NON-LINEAR FREE VIBRATIONS
OF COUPLED SPANS OF SUSPENDED CABLES

S.W. Rienstra

1. Summary

The problem of free in-plane nonlinear nearly harmonic vibrations of elastic suspended
cables is investigated, with particular emphasis on the configuration of multiple spans,

~ coupled via suspension strings, which is relevant in the context of overhead transmission
lines. A systematic asymptotic theory is developed, for a suitable set of small param-
eters based on a shallow geometry and the presence of only transversal waves. The
finally obtained reduced set of equations is solved by a variant of the Lindstedt-Poincaré
technique. The (non-trivial) solutions for multiple spans appear to be gravity waves,
considerably different from the elasto-gravity waves in the symmetric single span con-
figuration (which is included for reference). An internal resonance is discovered giving
a new explanation to the practically observed asymmetry of the vertical displacement.
Application of the theory to describe the reaction force induced to a suspension string
is indicated.

2. Introduction

In the present paper we will present a study of non-linear free vibrations of suspended
elastic cables.

The problem was motivated by research on an aero-elastic instability of overhead
transmission lines, called galloping. This galloping is generated by a combination of
wind and ice rain and results in a slow almost vertical periodic cable motion. For
high enough amplitudes neighbouring conductors may touch each other, causing a short
circuit and structural damage to the cables [10]. Although recognised and studied for
more than fifty years, the problem is far from being solved. For example, it appears
to be still not possible to design the system of towers and suspended electricity cables,
possibly equipped with dampers, to be free of galloping,.

An important observation is that galloping is a motion of the cable very close to a
free vibration, since the forces (wind) are only small. Various aspects of galloping are
therefore inherent to the free motion the cable is close to, and the study of the dynamics
of free vibrating suspended cables is essential for understanding galloping. For example,
the coupling between harmonics, the relation between tension and displacement, and the
existence of internal resonances can be found by studying the equivalent free vibration.
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Although the related theory of tensed strings is a classic and well established part
of theoretical mechanics [5], the theory of a vibrating heavy elastic suspended cable is
relatively new. A number of investigations on the problem have been published for the
geometry of a single span, i.e., with fixed ends [1,2,3,4,7,9]. However, the geometry we
will mainly consider, which is the most relevant in overhead transmission line practice,
consists of a series of coupled spans, and to our knowledge this has not yet been treated
in the literature. Nevertheless, our theory is equally well applicable to the single span
configuration, and this will therefore be included for reference.

The analysis will consist of three parts. First, we establish the model adopted,
with differential equations and boundary conditions. This is relatively standard. Then
we derive an asymptotically approximate problem by introducing a small parameter
based on assumptions on sag, instationary amplitude, and transversal and longitudinal
wave length, which are essentially the same assumptions necessary for the well-known
parabola approximation of the stationary solution. The resulting (still nonlinear) prob-
lem is similar or nearly similar to that of other studies. We believe, however, that our
approach is more systematic and consistent. Finally, we solve the equations by a variant
of the Lindstedt-Poincaré technique [6]. For this we assume the existence of a periodic
nearly harmonic solution, and expand the dependent variables in a perturbation ampli-
tude power series (on practical grounds restricted here to three terms). The full solution
includes a variety of standing and propagating waves, and some additional conditions
‘of symmetry and regularity are applied to define the solution further.

In addition, the reaction force in the suspension string, relevant to measurements

of galloping, is briefly discussed.

3 Model

3.1 Differential equations and boundary conditions

Consider a cable, fixed at the outer ends, and divided into N equal spans by N — 1
supports. These supports are inextensible suspension strings of length a and negligible
weight, suspended from fixed pivots separated by a distance S, the span size. The sus-
pension string allows the span end to describe a circle of radius a, and thus provides a
coupling between adjacent spans. Through all spans the cable properties are the same.
The cable is linearly elastic, with negligible bending stiffness and friction effects, of uni-
form undeformed cross-sectional area A, mass per unit length m, and Young’s modulus
E, and with a length per span L when the cable is free of tension. We parametrise
the position along the cable (per span) by the variable £ € [0, L], such that this is
just the arc length when the cable is unstretched. The time variable is . The cable
moves in a vertical plane provided with a Cartesian coordinate system orientated such
that the gravity vector points into the negative ”y”-direction. The cable’s position is
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(T(¢, %), y(£,1)) with a corresponding tension 7(¥, ).

The equations determining 7, ¥, and 7 are Hooke’s law relating stress and strain,
and Newton’s law applied to the condition of equilibrium of internal and external forces
on a cable element. The finally resulting equations are

(3.1) 9 (L‘E) _,2z
: ot\1+7/EA0t) " o7

i} LAY &y
(3.2) Y, (—1 +7/EA 'a'z) =mg+mos

(5@~ 5)

while it may be noted that

(3.4) gz _ (1+7/EA)cos, % _ (1+7/EA)siny.

14 oL
g denotes the gravity acceleration, and # the angle between cable tangent and the
horizontal. The boundary and coupling conditions are at

(i) rigid supports
(3.5)

(ii) suspension strings

4+ (T—a)l=d® (£=0)

3.6
39 E-S+F-at=a (£=1)

3.7 [Feos(¢ —¥)]+ =0

The brackets [.]+ denote the difference between the value of the quantity at the right
and the left side of the supports; ¢ is the angle of the suspension string with the vertical.
The force necessary to maintain the string end at its position is usefully split up into
two orthogonal components. One, tangential to the circle described by the string end,
cannot be sustained by the string and has to vanish, resulting into equation (3.7). The

other, however, is directed along the string, and induces the reaction force

(38) Faa = [?51n(¢ b 'l)b)]i:'



136

3.2 Small parameters and modes of vibration
The type of motion we are interested in is further specified by
- The ratio of sag D and cable length L is small (typically 1/30), so

e=D/L—0.

- The vertical displacement is of the order of the sag, so
y/L = O(e).

- The transversal wave length A7 is of the order of L, so
/\T/ L =0(1).

- The longitudinal wave length ("sound”) Ay is large compared to L. Consistent with
practice is the estimate

AL/L = O(1/e).

- The string length a is of the order of the sag, so
a/L = O(e).

Furthermore, we assume a nearly harmonic vibration, with a single dominating fre-
quency w. Higher harmonics not generated by the first (~ eigensolutions) will be ex-
cluded. We will only investigate the effect of non-trivial coupling. For example, a
sequence of single span solutions in phase, although a valid solution, will not be consid-
ered for the coupled configuration.

4 Asymptotic analysis

4.1 Reduced problem
The basic small parameter ¢ will be utilised to reduce the above general problem to the

asymptotically leading order problem, i.e., in terms of dimensionless variables of O(1),
independent of .

Since the longitudinal wave speed is ¢, = (EA/m)*¥, we have A,/L = c1 /&L = O(1/e),
so the scaled frequency and corresponding time variable are given by

T=we(EA/m)Y/L, T=tL(m/EA)}/e.

The transversal wave velocity is cr = (7/m)?¥, so Ar/L = er/@L = O(1). This yields
for the spatial coordinate and the tension

£=sL,
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7=¢*EAT.

Since /L = O(€), we introduce
y=¢eLY.

With the above estimates substituted in (3.3) we obtain Ty = 1 + O(e?), and so
T = L(s+ 2 X).

Finally, we investigate the role of gravity. Substitute the present results into equation
(8.2) to find the term mgL/EAe® next to terms of O(1). So it has to be O(1) or smaller.
Suppose it is small, then the stationary solutiop would be to leading order Y = 0, so

D = 0, which is contradictory to our assumptions. So the term is O(1) and we introduce
p=mgL/8EAe® = O(1).

Since we will only consider the e-approximation to leading order, we may as well assume
w,T,Y, and X to be e-independent with an (a priori) relative error of O(e?).
The basic equations (3.1-3) are then reduced to

d a (.0 & F] T A%

It is convenient to split up the solution into a stationary and instationary part:
X=Xo+z, Y=Y+y, T=T+,

with boundary conditions for the stationary part ¥5(0) = Yo(1) = 0, Yo(}) = -1,
Xo(0) = 0, Xo(1) = Sy, where Sy is given by S = L(1 + €25 + O(e*)) . The
stationary solution is the well-known parabola shape

(42) Yo=-4s-5%), To=p, Xo=p-31+(2s-1)°), So=u-%

If we substitute (4.2) into (4.1) we obtain our fundamental instationary problem

or
(4.3) s =0
&y _ 9%

9z dy . 1 (o) _
(4.5) 63+4(23—1)63+2(63 =T
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The boundary conditions at rigid supports follow readily:

(4.6) 2(0) ==z(1) =y(0) =y(1) =0

For the conditions at the suspension string we observe that a¢/L = O(€?) as it is of the

order of the z-variations, so ¢ = O(¢), and we obtain the conditions
(47) y(0)=y(1) =0, [z]+=0, [r]+=0.

An immediate consequence of (4.3) and (4.7) is that 7 is constant in s and the same
in all spans. This is of course only true if N = O(1), since otherwise a small deflection
from the constant would accumulate on a larger scale. Another way to portray this is
by considering, in a matched expansion terminology, the present O(1) domain as the
inner region of the longitudinal wave regime of O(1/¢).
Finally, the reaction force (3.8) is (to a relative error of O(?))
oYy

(4.8) ﬂ,:-EAéTL—ﬁ = mgL + EAE%f,,
Os |,

with fss = 87 — (4 + 7)[y]+. The constant mgL is just the weight of a span.

4.2 Amplitude power series expansion

‘The Lindstedt-Poincaré technique [6] involves the assumption of a periodic solution with
fundamental frequency w, the introduction of the amplitude of the linearised solution as
a small parameter 6, and then expanding the full solution into a §-power series, starting
with O(6). Of course, we could have included the foregoing stationary solution (4.2) as
the first, O(1), term in this series, but this stationary part is so important in itself that
we have taken it apart.

Since w will also depend on § it is convenient to introduce ¢ = wt. Now we assume
(4.9) y="6y1+6y2+6ys +---
and similarly for r and 7, and
(4.10) W= wp + 62wy + -

Note that w; = 0 since w should not depend on the sign of §. Introduce the notation
' = 0/0s, * = 9/0t'. The equations that result from substitution of (4.9,10) into
(4.3-5) and collecting like powers of é are then

n 2,
+ 81 —w =0
(4.11) {#yl 1 Y1

i +4(2s—-1)y;=mn
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(412) { f‘ylzl +87m + iy —wyyz =0
oy +4(25 — 1)yp + 3(11)* = 2
(413) { pys + 875 + Tayy +Tiyy — wpys — 2wowath = 0
o3 +4(2s — Dy +yive =7
with 71, 79, T3, - - - constant in s. The interesting solutions here are based on the harmonic

solutions of the linearised problem, which generate via the nonlinear coupling sub- and

super harmonics in the higher order terms. So we put
(414)  y1=yusin(t'), y2 =ya0 +y2zcos(2t'), y3 = ya1sin(t') + ys3 sin(3t’),

and similarly for z and 7. Substitution of (4.14) into (4.11-13) and collecting the
harmonics yields

(4.15) { pyty + 811 + Wiy = 0
' zh +42s -y =™
(4.16) { #yz0 + 8720 + 3T1ayly =0
Tho + 4(2s — L)ygo + 1‘(1/;1)2 = T20
(4.17) {ﬂygz + 8722 — $T1yY) + 4fyz2 = 0
Thy +4(2s — Dyse — $(¥11)° = 2

pysy + 871 + Wiys1 + (20 — E722)ylh + T11(¥ho — 3UB:) + 2woweyrr =0
(4'18) ' ] ] 1 1.0\
731 +4(2s — L)ya; + y11(¥20 — 3¥22) = ™1
(4.19) {uyé’s + 8733 + Ywayss + 372211 + 3T11y5, =0
T3 +4(2s — 17)1/:';3 + %yilyéz =T33
It may be noted that in the usual formulation of the Lindstedt-Poincaré technique w,

is determined by the condition of vanishing secular terms. Here we have simplified this

to the condition that there exists a solution of the present type.
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5 Solution

5.1 Coupled spans
A most important property of vibrating coupled spans is the fact that to leading order
the tension vanishes and contains no first harmonic. This makes the motion of a coupled
span considerably different from the symmetric modes of a single span. In a coupled
span the restoring force is basically gravity, without tension variation to leading order
(~ first harmonic), while in a single span symmetric mode both gravity and elasticity
are equally important. The respective motion may therefore be called: gravity and
elasto-gravity waves.

By standard techniques we find for the i-th span (1 <: < N) the general solution

(5.1) 1 =0, y11 = Aisin(ks), where k=wo/\/p=2n+ 1)x

211 = B; — 4(2s ~ 1)A; sin(ks) — 84; cos(ks)/k
Bi =8(Ai +2(A1 + A2+ + Ai1)) [k
(5.2) 720 = 3wEAZ/(16 +3u),  ya20 = 4mao(s — 8%)/p
T20 = C; + 1208 + $ma0(1 + (25 — 1)) /pu — Lk? AZ(s + sin(2ks) /2k)
Ci = (i — 1)720(1 + 16/3p) — Lk*(A2 +--- + A2 ))
(5.3) Too = kPwEAZ/(16 — wd),  y22 = 2macos(2ks) — 1)/w}
z22 = D; + Ty25 — 8722 (1 + (25 — 1) cos(2ks) —sin(2ks)/k) wi + 1k? A2(s + sin(2ks)/2k)
D; = —(i — 1)ray(16/wg — 1) + 3k*(A +--- + A1)
(5.4) 731 =0, y31 =0
231 = E; + Ai(4km20(2s — 1) sin(ks) + (8720 + 722) cos(ks) + %rn cos(3ks)) /uk
E; = —Bi(r0 + §722)/ 1t
(5.5) 733 =0, a3 = {5 T22Aisin(ks)/p
233 = F; — 722 Ai(1k(2s — 1) sin(ks) + 2 cos(ks) + } cos(3ks)) /uk
Fi=LrBi/u

where A% = (A2 4+ A% +--- 4 A%)/N. The frequency shift necessary for a solution ys; is

(5.6) wy = wo(2720 — T22)/ 18,
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and the amplitudes A; are further restricted by the condition
(5.7 A1 +A24+---+AN=0.

Note the breakdown of the solution if wy = 4 by the vanishing denominator of 7.
Although further research is necessary to reveal the character of this singularity, it is to
be interpreted as a resonance between first and second harmonic.

Equation (5.7) does not determine a unique solution (except for N = 2). Some
special cases, however, are useful to be considered in detail.

A most regular solution is found if N is even with

(5.8) A; = (-1),

since this is independent of N. As every even suspension string is now motionless,
it is in fact just a sequence of (N=2)-solutions. Furthermore, the suspension string
reaction force (4.8) in é-expanded form only depends on the tension and simplifies to
Fss = 882722 cos(2t') 4+ O(6*), since by symmetry [y);]+ = [¥43]+ = 0, and inertial effects
are absent.

If N is odd, we cannot have all A; equal in magnitude, but an almost uniform middle
region 2 <i < N —1 is obtained with 4; = Ay = —%, A;=(-1) (2<i<N-1).

5.2 Single span

The asymmetric modes of a single span are very similar to the periodic solution (5.8)
for an even number of coupled spans. The only difference is the wave number k. Instead
of an odd it is now an even multiple of 7 : k = 2nw.

The symmetric modes are considerably different, and not reported to occur often
with galloping. However, it is the configuration considered most in the literature, so we
will, for reference, briefly present it here in the context of our analysis.

It is convenient to introduce ¥ = 7/, and z = s — % where 7 is any 77,---. The
solution is then

(5.9) 11 = §k? cos(3k), y11 = cos(kz) — cos(3k)
where k = wo/./J is a solution of the equation tan(}k) = 1k(1 — Lw?)
z11 = fuipz + 8 (sin(kz) — kz cos(kz)) [k

(5.10) #20 = 2k?(3sin(k)/k — 2 cos(k) — 1) /(16 + 3p)

Y20 = —;—‘f'u(cos(kz) - cos(%k)) — f20(422 = 1)
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Ta0 = Faopz + $Eiaoz® — Lk cos(1k)(sin(kz) — kz cos(kz)) + & k(sin(2kz) — 2k2)
(5.11) a2 = £ k3(5sin(k) — 2 tan(k) — 3k)/(wd — 16 + 16 tan(k)/k)
Y22 = 2(T22 + %’r"n)(cos(Zkz) - cos(k))/k2 cos(k) — %1"11(cos(kz) — cos(%k))
Tay =Peapz — $f11(sin(kz) — kz cos(k2))/k — {5 k(sin(2kz) — 2k2)
+ 8(fa2 + 277 )(sin(2kz) — 2kz cos(2kz))/k* cos(k)
and a frequency shift of

(512)  wy = Bwofuy cos(3E) (522 + 18730 + 274 )(2tan( 1K) — )
~ (3% = 60 + 57k tan’ (5F) + 4(a + §#1)(tn(}#) ~ tan(k) + )
/k*(2 + cos(k) — 3sin(k)/k)

The other third order terms become increasingly lengthy and complex, and can be found
in [8]. The linear solution (5.9) is similar to what is presented in for example [2,3,9].
The higher order corrections are new. Nonlinear extensions to the linear theory have
been described in [2,4,7], but for an equation in spatially averaged variables using an
assumed shape function.

6 Discussion and examples

A most interesting result of the present analysis for coupled spans is the resonance
- frequency wp = 4, where the higher order terms become comparable to the first, and the
solution breaks down. When wy is not too far from 4, the singular denominator easily
- amplifies the second harmonic enough to render the displacement y asymmetrically
upward or downward, depending on the sign of wp — 4 (i.e., the driven second harmonic
is in or out of phase with its source, the first harmonic). The common situation for
coupled spans of transmission lines seems to be a relative elasticity u smaller than
16/n? = 1.62, and so a frequency wy smaller than 4, resulting into an (indeed reported)
asymmetry upwards. However, by only changing the parameters a little we might as well
have an asymmetry downwards. This is completely different from the always upward
asymmetry of a single span symmetric mode, which is usually a smaller effect and has
a displacement maximum always accompanied by a tension minimum.

We have plotted examples of a coupled multiple and a single span configuration.
The vertical displacement dY at s = % and tension variation dT are shown for a cable,
given by S = 300 m, mg = 10 N/m, EA = 15.10° N, D = 9 m with ¢ = 0.03 and
p = 0.93. In figure 1 we have a 2-span (eq.(5.8)), with wy = 3.03, and in figure 2
a single span, with wp = 7.22. Absence of the first harmonic in the 2-span tension,

presence of other harmonics, asymmetry in dY, etc., are clear.
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