Correction to Equations 6 and 11, and Theorem 2

The remarks about the splitting $Z(\omega)=A(\omega) / B(\omega)$ make only sense if the interim quantities

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} b(t-\tau) p(0, \tau) \mathrm{d} \tau, \quad \frac{1}{2 \pi} \int_{-\infty}^{\infty} a(t-\tau) v(0, \tau) \mathrm{d} \tau
$$

are physical and inherently causal. See Equations 6 and 11, and Theorem 2.

Correction to Section 4

It is possible [1] to interpret $\sqrt{\omega}$ in a way that it obeys the conditions of causailty and reality. Replace

$$
\frac{1}{2} \sqrt{2}(1+i) \sqrt{\omega}
$$

by

$$
\sqrt{\mathrm{i} \omega}
$$

where the square root is defined by its principal value. This is analytic in the lower half plane (a branch cut in the ω-plane along the positive imaginary axis), and $(\sqrt{\mathrm{i} \omega})^{*}=\sqrt{-\mathrm{i} \omega}=\sqrt{\mathrm{i} \cdot(-\omega)}$ for $\omega \in \mathbb{R}$.
[1] F. Monteghetti, D. Matignon, E. Piot, and L. Pascal. Design of broadband time-domain impedance boundary conditions using the oscillatory-diffusive representation of acoustical models. Journal of the Acoustical Society of America, 140:1663-1674, 2016.

