞ (fig-
ure (2)11). Assuming the dimensionless density
D = 1 far upstream, its value slightly below 1
at the inlet plane, and the inlet Mach number
∼ 0.6, we choose F = 0.6764 and E = 2.5136.
Density and Mach number are given in figure
(2)12. A rotor blade number of 26, and a rotor
tip Mach number slightly below 1 is taken, such
that the first harmonic has frequency ω = 25
and m = 26.
The first radial left running mode is consid-

ered, together (for comparison) with its right
running companion. In figures (2)3,1−3 the ax-
ial wave number µ, radial wave number α, and
reduced axial wave number σ are shown in the
complex plane, parametrically varying with the
duct position x. Initial positions are indicated
by an open circle, intermediate positions by
filled small circles.
To be sure that we are looking at the same

left- and right-running mode, both are found
first, at the initial x-position, for no-flow con-
ditions (F = 0), when both modes coincide.
Then the modes are traced for increasing F .
This can be seen in figure (2)32, the plot for α:
the thin dotted line is α at x = 0 for increasing
F .
The cross-sectionally averaged amplitude

functions A, given by

Ā(X) =
[

∫ R2

R1

|A(X, r)|2r dr
]1/2

,

are plotted in figure (2)21. The respective val-
ues are normalized to 1 at begin and end posi-
tion.
Since it is of interest to measure the amount

of dissipated acoustic energy, we introduce here
the acoustic power P of a single mode through
a duct cross section. Following Goldstein [3],
we define the acoustic power at a surface S

P =

∫

S

I.nS ds,

where I is the time-averaged acoustic intensity
or energy flux, here given by

I = 1
2 Re[(p/D +∇Φ.∇φ)(D∇φ + ρ∇Φ)∗],

with ∗ denoting the complex conjugate. Con-
sidering here for S a duct cross section, we need
the axial component of I, which is to leading
order

Ix =
D0ω

2

2C0
Re(σ)|φ|2 = (5.1)

D0ω
2

2C0
Re(σ)|A0|

2 exp
(

2

∫ x

Imµ(εξ) dξ
)

.

so that

P = 2π
D0ω

2

2C0
Re(σ)

∫ R2

R1

|A0(X, r)|2r dr . . .

. . . exp
(

2

∫ x

Imµ(εξ) dξ
)

, (5.2)

where (see Appendix)

∫ R2

R1

|A0(X, r)|2r dr =

−
|A0(X,R2)|

2 Im ζ2 + |A0(X,R1)|
2 Im ζ1

Imα2
,

which is, of course, equivalent to (Ā)2. For
hard-walled ducts (Zi = ∞, ζi = 0) all eigen-
values α are real. Then P = 0 for cut-off modes
(Re σ = 0). For cut-on modes, where σ is real,
A0 is also real and:

∫ R2

R1

A0(X, r)2r dr =
Q2

0C0

D0ωσ
.

Since the value of P is highly dominated by the

exponential part e2
∫

Imµdξ, we have plotted the
power both without (figure (2)22, linear scale)
and with this exponent (figure (2)23, dB scale).
Since the “head wind” moved the left running
mode just into a cut-off position, this mode is
much more damped, as could have been con-
cluded from the behaviour of µ already.

6. DISCUSSION AND

CONCLUSIONS

If the multiple-scales solution is valid, the
mode-like wave behaves locally like a mode of a
straight duct. Rotating with angular velocity
ω/m, it propagates in axial direction with or
without attenuation (unattenuated or cut on:
Imµ = 0; attenuated or cut off: Imµ 6= 0). The
more interesting aspects here are, of course,
connected to the slow variations in X . These
are mainly represented by the amplitude func-
tions N,M and the phase function µ.
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Figure 2: Sound propagation in the lined inlet duct of a turbofan engine.
First radial (left- and right running) modes.
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When R and Z vary with X , the mode
changes gradually, except at the points where
the denominator of N (eq. (4.8)) vanishes and
the approximation breaks down. These points
are just found at the double eigenvalues, i.e.
where two eigenvalues µ (or α) coalesce. These
are given by equation (4.5) and its partial
derivative to µ.
Clearly, the approximation breaks down be-

cause the two coalescing modes couple (the en-
ergy of the incident mode is distributed over
the two) in a short region. A local analysis, not
given here, is necessary to determine the result-
ing amplitudes. In general the two modes prop-
agate in the same direction but not necessarily.
The second mode may run backwards while at
the same time the incident mode becomes cut-
off in such a way that beyond the point no en-
ergy is propagated. Points with this behaviour
are usually called turning points, since the in-
cident mode is totally reflected into the back-
ward running mode (we assume, of course, the
absence of tunnelling by other interfering turn-
ing points).
Turning points occur in practice with hard-

walled ducts (Z = ∞), where a real σ tends
to zero to become pure imaginary (α is always
real). At σ = 0, N is singular (eq. (4.9, 4.11)),
and the incident mode couples to a backwards
running mode. For real σ we have

P ∼ Reσ 6= 0,

whereas for pure imaginary σ

P = 0,

so the mode must reflect indeed. Note that
this behaviour is irrespective of the presence of
mean flow.
In conclusion, we have found an explicit

solution for the multiple scale problem of
modal sound propagation through slowly vary-
ing lined ducts with isentropic mean flow. It
is shown that a consistent approximation of
boundary condition and mean flow allows the
multiple-scales problem to have an exact so-
lution.
Since the calculational complexities are no

more than for the classical straight duct model,
the present solution provides an attractive al-
ternative to a full numerical solution if diame-
ter variation is relevant. The present solution is
equally valid for hollow and annular cylindrical
ducts, and hence includes the unique feature

that it provides a systematic approximation to
the hollow-to-annular cylinder transition prob-
lem in the turbofan engine duct inlet. This
aspect is elaborated by an example.

The solution remains equally valid for hard-
walled or no-flow ducts, but needs adaptation
for a completely soft wall with Z = 0. The ap-
proximation breaks down at double eigenvalues
when the mode couples with other modes. This
occurs for example at cut-off points in a hard-
walled duct.

7. APPENDIX

Well-known integrals of Bessel functions (Wat-
son [19], p.135) are

∫

xCm(αx)C̃m(βx) dx =
x

α2 − β2
. . .

{

βCm(αx)C̃
′

m(βx) − αC′

m(αx)C̃m(βx)
}

,
∫

xCm(αx)C̃m(αx) dx =

1
2 (x

2 − m2

α2 )Cm(αx)C̃m(αx)

+ 1
2x

2C′

m(αx)C̃m(αx),

where Cm and C̃m is any linear combination of
Jm and Ym.
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