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Astudy ismade of acoustic ductmodes in two-dimensional andaxisymmetric three-dimensional linedductswith an

isentropic inviscid transversely nonuniform mean flow and sound speed. These modes are described by a one-

dimensional eigenvalue problem consisting of a Pridmore-Brown equation complemented by hard-wall or

impedance-wall boundary conditions. A numerical solution, based on a Galerkin projection and an efficient

method for the resulting nonlinear eigenvalue problem, is compared with analytical approximations for low and

high frequencies. A collection of results is presented and discussed. Modal wave numbers are traced in the complex

plane for varying impedance, showing the usual regular modes and surface waves. A study of a vanishing boundary

layer (the Ingard limit) showed that, in contrast to the smoothly converging acoustic modes and downstream running

acoustic surfacewave, the convergence of the other surfacewaves is numericallymore difficult. Effects of (transverse)

turning points and exponential decay are discussed. Especially the occurrence of modes insensitive to the wall

impedance is pointed out. Cut-on wave numbers of hard-wall modes are presented as a function of frequency.

A strongly nonuniform mean flow gives rise to considerable differences between the modal behavior for low and for

high frequencies.

Nomenclature

A;Q; R = WKB amplitudes
A = arbitrary duct cross section
a = reference duct radius, height
a; an = coefficients Galerkin expansion
c0 = sound speed (dimensional; dimensionless)
c∞ = reference sound speed (dimensional)
dl = line integration element
dS = surface integration element
J = total number of Gauss–Legendre points
j = index Gauss–Legendre grid
M;Mνl = N × N Galerkin matrix
m = circumferential mode order
N = number of Chebyshev terms
n = modal index
n = normal wall vector (into the wall)
p = pressure perturbation; modal function
p0 = mean pressure (dimensional)
p0; p1 = small-ω expansion of p
r1; r2 = three-dimensional turning points
Tν = Chebyshev polynomial
t = time
�u; v� = two-dimensional Cartesian velocity
�u; v;w� = three-dimensional cylindrical velocity
u0 = mean flow velocity (dimensional; dimensionless)
v = velocity vector
W = �1 − μu0�∕c0, scaled Ω
W0 = �1 − μ0u0�∕c0
x = position vector; dummy vector
�x; y� = two-dimensional Cartesian coordinates
�x; r; θ� = three-dimensional cylindrical coordinates
xj; wj = Gauss–Legendre points, weights

y1; y2 = two-dimensional turning points

Z = wall impedance
γ = ratio specific heats; WKB wave number
δ = boundary-layer thickness parameter
ζ = scaled impedance, ωZ
κ; κn = modal wavenumber
λ = dummy eigenvalue
μ = scaled κ, κ is equal to ωμ
μ0; μ1 = small ω expansion of μ
ν = index Galerkin expansion
ρ = density perturbation
ρ0 = mean density (dimensional)
τ, σ = parameters of mean flow families
φ = test function
ψν = Galerkin expansion basis function
Ω = �ω − κu0�∕c0
ω = frequency; Helmholtz number
^ = denotes modal amplitude, ignored later
∼ = denotes dimensionless variable, ignored later

I. Introduction

D UCT modes are time-harmonic solutions of the linearized
compressible Euler equations in a duct, with the property that

they are self-similar in the axial direction. This is possible when the
duct and medium are constant in the axial direction. They are
interesting in aeroacoustics not only because they form a set of
building blocks to construct by linear combination more general
solutions, but also because,more importantly, they are simple enough
to reveal and understandmany aspects of sound propagation in ducts.
For example, themechanism of cutoff explains that sufficiently far

away from any harmonic source or scatterer its sound field consists of
only a finite number of modes [1,2]; the rotor-alone noise of a fan,
consisting of certain specified frequencies and circumferential mode
numbers, only exists when the blade tips rotate (approximately)
supersonically [1]; the Tyler–Sofrin selection rule for rotor–stator
interaction tells for what combinations of rotor blade and stator vane
numbers sound is radiated [3]; both mechanisms may be spoiled by
distortion modes due to nonuniformities of the mean flow [4,5], for
example, due to upwash; the imaginary parts of the prevailing modal
wave numbers constitute a simple measure for the quality of acoustic
lining; the indirect determination of a liner’s impedance by resolv-
ing a measured sound field into its modal spectrum is based on
modes [6,7].
In the simplest configuration of a lined duct with a uniform

medium without mean flow, modes come in two types: (i) acoustic
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modes and (ii) acoustic surface waves [8,9]. With a mean flow and
vanishing boundary layer (slip flow), two other types appear:
(iii) upstream and (iv) downstream running hydrodynamic surface
waves. If the boundary layer is very thin but not vanishing, again
another type of surface wave appears (v) due to the interaction with
the boundary layer [10]. Under certain conditions the upstream
running hydrodynamic surface wave (iii) is really downstream run-
ning and in fact an instability. Brambley [11] showed that in the time
domain this is one of many instabilities, some of which are absolute
(nonconvective) and (in case of slip flow) of infinite growth rate. This
causes the slip flow problem to be really ill-posed and therefore well
interpretable only if the problem is recast into some regularized form,
for example, by taking the boundary-layer thickness small but non-
zero [12]. Although this is a serious problem in time-domain models,
and this important insight has solved an almost 50-year-lasting
puzzle, we will not deal with it here because we will only consider
time-harmonic perturbations of a fixed frequency.
Although modes in a shear flow have been studied since the 1950s

[13], it is fair to say that almost all our working knowledge and
comprehension ofmodes is based on the basic configuration of a duct
with a uniform mean flow. Interaction with a shear flow (refraction,
coupling of acoustic energy with mean flow energy [14]) is hardly
covered. It is therefore useful to refine our knowledge of modes by
including nonuniform flows.
Wewill consider here modes in a mediumwith an isentropic mean

flow and sound speed varying in the transverse direction. They
constitute a class of simple but nontrivial sound waves in a shear
flow and a variable sound speed. For typical two-dimensional (2D)
and axisymmetric three-dimensional (3D) configurations, they are
governed by what has become known as the 2D and 3D Pridmore-
Brown equations. In the following we will present a collection of
results obtained by numerical and analytical methods.

II. Problem Description

A. General Case

Consider in a duct of a constant cross section with a medium and
boundary conditions independent of the axial position, time-harmonic
acoustic perturbationsp; ρ; v of plane parallel isentropic inviscidmean
flow p0; ρ0; v0. This mean flow has a uniformly constant mean pres-

sure p0 � ρ0c
2
0∕γ, but varies in the transverse direction with mean

velocity v0 � u0�y; z�ex, mean density ρ0�y; z�, and mean sound
speed c0�y; z�. The boundary conditions are of impedance type. The
ratio of specific heats is denoted† by γ � Cp∕Cv.

We are interested in sound fields p, described by self-similar
solutions called modes, that retain their shape when traveling down
the duct.With the given frequencyω and the usual complex notation,
they are of the form

p�x; t� � p̂�y; z�f�x − Vt� � p̂�y; z�eiω�t−x∕V� � p̂�y; z�eiωt−iκx
(1)

and consist of an exponential function multiplied by a shape function
p̂. This is an eigenfunction with eigenvalue κ of a Laplace-type
operator valid on a duct cross section, and satisfies an equation also
known as a preform of the Pridmore-Brown equation [2]:

Ω2∇ ⋅
�

1

Ω2
∇p̂

�
� �Ω2 − κ2�p̂ � 0; with Ω � ω − κu0

c0
(2)

The other variables û; v̂; ŵ, and ρ̂ can be expressed in p̂. See
Appendix A.
For the boundary conditions we adopt the Ingard–Myers condition

[15,16] at a wall with impedance Z. ThisZmay vary, but for modes it
should be independent of x. The condition assumes a vanishingly thin
boundary layer and is given by iωZ�v̂ ⋅ n� � ic0Ωp̂, with a normal

unit vector n pointing into the wall. For a mean flow vanishing at the

wall, it reduces to the common Z�v̂ ⋅ n� � p̂. In terms of p̂ and ∇p̂
the condition is

iωZ�∇p̂ ⋅ n� � ρ0c
2
0Ω2p̂ (3)

(Note that ρ0c
2
0 � γp0 constant.) In the time domain, the Ingard–

Myers condition has some fundamental issues [11] and a regularized

version should be used. In the frequency domain the problems are

mild for acoustic modes. With respect to surface modes [8–10], care

is in order whenmodeling a thin but nonzero boundary layer, because

these modes are more sensitive to details of the boundary layer than

other modes [17,18].
For later use, we note here that Eq. (2) with Eq. (3) andZ ≠ 0, valid

on a duct cross section A with boundary ∂A, can be expressed in

weak form (multiply byφ∕Ω2 and integrate) by the condition that for

any smooth test function φ

Z
∂A

ρ0c
2
0

iωZ
p̂φdl�

ZZ
A
−

1

Ω2
∇p̂ ⋅∇φ�

�
1−

κ2

Ω2

�
p̂φdS� 0 (4)

Interestingly, the Ingard–Myers condition fits in very neatly.
Eigenvalue κ corresponds to axial wave number κ, and is probably

the most important hallmark of a mode. The modes we are interested

in constitute the discrete spectrum of Eq. (2) with (3) given by the

infinite and countable set fp̂n; κng. Because of their self-similarity,

modes are relatively easy to study and help the understanding of

sound propagation in, and interaction with, the mean flow. From

linearity they can be used as a basis (building blocks) to construct

more general solutions of the equations. With a uniform mean flow

and a uniform sound speed, or no mean flow and arbitrary sound

speed, the set of modes is rich enough to represent all solutions ([19]

Theorem S.12). This is almost, but not exactly, the case with uniform

mean flow, where the factor ω − κu0 in Eq. (2) may be zero at so-

called critical layers for a continuum of values of κ [20], and some

solutions cannot be described by discrete modes. Except when all

modes are cut off (exponentially decaying in the x direction) and

vanishingly small, critical layer contributions are small compared

with the rest of the field and can be ignored in most practical

situations. Altogether, this makes these modes interesting and useful

to study.

B. Two-Dimensional and Axisymmetric 3D Cases

The partial differential Eq. (2) that remains for shape function

p̂�y; z� is still difficult to analyze. The two most important simplifi-

cations are in 2D, a duct for 0 ⩽ y ⩽ a and a mean flow only depend-

ing on y, and in 3D, a cylindrical hollow duct 0 ⩽ r ⩽ a with an

axisymmetric mean flow only depending on r.
In 2D (Fig. 1) with

p�x; t� � p̂�y�eiωt−iκx (5)

and u0 � u0�y�, c0 � c0�y�, we have (primes denote a derivative

to y)

x-axisy = 0

y = a

u0(y)

Z0

Z1

Fig. 1 Two-dimensional configuration with duct of height a, wall
impedances Z0 and Z1, mean flow u0�y�, and sound speed c0�y�.

†Following tradition, we use here γ to denote the ratio of specific heats, but
this variable will appear only in the introduction of the problem. Later wewill
use γ to denote a certain square root. Both notations are not related.
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Ω2

�
1

Ω2
p̂ 0
� 0

� �Ω2 − κ2�p̂ � 0;

�iωZ0p̂
0 � −ρ0c20Ω2p̂�y�0; �iωZ1p̂

0 � ρ0c
2
0Ω2p̂�y�a (6)

In an axisymmetric 3D configuration (Fig. 2) with

p�x; t� � p̂�r�eiωt−iκx−imθ (7)

wherem ∈ Z and u0 � u0�r�, c0 � c0�r�, we have (primes denote a

derivative to r)

Ω2

r

�
r

Ω2
p̂ 0
� 0

�
�
Ω2 − κ2 −

m2

r2

�
p̂ � 0;

�iωZp̂ 0 � ρ0c
2
0Ω2p̂�r�a; p regular in r � 0 (8)

A straightforward generalization would be an annular duct with an

impedance condition at the inner wall.
Equations (6) and (8) are, respectively, known as the 2D and 3D

Pridmore-Brown equation [2,13]. For a uniform mean flow, Ω is

constant and above equations reduce to the standard harmonic equa-

tion and the (scaled) Bessel equation, providing analytically exact

descriptions of duct modes [1,2,8].
In a nonuniform flowwhereΩ is a function of y, respectively, r, the

Pridmore-Brown equations are in general not solvable in terms of

standard functions [13,20–24] and have to be solved numerically.

Even in the 2D case of a linear shear flow and a constant sound speed,

where an exact solution is known [25] in terms of Weber’s parabolic

cylinder functions ([26] Chap. 19), the numerical evaluation [27,28]

appeared problematic [29] due to the subtraction of exponentially

large terms of the constituting parts, and only feasible for a rather

limited parameter range. Especially the upstream running modes

deteriorate quickly. Numerical solutions are therefore our main

source of information. On the other hand, a disadvantage of a

numerical solution is the lack of insight that a sufficiently transparent

analytical solution provides, possibly (in case of approximations) at

the expense of accuracy. Therefore we will discuss both.
Well-known analytical solutions (their origin dating back as far as

the early days of quantummechanics) areWentzel–Kramers–Brillouin

(WKB) approximations‡ for high values of frequency ω [21]. They

provide insight into the (transverse§) turning point behavior and give

for high-enoughω excellent approximations ofmodal wave number κ.
For general mean flow profiles, this requires a numerical evaluation of

integrals that provide the dispersion relation, but for simplemean flows
(linear or parabolic profiles) an analytical evaluation is possible.
In the other direction for low frequency (smallω), approximations

are also possible, for hard walls and for soft walls. These solutions
seem to be not available in the literature, at least not on a system-
atic basis.
Next to these analytical approaches wewill explore a new numeri-

calmethod based on aGalerkin projection on aChebyshev basis,with
an efficient nonlinear eigenvalue search routine. We will use this
method to analyze the behavior of the modes as a function of
frequency, impedance, andmean flow profile, with particular interest
in surface waves. Furthermore, we will compare the results with the
high- and low-frequency approximations.

C. Nondimensional Form

To simplify the equations, and to define exactlywhatwemeanwith
“ω is small” or “large,” it is necessary to have the problems in a
nondimensional form.Assuming a characteristic sound speed c∞, we
write

y � a ~y; r � a ~r; c0 � c∞ ~c0; u0 � c∞ ~u0; p̂ � ρ0c
2
0 ~p

ω � c∞
a

~ω; Ω � 1

a
~Ω; κ � 1

a
~κ; Z � ρ0c

2
0

c∞
~Z (9)

Dimensionless frequency ~ω is also known as the Helmholtz num-

ber. Note that ~Z is not exactly the same as the characteristic imped-
ance Z∕ρ0c0. It is not really necessary to rescale p̂, because any
scaling factor drops out the problem, but we added it for consistency.
For notational convenience we will further ignore the tildes. Except

for ρ0c
2
0 ≔ 1 and a ≔ 1 in the boundary conditions, the equations

remain exactly the same, and there is no need to spell out the
dimensionless versions.

III. Numerical Solution

Various numerical methods for the Pridmore-Brown equation have
been proposed, but they are not equally applicable. Shooting [22] is
simple, but only possible if the mode is not vanishingly small near the
wall. Collocation methods are more versatile, but sometimes need
auxiliary libraries [24] that are not available for MATLAB. Spectral
collocationmethods applied to the equations in a linearizedEuler form,
based on or similar to [30], have been favorably used by [31–34].
Therefore, the numerical method chosen here is also a spectral

method, but based on a Galerkin projection applied to the 2D and
3D versions¶ of Eq. (4). The advantage is a compact equation in one
variable with N × N matrices, rather than 4N × 4N in case of Euler
equations, if N is the number of basis functions. Especially for the

determination of eigenvalues (typically costing ∼N3) this is an impor-
tant difference. A disadvantage is the fact that the eigenvalue equation
is nonlinear, which requires a Newton-type iteration for each eigen-
value. This, however, is not a great problem for our purposes, because
weare interested inonly the first fewmodes,whereas the iteration takes
usually nomore than a single stepwhen tracing for avaryingparameter.
An alternative could be multiplying out the Pridmore-Brown

equation such that the prevailingmatrix eigenvalue problem becomes
a third-order polynomial in κ [35], but also this would still be
equivalent to a 3N × 3N system.

A. Galerkin Projection

We start with the 2D problem (6) with impedances Z0;1 ≠ 0 in the
equivalent form (4) that for every test function φ

pφ

iωZ1

����
1

� pφ

iωZ0

����
0

�
Z

1

0

−
1

Ω2
p 0φ 0 �

�
1 −

κ2

Ω2

�
pφ dy � 0 (10)

If we assume that p can be written as a sum over a function
basis fψνg,

x-axis

r = a

r = 0

u0(r )

Z

Fig. 2 Three-dimensional axisymmetric configuration with circular
duct of radius a, wall impedance Z, mean flow u0�r�, and sound speed
c0�r�.

‡TheWKBorWKBJmethod, named after GregorWentzel, HansKramers,
Leon Brillouin, and Harold Jeffreys, is a multiple-scales-type method to
construct asymptotic approximations for waves in a slowly varying medium.

§In this paper, only turning point behavior in the transverse direction is
considered. Other turning point behaviors may exist in the axial direction, but
only if the duct diameter ormean flowvaries gradually in the axial direction. In
that case, κ turns from real to complex. Strictly speaking, we have then only
approximate modes.

¶With a suitable basis and quadrature routine, a generalization to the full
version of Eq. (4) is straightforward.
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p �
X∞
ν�0

aνψν (11)

and we use the same basis for the test functions, that is, φ � ψ l,

l � 0; 1; : : : , then Eq. (10) becomes equivalent with

X∞
ν�0

aν

�
ψνψ l

iωZ1

����
1

�ψνψ l

iωZ0

����
0

�
Z

1

0

�
−

1

Ω2
ψ 0
νψ

0
l�

�
1−

κ2

Ω2

�
ψνψ l

�
dy

�
�0

(12)

This can also be written in matrix form

M�κ�a � 0; a � �a0; a1; : : : �T (13)

for the �0;∞� × �0;∞� matrix M with elements

Mνl�κ��
ψνψ l

iωZ1

����
1

�ψνψ l

iωZ0

����
0

�
Z

1

0

�
−

1

Ω2
ψ 0
νψ

0
l �

�
1−

κ2

Ω2

�
ψνψ l

�
dy

(14)

The nonlinear eigenvalue problem is then approximated by cutting

offM to anN × N matrix and finding those discrete values of κ, and
its corresponding solution spacea, for whichM has a nonempty null

space. Only the first few, absolutely smallest, κ will be of interest as
well as numerically accurate.
We choose Chebyshev polynomials on �0; 1�

ψν�y� � Tν�2y − 1� � cos�ν arccos�2y − 1�� (15)

Another option would be to take a Fourier basis (sines and

cosines). For the 2D problem this appears to work out equally well.

In all the examples we favored Chebyshev polynomials because of

their simple generation numerically.
We have a serious problem if Ω�y0� � 0 for some y0 ∈ �0; 1� (a

critical layer, as discussed in the Introduction), but this occurs very

rarely and apparently not for modes. See [20].
The approach for the 3D problem (8) is similar, with special

attention to the singularity at r � 0. We can rewrite the equation

with the boundary condition (Z ≠ 0) in the equivalent form (4) that

for every test function φ

pφ

iωZ

����
1

�
Z

1

0

�
−

1

Ω2
p 0φ 0 �

�
1 −

κ2

Ω2
−

m2

r2Ω2

�
pφ

�
r dr � 0 (16)

An important differencewith the 2Dproblem (10) is the singularity

in r � 0 if m ≠ 0. Following [36] (see also [37] Sec. 18.5), this has

been dealtwith by formally extending the solution symmetrically ifm
is even, and antisymmetrically if m is odd. As a result we know in

advance that p can be written as a sum of even basis functions ifm is

even, and odd basis functions if m is odd. For the same reason we

need only even or odd test functions ifm is evenor odd. This is seen as

follows.
If u0�r� and c0�r� are smooth in r � 0 (physically the only

configuration that makes sense) and symmetric in r, it is easily

checked by a formal Taylor expansion of p�r� that a regular solution
behaves like

p�r� � O�rjmj� for r → 0 (17)

So for a smooth solution it is necessary to extend p symmetrically,

that is, p�r� � p�−r�, if m is even, and antisymmetrically, that is,

p�r� � −p�−r�, if m is odd. Now consider the singularity at r � 0.
If m � 0 there is no singularity, and so this case is not a problem.

If m is odd ⩾1 and φ�r� � rφ 0�0� � : : : antisymmetric, the inte-

grand behaves like

�
−mrm−1φ 0�0�−m2

r2
rmrφ 0�0�

�
r� : : : �−m�m�1�rmφ 0�0�� : : :

(18)

So there is no singularity and the integrand vanishes at r � 0. Ifm
is even ⩾ 2 and φ�r� � φ�0� � r2φ 00�0� � : : : symmetric, the inte-
grand behaves like

�
−mrm−12rφ 00�0� −m2

r2
rmφ�0�

�
r� : : : � −m2rm−1φ�0� � : : :

(19)

Sincem − 1 ⩾ 1 there is also here no singularity and the integrand
again vanishes.
So there appears to be no singularity at the origin with p�r� itself.

That does not immediately guarantee a smooth behavior when p is
written as a sum over basis functions, which individually do not have

the smooth O�rjmj� behavior. Nevertheless, partly because the
Gauss–Legendre nodes (see below) do not include the origin, there
were never problems and the convergence was smooth and fast.
Again we choose a basis of Chebyshev polynomials, but now on

�−1; 1�. So

ψν�r��
�

T2ν�r�� cos�2νarccosr� if m iseven;
T2ν�1�r�� cos��2ν�1�arccosr� if m isodd

(20)

A Fourier basis is also possible, but comparison with exact sol-
utions in a uniform flow suggests that results with Chebyshev bases
are slightly smoother.
While taking the above into consideration,we assume thatp can be

written as a sum over this function basis fψνg,

p �
X∞
ν�0

aνψν (21)

Equation (16) becomes equivalent (withφ � ψ l, and l � 0; 1; : : : )
with

X∞
ν�0

aν

�
ψνψ l

iωZ

����
1

�
Z

1

0

�
−

1

Ω2
ψ 0
νψ

0
l�

�
1−

κ2

Ω2
−

m2

r2Ω2

�
ψνψ l

�
rdr

�
�0

(22)

This can also be written in matrix form

M�κ�a � 0; a � �a0; a1; : : : �T (23)

for the �0;∞� × �0;∞� matrix M with elements

Mνl�κ��
ψνψ l

iωZ

����
1

�
Z

1

0

�
−

1

Ω2
ψ 0
νψ

0
l �

�
1−

κ2

Ω2
−

m2

r2Ω2

�
ψνψ l

�
rdr

(24)

Again, for the nonlinear eigenvalue problem we cut off M to an
N × N matrix and find those discrete values of κ for whichM has a
nonempty null space and corresponding solution space a.

B. Special Case of Z � 0

The problem with boundary conditions corresponding to a pres-
sure release wall (Z � 0) cannot be formulated in a weak form like
above. So any Galerkin procedure has to follow another strategy. The
usual route is to use the fact that wemay expect uniform convergence,
and so, if we choose a basis that vanishes at the interval ends, also
their sum will vanish there. This can be understood as follows.
If we consider the weak formulation with natural boundary con-

ditions (Eq. (10) or (16) for hard walls), then it is common for this
type of problems (standard theory [37] (Chap. 3), [38] (Chap. 1), [39]
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(Chap. 2) cannot be applied directly) that the Galerkin projection

converges in a Sobolev spaceH1, which means both the function and

its derivative. This implies for one-dimensional problems uniform

convergence. So by choosing a basis that vanishes at one or both ends

of the interval (spanning a Sobolev space H1
0, a subspace of H

1) we

have guaranteed a solution that also vanishes at the boundary or

boundaries.
For this problem it is not convenient to choose a Chebyshev basis

because Chebyshev polynomials do not vanish at the interval ends,

but a Fourier basis of the right type works well.

C. Nonlinear Eigenvalue Problem

Because the eigenvalue problem (Eq. (13) or (23)) is nonlinear, its

numerical solution is not straightforward. For example, to find

numerically the zeros of det�M�κ�� is a very unstable process for

matrices larger than (say) 20 × 20 and therefore not an option. A

number of approaches, working on the matrix itself, have been

reviewed in [35]. In here, Algorithm 3, “Method of successive linear

problems”, is both simple to implement and efficient in operation

(under normal conditions quadratically convergent). Because we

mainly study the problem parameter dependence of the first few

modes, and trace the eigenvalue in small steps such that each step

gives an excellent starting value for the next one, the iteration is no

limitation given the other advantages, and the method appeared

indeed suitable for our purposes. The method is in structure similar

to Newton’s method, and runs as follows.
Let a starting value κ � κ0 be given. The corresponding vector a0

is not important. Finding a good starting value is a problem on its

own, but tracking with small steps in u0 and Z from a known

configuration (uniform flow, hard walls), or a preparatory zeroth step

with a reasonably dense distribution of starting values in the range of

interest, works well.
Suppose that we have the jth iterated eigenvalue approximation κj

with amplitude vector aj. Linearize for κ near κj

M�κ� � M�κj� � �κ − κj�M 0�κj� � : : : (25)

Assuming a convergent process, we construct the j� 1 st iterated
eigenvalue κj�1 with vector aj�1 by solving the approximate

equation

M�κj�1�aj�1 ≃ fM�κj� � �κj�1 − κj�M 0�κj�gaj�1 � 0 (26)

This can be done by standard methods for solving the generalized

eigenvalue problem

M�κj�x � λM 0�κj�x (27)

with solutions λ1; λ2; : : : and x1; x2; : : : . Choose from all λ’s the

absolutely smallest, λmin, and identify κj�1 � κj − λmin and

aj�1 � x, where x corresponds to this λmin. Iterate until kM�κj�ajk
is small enough. This simple and elegant iteration converges

quadratically.
The derivatives M 0 are easily obtained analytically. For the 2D

case (14) it is

M 0
νl�κ� � −2

Z
1

0

1

c0Ω3
fu0ψ 0

νψ
0
l � κωψνψ lg dy (28)

For the 3D case (24) it is

M 0
νl�κ��−2

Z
1

0

r

c0Ω3

�
u0ψ

0
νψ

0
l �

�
κω�m2

r2
u0

�
ψνψ l

�
dr (29)

The Mνl and M 0
νl integrals are determined numerically by the

efficient Gauss–Legendre integration rule, which amounts to an

approximation of the form

Z
b

a
f�x� dx ≃

XJ
j�0

wjf�xj� (30)

with nodes xj and weights wj chosen such that all polynomials of

degree 2J � 1 and less are evaluated exactly. The method appears to

be very accurate already for a moderate number of nodes (typically

between 20 and 60, but at least a little above N), except when the

resolution of steep variations of themean flowasks for a finer grid and

more basis functions.
The number of terms of the series over basisψν is typicallyN � 20

or 40. Lower values (N � 5 or N � 10) are sometimes sufficient

(when themode shape has no nodes or exponentially small parts), but

for high-cutoff modes, certain surfacewaves, higher frequencies, and

sharp changes in the mean flow like thin boundary layers, higher

values ofN and J may become necessary. It goes without saying that

with plots for varying parameter values no risk was taken and a wide

margin was kept.
To assess the accuracy and convergence rates, comparisons with

exact solutions with constant u0 and c0 were carried out (Table 1).

Similar tests for other mean flow profiles show the same trends. They

confirm exponential convergence in N (common for spectral meth-

ods), and a quadratic convergence of the iteration. Normally within a

few iteration steps full convergence (a little abovemachine accuracy)

is achieved.
The typical calculation time (including the generation of the basis

functions, the matrices, and all iterations) is in the order of 0.05 s

(MATLAB2018, Intel Core i5-4670CPU@3.4GHz), which is about

Table 1 Convergence test with analytically exact solution
in 2D (a, b) and 3D (c, d)

a) Convergence of iteration (0.058 s)

κex � −25.467933059613� 0.952279738435i

κ0 � −25.0� 0.0i; N � 24; J � 25

n κn jκn − κn−1j
1 −25.463084906355� 0.961257265835i 1.066987891971

2 −25.467932374742� 0.952279163171i 0.010203150357

3 −25.467933059613� 0.952279738435i 0.000000894414

b) Convergence in N (with minimum J)

N J jκN − κexj
16 17 3.24E − 05

18 19 2.79E − 07

20 21 1.48E − 09

22 23 5.10E − 12

24 25 3.22E − 14

c) Convergence of iteration (0.037 s)

κex � −13.869291717445� 8.302294924552i

κ0 � −13.0� 8.0i; N � 14; J � 21

n κn jκn − κn−1j
1 −13.877049699080� 8.249630478535i 0.911883518038

2 −13.869314923640� 8.302464292787i 0.053396991296

3 −13.869291718400� 8.302294925913i 0.000170949177

d) Convergence in N (with minimum J)

N J jκN − κexj
6 9 2.96E − 2

8 11 9.88E − 4

10 15 1.50E − 5

12 18 1.01E − 7

14 21 1.66E − 9

Iteration converges (better than) quadratically; the convergence in N exponentially

∼10−N . c0 � 1, u0 � 0.5. (a, b) ω � 20, Z0 � Z1 � 1� 2i; (c, d) ω � 20,

m � 20, Z � 1� 2i.
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10–20 times faster than the solution of the exact eigenvalue equation
by MATLAB’s fsolve.
Other nontrivial, useful checks were the various exact integrals

given in Appendix B.

IV. Asymptotic Solution for ω Small

In 2D, and 3D with m � 0, and hard walls, there is for ω � 0 a
real eigenvalue κ � 0 and infinitely many imaginary. We consider
here the neighborhood of κ � 0 in the limit of small ω. By scaling
and balancing terms in the differential equations, it is quickly found
that eigenvalue κ � O�ω�. Therefore, we rescale κ � ωμ, Ω �
ω�1 − μu0�∕c0 � ωW.

A. Two-Dimensional and Hard Walls

We have for 2D

�
1

W2
p 0
� 0

� ω2

�
1 −

μ2

W2

�
p � 0 (31)

with p 0�0� � p 0�1� � 0, and p and μ to be found. We expand in

powers of ω2

p � p0 � ω2p1 � ω4p2 � : : : ; μ � μ0 � ω2μ1 � : : : (32)

After collecting equal orders of magnitude, and introducing
W0 � �1 − μ0u0�∕c0, we find to leading orders

�W−2
0 p 0

0� 0 � 0;

�W−2
0 p 0

1� 0 � −2�μ1u0c−10 W−3
0 p 0

0� 0 − �1 − μ20W
−2
0 �p0

and boundary conditions p 0
0 � p 0

1 � 0 at y � 0 and y � 1. It

immediately follows that p 0
0 � 0 and so p0 � 1 (or any other con-

stant, but this is unimportant for an eigensolution). As a result we find
for the next order

p 0
1 � W2

0

�
−y� μ20

Z
y

0

W−2
0 dy 0

�
(33)

The boundary condition at y � 1 yields an algebraic equation for
μ0, valid for any u0 and c0:

μ20

Z
1

0

W−2
0 dy 0 � μ20

Z
1

0

c20
�1 − μ0u0�2

dy 0 � 1 (34)

This is a general result, but finding μ0 requires numerical evalu-
ation. For a linear flow profile and a constant sound speed

u0 � τ� σy; c0 � 1 (35)

the analysis can be performed analytically exactly. We have

Z
1

�1 − μ0u0�2
dy � 1

μ0σ�1 − μ0u0�
(36)

provided 1 − μ0u0 ≠ 0 for 0 ⩽ y ⩽ 1, which is indeed confirmed by
the final result

μ�0 � �1																	
1� 1

4
σ2

q
� �τ� 1

2
σ�

(37)

The corresponding wave numbers and eigenfunctions with nor-
malization p�0� � 1 are

κ� � �ω																	
1� 1

4
σ2

q
� �τ� 1

2
σ�

�O�ω3� (38a)

p� � 1−ω2μ�0 σy
2
h
�1− μ�0 τ�



1
2
− 1

3
y
�
− μ�0 σ



1
3
y− 1

4
y2
�i�O�ω4�

(38b)

This result is exact for a uniform profile where σ � 0.

B. Two-Dimensional and Impedance Walls

For impedance conditions the asymptotics depend on the order of

magnitude of Z0;1 in terms of a small parameter ω. There are many

possible limits and we will not consider them all, but just a few that

seem the more interesting ones. With again κ � ωμ we see from the

boundary condition

iωZp 0 � �ω2W2p (39)

that any impedance Z ≫ O�ω� yields a perturbation of hard wall

conditions. In order not to mix up the expansion (32) in powers ofω2

suggested by Eq. (31), we choose** Z0;1 � O�ω−1� and rescale

ωZ0 � ζ0; ωZ1 � ζ1 (40)

with ζ0;1 � O�1� and consider the boundary conditions

iζ0p
0 � −ω2W2p at y � 0; iζ1p

0 � ω2W2p at y � 1 (41)

Expansion of p results to leading order p0 � 1. Higher orders can
in principle be found for any profiles, but for the linear profile (35)we

find analytically exactly

κ� � �ω																																																									
1∕�1 − i�ζ−10 � ζ−11 �� � 1

4
σ2

q
� �τ� 1

2
σ�

�O�ω3� (42a)

with eigensolutions p � p0 � ω2p1 � : : : (normalized by

p�0� � 1), where

p�
1 �y� � iζ−10 y

�
1
3
�yμ�0 σ�2 − yμ�0 σ�1 − μ�0 τ� � �1 − μ�0 τ�2



− y2
�
1
4
�yμ�0 σ�2 − 1

3
yμ�0 σ

�
2�1 − μ�0 τ� −

μ�2
0

1 − μ�0 τ

�

� 1
2
��1 − μ�0 τ�2 − μ�2

0 �
�

(42b)

This approximation remains valid if one or both sides are hard. In

that case simply ζ−10 � 0 or ζ−11 � 0. If Z0 or Z1 are zero, we need a

separate analysis. For example, if Z0 � Z1 � 0, we find to leading

order

κ� � ω

τ� 1
2
�1� i

			
3

p �σ �O�ω3� (43a)

with (arbitrarily normalized) eigensolution

p�
0 � y�1 − y�

�
y − 1

2
∓i 1

2

			
3

p 
(43b)

C. Three-Dimensional and Hard Walls

For the 3D,m � 0, problemwe can follow a similar strategy to find

�
r

W2
p 0
� 0

� ω2r

�
1 −

μ2

W2

�
p � 0 (44)

leading to

**Other scalings can be analyzed on a case-by-case basis.
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�rW−2
0 p 0

0� 0 � 0;

�rW−2
0 p 0

1� 0 � −2�rμ1u0c−10 W−3
0 p 0

0� 0 − r�1 − μ20W
−2
0 �p0

For hard walls with p 0
0�1� � 0 it follows that p0 � 1. Then

p 0
1 � −

1

2
rW2

0 � μ20
W2

0

r

Z
r

0

r 0

W2
0

dr 0 (45)

p 0
1�1� � 0 yields (ignoring the singular solution 1 − μ0u0�1� � 0)

the algebraic equation for μ0

μ20

Z
1

0

r 0

W2
0

dr 0 � μ20

Z
1

0

r 0c20
�1 − μ0u0�2

dr 0 � 1

2
(46)

This is again a general result, valid for any (physical) profiles u0
and c0, but finding μ0 requires numerical evaluation. For parabolic

profiles

u0 � τ − σr2; c0 � 1 (47)

we can derive analytically exact results by using

Z
r

�1 − μ0u0�2
dr � −

1

2μ0σ�1 − μ0u0�
(48)

provided μ0u0 ≠ 1 for 0 ⩽ r ⩽ 1. This is indeed satisfied by the

resulting modal wave numbers

κ� � �ω																	
1� 1

4
σ2

q
� �τ − 1

2
σ�

�O�ω3� (49a)

(This result is exact for a uniform profile where σ � 0.) The deriva-
tive p 0

1 is

p 0
1 �

1

2
σ

τ�1 − μ�0 τ� − μ�0
�1 − μ�0 τ��τ2 − στ − 1� r�1 − r2��1 − μ�0 u0�r��

and so, with normalization p�0� � 1, the corresponding eigensolu-

tions are

p� � 1� 1

4
ω2σ

τ�1− μ�0 τ�− μ�0
�1− μ�0 τ��τ2 − στ − 1� · · ·

× r2
h
�1− μ�0 τ�



1− 1

2
r2
�
− μ�0 σ



1− r2 � 1

3
r4
�i�O�ω4�

(49b)

D. Three-Dimensional and Impedance Walls

The effect of the regularity condition at the origin is that the leading

order solution p0 can only be a constant if ω is small and κ � O�ω�.
So for a manageable and interesting problem we rescale

ωZ � ζ (50)

with ζ � O�1�, leading for the parabolicmean flow profile (47) to the

boundary condition

iζp 0
1 � �1 − μ0�τ − σ��2 at r � 1 (51)

By using Eqs. (45) and (48) we arrive at the algebraic equation

for μ0

1

2
iζ�1 − μ0�τ − σ��

�
μ20

1 − μ0τ
− 1� μ0�τ − σ�

�
� �1 − μ0�τ − σ��2

with eventually the solutions

κ� � �ω																																														
�1∕�1 − 2iζ−1�� � 1

4
σ2

q
� �τ − 1

2
σ�

�O�ω3� (52)

and a hydrodynamic mode κ ≃ ωμ0 � ω∕�τ − σ� (to leading order

no pressure, only velocity components). The corresponding eigenso-

lutions can be constructed by integration of p 0
1.

If Z � 0 we need a separate analysis. It transpires that κ remains

O�1� forω → 0 (in particular its imaginary part), and the equation for

p does not simplify unless u0 and c0 are constant. As a result there is
no simple analytical approximation of the present type.

E. Duct of General Cross Section

For completeness we give here briefly the analogous results for a

3D duct of general cross section A and impedance boundary con-

dition along the circumference ∂A. Because the (now dimensionless)

prevailing equation (2) remains essentially a partial differential equa-

tion, there are little possibilities to obtain an explicit expression for

the modal shape function, but for the wave number an equation like

above is possible.
With the same scaling as above we have for �y; z� ∈ A

∇ ⋅
�

1

W2
∇p

�
� ω2

�
1 −

μ2

W2

�
p � 0 (53)

and a (scaled) impedance condition along ∂A

iζ∇p ⋅ n � ω2W2p (54)

We expand p � p0 � ω2p1 � : : : ; μ � μ0 � ω2μ1 � : : : and

find to leading order

∇ ⋅
�

1

W2
0

∇p0

�
� 0 in A; ∇p0 ⋅ n � 0 along ∂A (55)

By multiplying by p	
0, integrating over A, and utilizing Gauss’s

theorem we find that

ZZ
A
p	
0∇ ⋅

�
1

W2
0

∇p0

�
dS�

ZZ
A
∇ ⋅

�
p	
0

W2
0

∇p0

�
−

1

W2
0

j∇p0j2 dS

�
Z
∂A

p	
0

W2
0

∇p0 ⋅ndl−
ZZ

A

1

W2
0

j∇p0j2 dS

�−
ZZ

A

1

W2
0

j∇p0j2 dS� 0 (56)

Because the integral of a nonnegative function can only vanish if

the function is identically zero, we have j∇p0j � 0, and therefore

p0 � 1, that is, a constant, which can be taken equal to unity.
The equation for p1 is then

∇ ⋅
�

1

W2
0

∇p1

�
� −1� μ20

W2
0

in A; iζ∇p1 ⋅ n � W2
0 along ∂A

(57)

After integration along A, applying Gauss’s theorem and the

boundary condition, we find

ZZ
A
∇ ⋅

�
1

W2
0

∇p1

�
dS �

Z
∂A

1

W2
0

∇p1 ⋅ n dl

�
Z
∂A

1

iζ
dl � −

ZZ
A

�
1 −

μ20
W2

0

�
dS (58)

And so (leaving the possibility open that ζ varies along ∂A) we

have the equation that determines μ0
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Z
∂A

1

iζ
dl� jAj − μ20

ZZ
A

1

W2
0

dS � 0 (59)

where jAj denotes the size of surface A. The hard-wall case is
included by taking 1∕ζ � 0. Equation (59) has to be solved numeri-
cally, except possibly for very simple mean flow profiles, like a
constant u0 and c0. Then we find

κ� � �ωη

c0 � ηu0
�O�ω3�; η �

�
1� 1

jAj
Z
∂A

1

iζ
dl

�1
2

(60)

V. WKB Solution for ω Large

The used WKB solution [40] (Chap. 10), [41] (Sec. 15.4.2) is
comparable towhat has been studied in [21], and sowewill just give a
concise derivation. We will only consider the hard wall case. Soft
walls can be included, but the evaluation is very laborious while the
shielding of an impedance wall by a turning point (see below) is best
understood with hard walls.

A. Two-Dimensional and Hard Walls

Consider

Ω2

�
1

Ω2
p 0
� 0

� �Ω2 − κ2�p � 0; p 0�0� � p 0�1� � 0 (61)

for largeω. We postulate cut-on modes for real κ not near resonance,
that is, κ � O�ω� andΩ � O�ω�. We make the WKB–Ansatz (with
phase function γ � O�ω� to be determined)

p�y� � A�y�e−i
R

y
γ�z� dz

(62)

such that

�−γ2 � Ω2 − κ2�A −
iΩ2

A

�
γA2

Ω2

� 0
� Ω2

�
A 0

Ω2

� 0
� 0 (63)

We find to leading order O�ω2�

�−γ2 � Ω2 − κ2�A � 0 (64)

or (with a suitably chosen sign)

γ �
																
Ω2 − κ2

p
(65)

With this γ, we have then to next order O�ω�
�
γA2

Ω2

� 0
� 0 (66)

or (with Q a constant)

A � Q
Ω			
γ

p � Q
Ω

�Ω2 − κ2�14 (67)

We consider first the case of γ real everywhere (i.e., γ2 > 0). Then
we have along the whole interval the solution

p � Ω
�Ω2 − κ2�14

�
Qe

−i
R

y

0
γ dz � Rei

R
y

0
γ dz


(68)

To leading order this is at y � 0

p 0�0� ≃ −iΩ
			
γ

p �Q − R� � 0

such that R � Q. Without loss of generality we can write

p ≃
Ω			
γ

p cos

�Z
y

0

γ dz

�
; p 0 ≃ −Ω

			
γ

p
sin

�Z
y

0

γ dz

�
(69)

and we retain at y � 1

p 0�1� ∼ 			
γ

p
sin

�Z
1

0

γ dy

�
� 0 (70)

In other words, the (approximate) condition to find eigenvalue κ is

Z
1

0

γ dy � nπ; n ∈ N (71)

Note that to respect the asymptotics ofω → ∞ and γ � O�ω�, this
equation is only valid for sufficiently large n, such that ω ∼ nπ.
Usually, however, WKB is very forgiving.
In general this equation is to be solved numerically, even if the

mean flow profile is linear, that is, u0�y� � τ� σy and c0�y� � 1,
and the integral can be found analytically exactly.
Interesting special cases are those with turning points, that is, with

γ2 changing sign along the interval �0; 1�. Therewhere γ is imaginary,
thewave becomes exponentially small and (apart from a small region
beyond the turning point) is practically not present. Consider for
convenience the situation of a single turning point y1 ∈ �0; 1� with γ
real for y > y1. Then we have, taking into account a small region
beyond the turning point,†† the condition

Z
1

y1

γ dy �
�
n� 1

4

�
π; n ∈ N (72)

Note that this implies that the boundary condition at y � 0 plays no
role, and so the solution is (asymptotically) the same for any other
boundary condition. In this sense, any effect of an impedance wall at
y � 0 is shielded by the turning point. In the same way, a turning
point y2 ∈ �0; 1� with γ real for y < y2 gives the condition

Table 2 Comparison of 18 cut-on hard-wall modes

Numerical WKB

n κn κn y1 y2

a) �0; y2�
1 �12.7404 �12.7203 0.2410

2 �11.6482 �11.6186 0.7379

b) [0; 1]

3 �10.9908 �11.0352

4 �9.7991 �9.8030

5 �7.9130 �7.9130

6 �5.2757 �5.2755

7 �1.6580 �1.6579

8 −3.4857 −3.4858
9 −12.2566 −12.2572

−9 −31.6342 −31.6756
−8 −39.1405 −39.4023

c) �y1; 1�
−1 −91.7189 −91.0914 0.9348

−2 −75.6769 −75.6259 0.7851

−3 −65.7266 −65.7160 0.6522

−4 −58.1112 −58.1116 0.5194

−5 −51.9320 −51.9366 0.3830

−6 −46.7717 −46.7752 0.2414

−7 −42.5897 −42.3839 0.0937

WKB approximation and numerical solution (N � 40, J � 80);

2D duct; ω � 20; linear mean flow profile u0 � 0.5� 0.3y and

c0 � 1; turning points at y1 and y2.

††This is a result of matching between outer solutions at either side of the
turning point and an inner solution in the neighborhoodof the turning point [41].
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Z
y2

0

γ dy �
�
n� 1

4

�
π; n ∈ N (73)

and makes any boundary condition at y � 1 ineffective. Two turning
points, 0 < y1 < y2 < 1, with γ real along �y1; y2�, give

Z
y2

y1

γ dy �
�
n� 1

2

�
π; n ∈ N (74)

and make the solution independent of boundary conditions at

both sides.

B. Three-Dimensional and Hard Walls

Consider

Ω2

r

�
r

Ω2
p 0
� 0

�
�
Ω2 − κ2 −

m2

r2

�
p � 0; p 0�1� � 0 (75)
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Fig. 3 Eighteen eigenfunction profiles for 2D, hard wall, ω � 20, linear mean flow u0 � 0.5� 0.3y. Right-running (positive index) and left-running
(negative index). Compare with Table 2 and Fig. 4.
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for large ω, r � O�1� and m � O�1�. Large m, in particular

m � O�ω�, is also possible but with some adaptations. We postulate

cut-on modes for real κ not near resonance, that is, κ � O�ω� and
Ω � O�ω�. We make the WKB–Ansatz (with phase function γ �
O�ω� to be determined)

p�r� � A�r�e−i
R

γ�z� dz
(76)

such that

�−γ2�Ω2 − κ2�A−
iΩ2

rA

�
rγA2

Ω2

� 0
�Ω2

r

�
rA 0

Ω2

� 0
−
m2

r2
A� 0 (77)

To order O�ω2�, this leads to

γ �
																
Ω2 − κ2

p
(78)

(with a suitably chosen sign) and to order O�ω�

A � Q
Ω					
rγ

p (79)

with Q a constant. Altogether we have the approximation

p�r� ≃ Ω					
rγ

p
�
Qe

−i
R

r

0
γ�z� dz � Rei

R
r

0
γ�z� dz

�
(80)

with Q, R, and κ to be determined.
We start with the situation that γ2 � Ω2 − κ2 is positive along the

interval �0; 1�, or has a single zero at radial turning point r2�κ� < 1,

which is such that γ2 is positive along �0; r2� and negative along the

remaining �r2; 1�.
Near the origin the solution breaks down, andwe have to consider a

local analysis. Scale

r � ω−1z; γ�0� � ωα; z � O�1�; p�r� � P�z� (81)

and substitute in the equation, then we get to leading order
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Fig. 4 Two-dimensional, complex wave numbers κn for ω � 20, linear profile u0 � 0.5� 0.3y,N � 60, J � 160. One or both sides with impedance Z.
Tracing for fixed Re�Z� � 0.4 and varying Im(Z). Compare with Table 2 and Fig. 3.
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ω2Pzz � ω2
1

z
Pz � ω2

�
α2 −

m2

z2

�
P� · · ·� 0 (82)

This has the regular solution (a multiple of)

P�z� � Jm�αz� (83)

which has to match with the WKB approximation. By taking

u 0
0�r� ⩽ O�r�, z large and r small, we find

Jm�αz� ≃
1											
1
2
παz

q cos

�
αz −

1

4
π −

1

2
mπ

�

∼
Ω�0�									
rωα

p �Qe−iωαr � Reiωαr� (84)

So with

Q ∼ e
1
4
πi�1

2
mπi; R ∼ e−

1
4
πi−1

2
mπi (85)

the WKB approximation for r > O�ω−1� becomes

p�r� ≃ Ω�r�					
rγ

p cos

�Z
r

0

γ�z� dz − 1

4
π −

1

2
mπ

�
(86)

An eigenvalue κ for a hard-wall mode is then (to leading order)

given by p 0�1� � 0 or

Z
1

0

γ�z� dz �
�
n� 1

4
� 1

2
m

�
π (87)

for integern and provided that there is no radial turning point r2 along
�0; 1�.With a turning point r2 wehave to take into account the fact that
the solution is exponentially small along �r2; 1�where γ is imaginary.

As a result, only the first interval is considered, Furthermore, match-

ing with the exponentially decaying solution in �r2; 1� yields a slight
change of the effective interval to the effect that we have an extra 1

4
π

in the condition

Z
r2

0

γ�z� dz �
�
n� 1

2
� 1

2
m

�
π (88)

for integer n and r2 � r2�κ�. Like before in the 2D case, this con-

dition is (asymptotically) independent of the behavior near r � 1. So
for any other boundary condition at the wall the solution, including
the value of κ, is the same. In other words, the effect of the wall is

shielded by turning point r2.
If γ2 has a zero r1�κ� along �0; 1� such that γ2 is negative along

�0; r1� and positive along �r1; 1�, the singularity at r � 0 plays no role
because the solution is exponentially small anyway. We have to

consider the second interval �r1; 1�, including the same slight change
of the effective interval due to matching with the exponentially

decaying solution in �0; r1� as before. We obtain the approximation

p�r� ≃ Ω					
rγ

p sin

�Z
r

r1

γ�z� dz� 1

4
π

�
(89)

which leads, due to the boundary condition p 0�1� � 0, to the eigen-
value condition

Z
1

r1

γ�z� dz �
�
n� 1

4

�
π (90)

for integer n and r1 � r1�κ�. For other configurations similar argu-
ments apply. Note that the approximation deteriorates if ω is not

large,m is too large, and r1 or r2 are too close to 0, 1 or each other. All
these bordering situations can be treated on a case-by-case basis, but

on the whole that is not necessary to understand the major trends and
global behavior that appear from the numerical solution.

VI. Examples and Applications

The first results are centered around the 2D problemwith the linear
mean flow profile u0 � τ� σy, τ � 0.5, σ � 0.3; a relatively high
frequency,ω � 20; and no sound speed variation, c0 � 1. In Table 2
a comparison ismade of the 2 × 9 cut-onmodalwave numbers, found
numerically (with N � 40 Chebyshev basis functions and J � 80
Gauss–Legendre nodes) and by WKB. The agreement is very
satisfactory, although depends on secondary effects like the distance
between the walls and the turning points

y1 �
ω� κ − κτ

κσ
; y2 �

ω − κ − κτ

κσ

Observe that the first two right-running modes have turning points
y2 and decay near y � 1, and the first seven left-running modes have
turning points at y1 and decay near y � 0. This is confirmed byFig. 3,
where the modal shapes are given. The first right-running mode
practically vanishes at y � 1, and the first five or six left-running
modes practically vanish at y � 0. This may cause these modes to be
insensitive to an impedance placed at the side where the mode
vanishes. This happens, for example, in the two cases given inFigs. 4a
and 4b, where one side is hard and the other soft, and vice versa. The
modes are traced from their hard-wall values for varying impedances,
with fixed real parts (0.4) and imaginary parts varying from∞ to−∞,
whileN � 60 and J � 160. We see that the first right-running mode
is (practically) insensitive to the impedance at y � 1, and the first 6
left-running modes are insensitive to the impedance at y � 0. The
insensitive modal wave numbers vary along very small circles. In the
plot these appear like points.
Associated to the respective impedance, four surface waves

develop with mean flow profiles with slip [8] (six with a thin
boundary layer [10]). Here we have two impedances and slip.
So we expect eight surface modes. Because they live in different

Table 3 Comparison of 16 cut-on hard-wall modes

Numerical WKB

n κn κn r1 r2

a) [r1; 1]

1 �13.9204 �13.8400 0.8425

2 �11.6581 �11.6915 0.4227

b) [0; 1]

3 �10.3427 �10.2436

4 �8.6215 �8.5506

5 �6.1758 �6.1112

6 �2.7973 �2.7321

7 −1.9877 −2.0617
8 −9.8657 −9.9806

c) [0; r2]

−1 −89.9857 −90.0412 0.2103

−2 −80.1206 −80.1827 0.3144

−3 −70.3901 −70.4604 0.4095

−4 −60.8468 −60.9274 0.5065

−5 −51.5706 −51.6641 0.6117

−6 −42.6829 −42.7924 0.7313

−7 −34.4697 −34.4942 0.8716

−8 −28.4241 −27.0191 1.0394

WKB approximation and numerical solution (N � 40 even

Chebyshev polynomials, J � 80); 3D circular duct; ω � 20,

m � 1; parabolic mean flow profile u0 � 0.8 − 0.5r2 and c0 � 1;

turning points at r1 and r2.
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mean flow velocities, they develop differently. In the combined

case of Fig. 4c, where both ends have the same impedance, indeed

eight surface waves develop, practically following the same tracks

as in Eqs. (4a) and (4b), confirming that they are associated to

one wall, independent of the opposite side. The regular acoustic

modes, on the other hand, live in the whole duct and differ in the

three cases.
A study, similar to the one above but now in 3D, is given in Table 3

and Fig. 5, with N � 40, J � 80. A parabolic mean flow profile

u0 � τ − σr2, τ � 0.8, σ � 0.5, and constant sound speed c0 � 1 is
considered for modes of frequency ω � 20, m � 1, and associated

turning points

r1 �
�
κτ� κ − ω

κσ

�1
2

; r2 �
�
κτ − κ − ω

κσ

�1
2

The agreement between numerical and WKB modal wave num-

bers (Table 3) is very satisfactory, except for κ−8 because of turning
point r2 being close to one. The effect of the local approximation near

r � 0 is well captured. The first two right-running modes have

turning points at r1 and decay toward r � 0, and the first seven or

eight left-running modes have turning points at r2 and decay toward
the wall r � 1. This is confirmed by the modal shape plots in Fig. 5.

The first six or seven (left-running) upstream running modes practi-

cally vanish at r � 1, with the result that these modes are almost

insensitive to thewall impedance. This is well illustrated in themodal

trace plots of Fig. 6 for Re�Z� � 0.1.
Although modes remain self-similar in the axial direction and by

themselves do not refract, this insensitivity may be interpreted as a

manifestation in the modal spectrum of rays refracting into regions

with a lower effective sound speed, and away from regions with a

higher effective sound speed [1], [40] (Sec. 16.9). With a mean flow,
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index). Compare with Table 3.
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vanishing at the wall, the effective sound speed c0 � u0 depends on
the direction of the sound, and so downstream modes will refract to

the wall and upstream modes away from the wall.

In Fig. 7, 3D modes of ω � 5, m � 0, c0 � 1 and parabolic

profiles u0 � τ − σr2, τ � 0.75, and σ � 0.75 (no slip flow; left)

and σ � 0.25 (slip flow; right) are traced with Im�Z� and fixed

Re�Z� � 0.01. The relatively small value of Re�Z� is not a problem
numerically, even with the moderate number of basis functions

(N � 40) and Gauss–Legendre nodes (J � 80) that has been used.

The well-known structure of regular modes, and acoustic and hydro-

dynamic surfacewaves for uniformmean flow [8,9] is also present for

parabolic profiles with slip flow, but without slip the hydrodynamic

surface waves are not present, as there is indeed no mean flow at the

wall. However, the presence of the mean flow in the rest of the duct

requires a left-running first modal wave number of κ−1 ≃ −14.795,
which makes the square root

																
Ω2 − κ2

p
imaginary near r � 1 and

therefore the mode shape exponentially small. Indeed this mode is

insensitive to the impedance, and the corresponding acoustic surface
wave develops from κ−2, rather than κ−1.
Because the boundary condition for vanishing boundary layer (3)

(the so-called Ingard limit [15]) is known to be sensitive, at least
for the (altogether six) surfacewaves [10,18], it is of interest to check
the behavior of the numerical solution for the decreasing boundary-
layer thickness. A series of cases is presented in Fig. 8, where 3D
modes of ω � 5, m � 0 are traced (with N � 40, J � 80) along
Re�Z� � 0.1 in an almost uniform mean flow of u0 ≃ 0.5 given by
Eq. (C2), and boundary layers of typical thickness δ � 0.1, 0.05,
0.01, and 0. The regular acoustic modes and the right-running
acoustic surface wave in the fourth quadrant are easily reproduced.
The other surface waves converge poorly. With δ � 0.1–0.01 a left-
running surface wave is seen in the second quadrant that does not
converge to the acoustic surfacewave for δ � 0, and is a surfacewave
of the type predicted by Brambley [10], resulting from interaction
with the thin boundary layer. Another “boundary-layer interaction”
surface wave is seen in the first quadrant for δ � 0.05. This one turns
via δ � 0.01 into a hydrodynamic surface wave for δ � 0. The other
hydrodynamic surface wave in the third quadrant is only seen
for δ � 0.
For the surface waves in the first and third quadrant we cannot

expect an easy convergence, because the real parts of κ tend to
infinity, and this implies a nonuniform limit with δ → 0. For example,
near y � 0 a first quadrant surface wave behaves like

p ∼ e�i
										
Ω2−κ2

p
y ≃ e−

								
1−u2

0

p
κy

The Ingard limit assumes a boundary-layer thickness much less
than the typical width of the mode, which means that δκ ≪ 1, and so

the limit is not valid for κ ≳ δ−1. Indeed, for δ � 0.01 the calculation
of the first quadrant surface wave became unstable for κ > 20 and
needed a large number of Gauss–Legendre points to stabilize (we
usedN � 60, J � 4000). No surface mode for any δ > 0was found
in the third quadrant. Maybe a much smaller value of δ is necessary,
but this appeared difficult to realize.
Another investigation of the effect of a boundary layer is presented

in Fig. 9, where the two cut-on hard wall modes of rotor-alone noise
of a 22-blade rotor with periodicity m � 22 and blade passing
frequency ω varying around ω � 22 is studied in an almost uniform
mean flow [u0 ≃ 0.6, Eq. (C2)] as a function of boundary layer
δ � 0: : : 0.1 in steps of 0.01 (N � 40, J � 200). It is seen that atω �
22 and δ � 0 the modes are well cut-on, but when δ is increased,
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Fig. 6 Three-dimensional, complex wave numbers κmn for ω � 20,
m � 1, and parabolic profile u0 � 0.8 − 0.5r2. Tracing for varying
Im�Z� and fixedRe�Z� � 0.1. Compare with Table 3 and Fig. 5.
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the modes become cutoff for δ > 0.055. So the presence of rotor-

alone noise greatly depends on details of the boundary layer (and the

mean flow Mach number, of course).

In Fig. 10, 3D cut-on hard-wall modes are plotted as a function of

frequency, with centerline Mach number ∼0.9. We see that with a

parabolic profile (right) there is a qualitative difference between low

and high frequencies, which is not present with a uniform profile

(left). This is caused by the fact that with the parabolic profile

and high ω the first few (left- and right-running) modes are nonun-

iformly distributed in the duct (see, e.g., Fig. 5), making them more

susceptible to mean flow variations. This is not possible with low ω.
The lowω approximation of Eq. (49a) is given as a dotted line. For the

uniform profile, this happens to be exact for the first (κ1 and κ−1)
mode. For the parabolic profile, the agreement is very reasonable

for ω < 2.
Finally, in Fig. 11 some (relatively) low-frequency 3D modes

with impedance walls and parabolic mean flow profiles are traced

in Z for various fixed Re�Z�, whereas the low ω approximation,

given by Eq. (52), is included as dotted lines. Consistent with the

assumed scaling Z � O�ω−1�, the approximation is especially

very good near the hard wall limits. Otherwise, as long as the

mode does not become a surface wave, the agreement is very

reasonable.
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VII. Conclusions

Duct acoustics is an important part of aeroacoustics, as it relates
to the generation, propagation, radiation, and attenuation of turbine
and rotor–stator interaction noise of aeroengines. Many features are
described, or at least understood and clarified, by the concept ofmodes,
a wave form that emerges naturally if the duct can be modeled as
straight with a plane parallel mean flow and constant wall properties.
In the present paper we have studied duct modes for nonuniform

mean flow profiles, described by Pridmore-Brown equations. The 2D
Pridmore-Brown equation has been studied in a duct with lined walls
both at the top and at the bottom, and the 3D Pridmore-Brown
equation in a hollow cylindrical duct with a lined wall.
Numerical solutions have been constructed based on a Galerkin

projection with a Chebyshev function basis (except for the situation
with Z � 0), leading to a nonlinear eigenvalue problem that has been
solved by an effective Newton-type routine. Analytical asymptotic
approximations have been constructed for low and high frequenciesω.
Except for Z � 0, the wave number of the first modes isO�ω� for

small ω, and after scaling a formal asymptotic solution could be
given. For simple enough mean flow profiles this solution can be
evaluated entirely analytically, with very favorable agreement with
the numerical solution. The found expressions for the wave numbers
in 2D with a linear profile and in 3D with a parabolic profile show
interesting similarities.
For high frequencies the WKB method can be invoked success-

fully. A most interesting feature, displayed by the WKB solution, is
the possibility of a transverse turning point that separates the acoustic
part of the solution from an exponentially small part near the wall. In
this way the solution may in some cases be insensitive to the imped-
ance condition. This happens with parabolic flow profiles for
upstream running modes, and for both left- and right-running modes
in a medium with concave-type sound speed profiles. This is by and
large in agreement with the ray-acoustic rule that sound refracts in the
direction of the lowest effective sound speed. If this occurs, eduction
of the wall impedance from acoustic measurements will be impos-
sible, at least if the insensitive modes dominate the sound field.
Surfacewaves are present bothwith uniform and nonuniform flow.

They are well-captured numerically, including the type, predicted by
Brambley [10], caused by interaction with a thin boundary layer.
Only the combined limit of boundary layer δ → 0 and Z → ∞, such
that surface wave number κ → ∞, is nonuniform and more difficult
numerically. Perhaps for this particular problem another numerical
method is preferable.

Appendix A: Preparatory Manipulations to the
Pridmore-Brown Equations

The isentropic Euler equations for a perfect gas, with velocity v,
pressure p, density ρ, sound speed c, entropy s, constant heat
capacities CP; CV and their ratio γ, small mass source q 0, and small
force f 0, are

dρ

dt
� ρ∇ ⋅ v � q 0; ρ

dv

dt
� ∇p � f 0;

ds

dt
� CV

p

�
dp

dt
− c2

dρ

dt

�
� 0; c2 � γ

p

ρ
(A1)

Consider a mean flow v0; p0; ρ0; c0 with perturbations v 0; p 0; ρ 0

due to q 0 and f 0. If the mean flow is plane parallel with p0 � ρ0c
2
0∕γ

a constant, v0 � u0ex, while u0; ρ0; c0 only depend
‡‡ on y, z, then the

mean flow satisfies the stationary Euler equations. For the perturba-
tions we have after linearization

D0ρ
0 � v 0 ⋅ ∇ρ0 � ρ0�∇ ⋅ v 0� � q 0 (A2a)

ρ0D0v
0 � ρ0�v 0 ⋅ ∇u0�ex � ∇p 0 � f 0 (A2b)

D0p
0 − c20D0ρ

0 − c20�v 0 ⋅ ∇ρ0� � 0 (A2c)

where the convective derivative isD0 � �∂∕∂t� � u0�∂∕∂x�. Follow-
ing [2], [42] (page 10), we take the convective derivative of the

divergence of Eq. (A2b), which becomes, with (A2a) and the y, z
components of (A2b)

−c20D3
0ρ

0 − 2c20
∂
∂x

�∇p 0 ⋅ ∇u0� �D0�c20∇2p 0�

� c20D0∇ ⋅ f 0 − c20D
2
0q

0 − 2c20
∂
∂x

�f 0 ⋅ ∇u0�

Further elaboration [use the fact that ρ0c
2
0 is a constant, and then

Eq. (A2c)] yields the wave equation

D0∇ ⋅ �c20∇p 0� −D3
0p

0 − 2c20
∂
∂x

�∇p 0 ⋅ ∇u0�

� −c20D2
0q

0 �D0∇ ⋅ �c20f 0� − 2c20
∂
∂x

�f 0 ⋅ ∇u0� (A3)

Without the forcing terms we can assume modes of the form

p 0�x; t� � p̂�y; z�eiωt−iκx. With the forcing terms we apply Fourier

transformation

p 0�x; y; z; t� � 1

2π

Z
∞

−∞
p̂�y; z�eiωt−iκx dκ

such that �∂∕∂x� → −iκ and D0 → i�ω − κu0� � ic0Ω, while for

clarity we denote by ~∇ the nabla operator restricted to y and z. We

get eventually the preform of the Pridmore-Brown equations:

Ω2 ~∇⋅
�

1

Ω2
~∇p̂

�
��Ω2−κ2�p̂�−ic0Ωq 0− iκf̂ ⋅ex�Ω2 ~∇⋅

�
1

Ω2
f̂

�

(A4)

Appendix B: Exact Integrals

Among other things, exact results for the Pridmore-Brown modes

are very useful to check and verify the numerical routines. Therefore

we give here a few.
By integrating the differences g�equation forf�−

f�equation for g� of two independent solutions f and g of Eq. (6),

respectively, Eq. (8), we find in 2D and 3D the Wronskians

fg 0 − gf 0 � CΩ2; fg 0 − gf 0 � C
Ω2

r
(B1)

where C are constants depending on f and g.
In a similar way, for two different solutions p1 and p2 with all

parameters the same, except the eigenvalues κ1 and κ2 and imped-

ances Z01 and Z02 at y � 0, and Z11 and Z12 at y � 1, we can derive
in 2D

Z
1

0

�
F

Ω2
1

−
G

Ω2
2

�
p 0
1p

0
2 �

�
F 0

Ω2
1

p 0
1p2 −

G 0

Ω2
2

p1p
0
2

�

�
�
F
κ21
Ω2

1

−G
κ22
Ω2

2

− F�G

�
p1p2 dy

� 1

iω

��
F

Z11

−
G

Z12

�
p1p2

�
y�1

� 1

iω

��
F

Z01

−
G

Z02

�
p1p2

�
y�0

and in 3D with impedances Z1 and Z2 at r � 1‡‡If the flow is homentropic, p0, ρ0, and c0 should be constant everywhere.
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Z
1

0

�
F

Ω2
1

−
G

Ω2
2

�
rp0

1p
0
2�

�
F0r
Ω2

1

p0
1p2−

G0r
Ω2

2

p1p
0
2

�
�
�
κ21
Ω2

1

� m2

r2Ω2
1

−1
�
Fp1p2

−
�
κ22
Ω2

2

� m2

r2Ω2
2

−1
�
Gp1p2dr�

��
F

iωZ1

−
G

iωZ2

�
p1p2

�
r�1

By choosing F and G we can generate exact integrals. For exam-
ple, F � G � 1 yields

Z
1

0

�
κ21
Ω2

1

−
κ22
Ω2

2

�
p1p2�

�
1

Ω2
1

−
1

Ω2
2

�
p 0
1p

0
2 dy

� 1

iω

��
1

Z11

−
1

Z12

�
p1p2

�
y�1

� 1

iω

��
1

Z01

−
1

Z02

�
p1p2

�
y�0

(B2)

and

Z
1

0

�
κ21
Ω2

1

� m2

r2Ω2
1

−
κ22
Ω2

2

−
m2

r2Ω2
2

�
p1p2 �

�
1

Ω2
1

−
1

Ω2
2

�
rp 0

1p
0
2 dr

� 1

iω

��
1

Z1

−
1

Z2

�
p1p2

�
r�1

(B3)

Also interesting is G � 0 and p1 � p2, leading to

Z
1

0

Fp2 dy �
Z

1

0

F

Ω2
�κ2p2 � p 02� � F 0

Ω2
pp 0 dy

−
�
Fp2

iωZ1

�
y�1

−
�
Fp2

iωZ0

�
y�0

(B4)

and

Z
1

0

Fp2dr�
Z

1

0

F

Ω2

��
κ2�m2

r2

�
p2�rp02

�
�F0

Ω2
rpp0dr−

�
Fp2

iωZ

�
r�1

(B5)

Another integral, essentially the equivalent of the result derived in
[24], is in 2D given by

Z
1

0

1

Ω2

���
1� κ1κ2

Ω1Ω2

�
u0
c0

� κ1
Ω1

� κ2
Ω2

�
p1p2

−
ωu0

0

c20Ω2
1Ω2

p0
1p2�

u0
c0Ω1Ω2

p0
1p

0
2

�
dy

� 1

iω�κ1−κ2�
���

Ω1

Z11

−
Ω2

Z12

�
p1p2

Ω2

�
y�1

�
��

Ω1

Z01

−
Ω2

Z02

�
p1p2

Ω2

�
y�0

�

(B6)

and in 3D by

Z
1

0

r

Ω2

���
1� κ1κ2

Ω1Ω2

−
m2

r2Ω1Ω2

�
u0
c0

� κ1
Ω1

� κ2
Ω2

�
p1p2

−
ωu 0

0

c20Ω2
1Ω2

p 0
1p2 �
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c0Ω1Ω2

p 0
1p

0
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�
dr

� 1
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��

Ω1

Z1

−
Ω2

Z2

�
p1p2

Ω2

�
r�1

(B7)

Appendix C: A Family of Flow Profiles
with Boundary Layer

To obtain a flow profile in a cylindrical duct such that the boundary
layer has exponential decay, the behavior in the origin is smooth, and
the displacement andmomentum thicknesses are explicitly available,
we could try [18]

U�r� � tanh

�
1 − r

δ

�
� a� br� cr2

With the conditions U�0� � 1, U�1� � 0, and U 0�0� � 0, we
obtain§§ then

U�r�� tanh

�
1−r

δ

�
��1− tanh�δ−1��

×
�
1�r�1� tanh�δ−1�

δ
r

�
�1−r� (C1)

with the properties, for small δ,

U 0 0�0��−8δ−2e−2δ−1
�
1� δ� 1

2
δ2
�
� · · ·�O�δ−2e−2δ−1�;

U 0�1��−δ−1−4δ−1e−2δ
−1� · · ·≃−δ−1;

U�1− δ�� tanh�1�−4e−2δ
−1� · · ·≃ 0.7616;

U�1−3δ�� tanh�3�−12e−2δ
−1� · · ·≃ 0.995;

δdisp �
Z

1

0

�1−U�r��rdr� ln �2�δ− 1

24
π2δ2� · · ·≃ 0.69315δ;

δmom �
Z

1

0

U�r��1−U�r��rdr� �1− ln �2��δ

−
�
ln �2�− 1

24
π2
�
δ2� · · ·≃ 0.30685δ

With u0�0� � τ and u0�1� � τ − σ, more general profiles are
created by

u0�r� � τ − σ � σU�r� (C2)
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