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Acoustic energy balances for sound
radiated from duct exit with mean
flow

Sjoerd W Rienstra

Abstract
An old model problem for the exchange of energy between sound field and mean flow by vortex
shedding has been worked out in numerical detail. The analytically exact solution of the problem of
reflection, diffraction and radiation of acoustic modes in a semi-infinite annular duct with uniform
subsonic mean flow, including shedding of unsteady vorticity from the duct exit, allows a precise
formulation of Myers’ energy for perturbations of an inviscid mean flow. The transmitted power Pt

in the duct and the radiated power Pf in the far field differ by the amounts of hydrodynamic far field
powers P i

H inside and Po
H outside the wake (vortex sheet) emanating from the duct edge, plus the

power Pw that disappears into the vortex sheet. This last component represents the source term in
Myers’ energy equation. This is evidence of the non-conserved character of acoustic energy in mean
flow, owing to the coupling of the acoustic field with the mean flow. Pf , P i

H and Po
H are always

positive. This is normally the case too for Pw and Pt. But for not too high frequencies or other
circumstances where shed vorticity produces more sound than was necessary for its creation, Pw

and even Pt may also be negative.
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Introduction

Since its formulation in the late 19th century, Kirchhoff’s expression for acoustic energy in
quiescent flow1 has been a well-confirmed conserved quantity for the linear acoustic wave
equations. During the 1960s and early 1970s several attempts were made to extend this energy as a
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conserved quantity to linear perturbations of inviscid flow in general.2–5 This appeared possible for
potential and homentropic flow but failed for (roughly speaking) flow with vorticity or a varying
entropy. Although it was of course known from Ffowcs Williams et al6,7or Crighton8 that vorticity
near sharp edges can produce sound, it was only from the experiments of Bechert9,10 and the
explanation by Howe11,12 that it was realized that this coupling can work in the other direction too,
leading to absorption of sound by vorticity. Still, it was unclear if this all plays on the level of the
linear perturbations only, or that there is a coupling with the (infinite energy of the) mean flow. Only
the model problem of plane waves diffracting at the trailing edge of a semi-infinite flat plate with
uniform mean flow (the Sommerfeld13 problem with mean flow) by Rienstra14 yields an exact
expression of the (positive or negative) acoustic energy loss into the vortical wake – present due to
the unsteady Kutta condition15 – that shows unequivocally that more energy can be “harvested”
from the wake than enters from the incident waves. In other words, that there is a coupling with the
mean flow.

A similar result in the form of analytic expressions for the various energy contributions was a
little later obtained by Rienstra16 for the problem of sound radiated from a semi-infinite (annular)
duct with uniform mean flow, but (unfortunately) without a numerical study of its parametric
dependencies.

All this was beautifully clarified and brought into a unified perspective by Myers.17–19 He
showed that the linearized energy equations (for inviscid and compressible flowwith negligible heat
conduction) form indeed a conserved acoustic quantity of the linearized equations if both mean flow
and perturbations are irrotational and isentropic. But in the other case the energy equations have a
right-hand side that can be interpreted as a source from, or sink to, the vortical perturbations or
vortical mean flow, and similarly for the entropy. A remarkable side result is the fact that all this can
be described without second or higher order nonlinear terms. So with the Myers equations for the
acoustic energy, the energy loss to, or generation from, the vorticity in the model problems of Refs.
14 and 16 were confirmed and understood.

Unfortunately (albeit before Myers’ publications), by omitting the distinction between (a)
acoustic, i.e. pressure based, energy, (b) hydrodynamic, i.e. velocity based, energy of the potential
field associated to the wake, and (c) the contribution of the vortical wake itself, Howe20 drew the
incorrect conclusion that our result of sound lost into or produced by the wake is wrong. Howe
argued that the expression for the “acoustic dissipation” should include not only the loss into the
vortical wake, but also the associated, “trapped”, hydrodynamic (but non-vortical!) field, even though
this energy contribution is kinetic and not lost or dissipated at all. Of course, far from the edge the
hydrodynamic field is silent and for practical purposes we could reserve the word “acoustic dissi-
pation” to processes that reduce the audible (i.e. pressure-based) part of the acoustic energy. But this
would be an ad-hoc and unphysical distinction, if there is no real dissipation but only a conversion into
purely kinetic energy of convected vortices. They may be inaudible (at least, far from the edge), but
there is nothing dissipated about these vortices. They could again create sound once they pass along
another edge. Therefore, only when acoustic energy, including the hydrodynamic component, has
been lost into the mean flow, we can say that acoustic energy has disappeared.

Extensions to the supersonic version of the problem were given by Guo21, to the scattering at a
hard-wall/pressure-release-wall transition by Quinn and Howe22 and recently to the problem of
scattering by an infinite cascade by Maierhofer and Peake.23

Although the expression of the power lost into the wake is simple and most elegant for the plane
wave, flat plate problem, the incident and radiated energy components are infinitely large and it is
hard to assess how strong the effect is compared with the rest of the field. The semi-infinite duct
problem is in this respect much more informative. The only problem here is that the expressions,
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although explicitly available and analytically exact, are more difficult to evaluate numerically
because they are given in terms of complex contour integrals. Forty years ago this was a serious
obstacle (while the question was not vital to the project under which the work fell), but not anymore
presently. The – compared to then – superior computer equipment and numerical software we have
now, make it possible to fill this lacuna. Therefore the goal of the present paper is to revisit this
problem and, based on the same formulas16 but a new numerical implementation, make a numerical
study of the behavior of the various energy contributions (indicated in Figure 1 by powers = time-
averaged energy fluxes across certain control surfaces) as a function of frequency, and a selection of
problem parameter combinations.

Shôn Ffowcs Williams

By this contribution I would like to honor Shôn Ffowcs Williams for his seminal and inspiring work
in aeroacoustics. I remember his visits to Leen Poldervaart’s laboratory in Eindhoven24 when I was a
student. His door was always open in Cambridge, and I am forever grateful he directed me to his
former student David Crighton, the right person to finish successfully my PhD research.

Figure 1. Sketch of configuration, with control surfaces for power integrals Pt in the duct, Pf into the
acoustic far field, Po

H and P i
H into the hydrodynamic far field, and Pw ¼ P i

w � Po
w into the wake.
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My present contribution is a study of a model problem for sound scattering, vortex shedding, and
their interaction with a mean flow. Model problems are very important for the understanding of
quintessential phenomena. In a model problem they can be isolated and studied in detail, while in a
full, “industrial” problem they drown in the plethora of other effects. Shôn was very keen on model
problems. I remember vividly how he explained in a lecture Tyler and Sofrin’s rotor-stator in-
teraction by a both amusing and crystal-clear comparison with the virtually backward running
cartwheels of stage-coaches in old American cowboy movies.

The problem presented here is not as iconic and colorful, but I hope simple enough to add a little
bit to the understanding of sound in vortical flow, and the way acoustic energy enters and leaves the
mean flow.

Time-harmonic sound waves in uniform mean flow

In the next section we describe the problem and its solution as presented in16 with a few very minor
typographical simplifications. Of course, no details are given of the derivation, but inevitably the
solution have to given in sufficient detail, for the meaning of the results to become clear.

The model

Anticipating the shedding of vorticity only from the trailing edge, we assume a perturbation field,
irrotational almost everywhere, such that the velocity field νmay be described by a potentialf that is
continuous except across the (after linearization cylindrical) surface formed by the trailing edge
streamlines. The convective wave equation for isentropic irrotational time-harmonic (eiωt) pertur-
bations in a uniform mean flow of velocity U0, sound speed c0 and density ρ0, is then given by*

v ¼ =f, p ¼ c20ρ ¼ �ρ0

�
iωþ U0

∂
∂x

�
f

�
iωþ U0

∂
∂x

�
ρþ ρ0= � v ¼ 0

(1)

The boundary conditions are a vanishing normal velocity v along the duct walls r = h and r = a,
x < 0 (Figure 1), and continuity of normal velocity v and pressure p along any trailing edge
streamline r = a, x > 0. The corresponding time-averaged energy equations19 are, for the acoustic
intensity vector I (i.e. the time-averaged acoustic energy flux) and the energy source �D, given by

= � I ¼ �D (2)

where (neglecting viscous stress and heat conduction)

I ¼ 1

2
Re

�
ðρ0vþ ρU0exÞ

�
p∗

ρ0
þ U0u

∗

��

D ¼ �1

2
ρ0U0Re

�
∂u
∂r
v∗
� (3)

Here, p* indicates the complex conjugate of p. As we will see, D can be both positive and
negative, but since it is chosen with a minus sign, it is by itself a sink. Note thatD is zero everywhere
except along the vortex sheet, where ð∂=∂rÞu∼ δðr � aÞ.
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Non-dimensionalization

We assume the field variables and cylindrical coordinates (x, r, θ) made dimensionless: x on a, v on
c0, ρ on ρ0, p on ρ0c

2
0, f on ac0, I on ρ0c

3
0,D on ρ0c

3
0a

�1. The dimensionless mean flow variables are
equal to unity and will not be visible, except for the velocity, which is given by the Mach numberM.
All other variables will be written dimensionally and non-dimensionally the same, apart from an
obvious simplification related to the θ dependence. The perturbations behave time-harmonically
∼eiωt with frequency ω, which is, non-dimensionally, equal to the Helmholtz number. Because of
the circumferential symmetry, we may assume the field being built from Fourier θ-components and
consider only one component at a time. So the perturbations will behave ∼e�imθ where integer m is
also known as the azimuthal (or circumferential) modal order. All together we have the equations
and boundary conditions

fðx, r, θ, tÞ ≡ fðx, rÞeiωt�imθ, u ¼ ∂f
∂x

, v ¼ ∂f
∂r

, p ¼ ρ

�
iωþM

∂
∂x

�
ρþ

�
∂2

∂x2
þ ∂2

∂x2
þ 1

r

∂
∂r

þ 1� m2

r2

�
f ¼ 0, p ¼ �

�
iωþM

∂
∂x

�
f

8<
:

vðx, 1þÞ � vðx, 1�Þ ¼ pðx, 1þÞ � pðx, 1�Þ ¼ 0 if r ¼ 1, x> 0

vðx, 1 ± Þ ¼ 0 if r ¼ 1, x< 0

vðx, hÞ ¼ 0

(4)

and Myers’ energy expressions

I ¼ 1

2
ReððvþMpexÞðp∗ þMu∗ÞÞ

D ¼ �1

2
MRe

�
∂u
∂r
v∗
� (5)

To facilitate the shedding of vorticity at the trailing edge, some form of unsteady Kutta condition,
in the form of a smooth connection of the streamlines with the edge, is vital.15 Without vortex
shedding, this connection is not smooth because the pressure is singular, although the potential is
continuous. This is what we usually call “no Kutta condition”. With vortex shedding, the singularity
may be reduced at the expense of a discontinuous potential and (axial) velocity, i.e. a vortex sheet.
This is what we could call a “partial Kutta condition”. Mathematically (at least, in the inviscid linear
model), the field of the shed vorticity is an eigensolution of the problem, i.e. a solution that exists
without external forcing. With the right amplitude (in other words, with the right amount of vortex
shedding) this eigensolution may annihilate the singularity completely. This is the “full Kutta
condition”.

Physically, vortex shedding is a process that happens for high enough Reynolds number, high
enough amplitude and low enough Strouhal number. Under these circumstances the inertial forces
intrinsic to the trailing edge singularity cannot be tamed by viscosity alone. In the inviscid limit that
we have here, we have to select the amount of vortex shedding by an additional condition that
replaces the now ineffective no-slip condition of a viscous model. Assuming the field of shed
vorticity (the eigensolution of above) available from elsewhere, the extra condition will be described
by a parameter γ, the amplitude of the eigensolution. This is normalized such that γ = 1 corresponds
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to full vortex shedding and no singularity, while γ = 0 corresponds to no vortex shedding at all. Other
choices of γ are equally well possible, depending on the (viscous) problem parameters.14,25–28

From upstream inside the duct, h < r < 1, x→�∞, an incident field pin is assumed consisting of a
sum of radial modes of amplitude Amμ, and defined by

pinðx, rÞ ¼

8>><
>>:
X∞
μ¼1

AmμUmμðrÞe�ikþmμx if h < r < 1

0 if r > 1

(6)

UmμðrÞ ¼ Umμð1Þ

8>>>>>><
>>>>>>:

1

2
παmμ

�
Y 0
m

�
αmμ
�
Jm
�
αmμr

�� J 0
m

�
αmμ
�
Ym

�
αmμr

��
if h> 0 & mμ ≠ 01

1

2
παmμY

0
m

�
αmμ
�
Jm
�
αmμr

�
1

if h ¼ 0 & mμ ≠ 01

if mμ ¼ 01

Z 1

h

UmμðrÞUmνðrÞr dr ¼ δμν, U
0
mμð1Þ ¼ U 0

mμðhÞ ¼ 0

k±mμ ¼
±Vmμ � ωM

β2
, Vmμ ¼

�
ω2 � β2α2mμ

�1=2
, ImVmμ # 0, β ¼ �1�M 2

�1=2
with a corresponding fin(x, r), and a slight exception if mμ = 01. Reference amplitude Umμ(1)
follows from the normalization. The duct hard walls require the conditions U 0

mμð1Þ ¼ U 0
mμðhÞ ¼ 0,

the second of which yields the set of real αmμ. These are all taken positive, except α01 which is zero.

Solution

By introducing a Prandtl-Glauert/Lorentz transformation, complemented (for later use) by Strouhal
number S and a form of spherical coordinates (R, ξ)

k±mμ ¼ ωk
±

mμ, Vmμ ¼ ωVmμ, Vmμ ¼
�
1� α2mμ

κ2

�1=2

ω ¼ βκ, x ¼ βX , X ¼ R cos ξ, r ¼ R sin ξ, S ¼ ω
M

(7)

the solution can be written in the form of a Fourier transform in spatial coordinate x

f ¼ fin �
κ
β
eiκMX

X∞
μ¼1

AmμF0
1

2π

Z ∞þ0i

�∞�0i

v2þðτÞ~KþðτÞ
2
4 1

τ �Vmμ

� γ

τ �M�1

3
5 χ

iκv
e�iκτXdτ (8)
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χ ¼

8>>>>>>>>>>><
>>>>>>>>>>>:

K 0
mðiκvhÞImðiκvrÞ � I 0mðiκvhÞKmðiκvrÞ
K 0

mðiκvhÞI 0mðiκvÞ � I 0mðiκvhÞK 0
mðiκvÞ

if h > 0, r < 1

ImðiκvrÞ
I 0mðiκvÞ

if h ¼ 0, r < 1

KmðiκvrÞ
K 0

mðiκvÞ
if r > 1

F0 ¼ 1

2
β2Umμð1Þ 1þVmμ

1�MVmμ

~K� Vmμ

� �
~KðτÞ ¼ LðκvðτÞÞ ¼ ~KþðτÞ~K�ðτÞ,

LðzÞ ¼

8>>><
>>>:

π
H ð2Þ0

m ðzÞ
H ð2Þ0

m ðzhÞ
�
J 0
mðzhÞY 0

mðzÞ � Y 0
mðzhÞJ 0

mðzÞ
�
, if h> 0

�πiH ð2Þ0
m ðzÞJ 0

mðzÞ, if h ¼ 0

vðτÞ ¼ �1� τ2
�1=2 ¼ vþðτÞv�ðτÞ, vþðτÞ ¼ ð1� τÞ1=2, v�ðτÞ ¼ ð1þ τÞ1=2

See for details Ref.16. Except for a few minor exceptions, like ω for k and the introduction of κ
and S, all notations have been retained exactly the same. Jm,Ym,H

ð2Þ
m denote ordinary Bessel

functions and Km, Im modified Bessel functions. The square roots v+ and v� are defined by their
principal values. (Note that square root v(τ) has no relation whatsoever with the radial component of
the velocity. In retrospect, it would have been wiser to choose another letter.)

The functions ~Kþ and v+ are constructed such that they are analytic in the upper complex half
plane, while similarly ~K� and v� are analytic in the lower complex half plane. Define#

C
� ¼ fz2C j ImðzÞ< 0⋁ ðImðzÞ ¼ 0&ReðzÞ> 0Þg

C
þ ¼ fz2C j ImðzÞ> 0⋁ ðImðzÞ ¼ 0&ReðzÞ< 0Þg

If t2C
�, below the integration contour, then

log ~K�ðtÞ ¼ it

π

Z ∞

0

log ~KðτÞ
τ2 � t2

dτ ¼ J , ~KþðtÞ ¼
~KðtÞ
~K�ðtÞ

(9a)

~K
0
�ðtÞ

~K�ðtÞ
¼ i

π

Z ∞

0

τ2 þ t2

ðτ2 � t2Þ2 log
~KðτÞ dτ ¼ L,

~K
0
þðtÞ

~KþðtÞ
¼

~K
0ðtÞ

~KðtÞ � L (9b)

If t2C
þ, above the integration contour, then

log ~KþðtÞ ¼ �it

π

Z ∞

0

log ~KðτÞ
τ2 � t2

dτ ¼ �J , ~K�ðtÞ ¼
~KðtÞ
~KþðtÞ

(9c)

~K
0
þðtÞ

~KþðtÞ
¼ �i

π

Z ∞

0

τ2 þ t2

ðτ2 � t2Þ2 log
~KðτÞdτ ¼ �L,

~K
0
�ðtÞ

~K�ðtÞ
¼

~K
0ðtÞ

~KðtÞ þ L (9d)
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Numerical evaluation of these complex integrals are crucial for the final solution, and should be
done with care. Analyticity of the integrand, however, makes it possible to avoid impeding sin-
gularities by contour deformation. See further below.

The underlying Wiener-Hopf technique is indebted to the classic solution by Levine and
Schwinger29 of the problem form = 0 and no flow and no hub. The generalizations for generalm and
a hub are not fundamentally different. The generalization to a uniform flow we need here, can be
obtained by utilizing a Prandtl-Glauert or (which is here equivalent) Lorentz transformation to the
no-flow solution, but this is not entirely straightforward. Due to the possible complication of vortex
shedding in the case of an out-flow duct the singularity at the duct edge may be different without
violating the edge condition.30 Therefore, we applied in Rienstra16 the transformation along with the
Wiener-Hopf procedure and relaxed the central argument of a bounded entire and therefore constant
function being zero (as it tends to zero at infinity) to possibly being non-zero. We can, however,
construct in a slightly more efficient way the full solution also by elementary operations on the no-
flow solution, as is shown in the Appendix.

The celebrated generalization by Munt31,32 to a jet-type mean flow (different inside and
outside the duct and its extension) involves a particular difficulty that we don’t have here,
namely the Kelvin-Helmholtz instability of the jet. This instability is excited by the shed
vorticity (and therefore absent in case of γ = 0), but with vortex shedding it is there and its
exponential growth prevents a regular Fourier transform in x. There are various ways to
overcome this difficulty. Munt followed originally the approach of Jones and Morgan33 by
introducing the Fourier transform of exponential functions as a form of generalized functions
(more specifically, ultra-distributions). This is very ingenious, but only necessary in time
domain. For a single frequency we can split off the exponential part and write the bounded part
of the solution as a regular Fourier transform.34

The solution made explicit in various parts of the field

The foregoing Fourier integral solution can be made more explicit in certain parts of the field. We
have:

For x < 0, h < r < 1

pðx, rÞ ¼
X∞
μ¼1

AmμUmμðrÞe�ikþmμx þ
X∞
ν¼1

BmνUmνðrÞe�ik�mνx

Bmν ¼
X∞
μ¼1

AmμRmμν

Rmμν ¼ �1

4
Umμð1ÞUmνð1Þ

1þVmμ

� �
1þVmν

� �
1�MVmμ

� �
Vmν

 
1þMVmν

Vmμ þVmν

� γM

!
~K� Vmμ

� �
~K� Vmν

� �
(10)
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For κR → ∞, ξ > 0

pðx, rÞ x
X∞
μ¼1

AmμDmμðξÞ e
�iκRð1�M cos ξÞ

κR

DmμðξÞ ¼ im

2π
κUmμð1Þ~K� Vmμ

� � 1þVmμ

1�MVmμ

tan
1

2
ξ

� �
~Kþðcos ξÞ

H ð2Þ0
m ðκ sin ξÞ

0
@1�M cos ξ

Vmμ � cos ξ
� γM

1
A

(11)

For Sx → ∞, h < r < 1

fðx, rÞxγ
X∞
μ¼1

AmμC
H
mμ

K 0
mðShÞImðSrÞ � I 0mðShÞKmðSrÞ
K 0

mðShÞI 0mðSÞ � I 0mðShÞK 0
mðSÞ

e�iSx

CH
mμ ¼

1

2
ið1�MÞUmμð1Þ~K� Vmμ

� �
~Kþ
�
M�1

� 1þVmμ

1�MVmμ

(12)

For Sx → ∞, r > 1

fðx, rÞxγ
X∞
μ¼1

AmμC
H
mμ

KmðSrÞ
K 0

mðSÞ
e�iSx (13)

The argumentM�1 of ~K±, and (later) their derivatives, is a complex-valued point, located below
the integration contour but just above the branch cut [1, ∞).

Power integrals

By using the axial component Ix and radial component Ir of the intensity vector I, and (as a check)
the energy source term D

Ix ¼ 1

2
ReððuþMpÞð�iωfÞ∗Þ

Ir ¼ 1

2
Reðvð�iωfÞ∗Þ

D ¼ �1

2
Mδðr � 1ÞReððuð1þ , xÞ �uð1� , xÞÞvð1, xÞ∗Þ

(14)

we can construct the acoustic power across a control surface A, like those sketched in Figure 1, by
surface integrals of the intensity vector. These are generically given by

P ¼
ZZ

A
ðI � nÞdS (15)

where the power transmitted through the duct is denoted by Pt; to the acoustic far field byPf ; to the
hydrodynamic far field inside and outside the vortex sheet by Pi

H and Po
H , respectively; into the

wake from below byPi
w; out of the wake to above byPo

w; and the net amount into the wake byPw. It
should be noted that the far field limit near the positive x-axis, i.e. R→∞, ξ ↓ 0, is non-uniform. This
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cannot be depicted well in the sketch. For any ξ > 0 we end up outside the neighborhood of the
vortex sheet, so Pf does not include the hydrodynamic contributions Po

H or Pi
H.

By noting that

= � I ¼ 0

everywhere outside the wake, and then application of Gauss’ divergence theorem, we have

Pt ¼ P i
w þ P i

H , Po
w ¼ P f þ Po

H (16)

Since we have no analytically exact expressions for Pi
w and Po

w each, a more useful combination
is

P t ¼ P f þ Po
H þ P i

H þ Pw, where Pw ¼ P i
w � Po

w: (17)

Furthermore, by taking an integral over the whole space, we find the relation betweenD and Pw.

�
ZZZ

R
3
D dx ¼

ZZZ
R
3
ð= � IÞ dx ¼

Z ∞

0

½Irðx, 1�Þ � Irðx, 1þÞ� dx ¼ Pw (18)

This energy conservation relation (17) can serve as a numerical check of the solution. Let μ = μ0
denote the index of the first radial cut-off mode (at azimuthal order m). We find for the various
contributions

Pt ¼ πβ4
Xμ0�1

μ¼1

Vmμ

2
64

��Amμ

��2
1�MVmμ

� �2 �
��Bmμ

��2
1þMVmμ

� �2
3
75þ 2πβ4

X∞
μ¼μ0

��Vmμ

���
1þM 2

��Vmμ

����2
�2 ×…

… ×

	�
1�M 2

����Vmμ

����2
�
Im
�
AmμB

∗
mμ

�
� 2M

����Vmμ

����Re
�
AmμB

∗
mμ

�

(19)

Pf ¼ πβ6

ω2

Z π

0

sin ξ

ð1�M cos ξÞ2
X∞
μ¼1

��AmμDmμðξÞ
��2dξ (20)

Pi
H ¼ 1

2
πM jγj2

(�
m2 þ S2

�	K 0
mðShÞImðSÞ � I 0mðShÞKmðSÞ

K 0
mðShÞI 0mðSÞ � I 0mðShÞK 0

mðSÞ

2

� S2 /

/� �m2 þ S2h2
�	 ðShÞ�1

K 0
mðShÞI 0mðSÞ � I 0mðShÞK 0

mðSÞ

2)X∞

μ¼1

���AmμC
H
mμ

���2
(21)

Po
H ¼ 1

2
πM jγj2

�
S2 � �m2 þ S2

�KmðSÞ2
K 0

mðSÞ2
�X∞

μ¼1

���AmμC
H
mμ

���2 (22)
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Pw ¼ 1

2
πð1�MÞ2β2 ~K�M�1

�
Re

2
64 X∞

ν¼1

γAmνUmνð1Þ 1þVmν

1�MVmν

~K� Vmν

� �
~K�
�
M�1

�
 !∗

×…

…×
X∞
μ¼1

AmμUmμð1Þ 1þVmμ

1�MVmμ

~K� Vmν

� �
~K�
�
M�1

� M

1�MVmμ

� γM
1�M

� γ
~K
0
þ
�
M�1

�
~Kþ
�
M�1

�
 ! !375

(23)

These are valid for any 0 # h < 1. If h → 0, Pi
H simplifies to

P i
H ¼ 1

2
πM jγj2

��
m2 þ S2

� ImðSÞ2
I 0mðSÞ2

� S2

�X∞
μ¼1

���AmμC
H
mμ

���2 (21a)

Although the solution, equation (8), has no particularly simple form along the vortex sheet, still
an explicit expression of Pw is possible, because the integral in x is just the Fourier transform of
v (1, x) at Fourier variable S. Aminor problem is that the integral is divergent and should be interpreted in
a physically meaningful way. Furthermore, it is useful to note that ~KðM�1Þ is real, because

~K
�
M�1

� ¼ Lð�iSÞ ¼

8>><
>>:
�2K 0

mðSÞ
�
I 0mðSÞ �

I 0mðShÞK 0
mðSÞ

K 0
mðShÞ

�
if h> 0

�2K 0
mðSÞI 0mðSÞ if h ¼ 0

(24)

The above expressions are for a general incident field, made of a linear combination of radial
modes of azimuthal order m. For the restricted case of a single incident μ-mode, we assume
Amμ = 1 and Amν = 0 for all ν ≠ μ, and the expressions simplify accordingly.

Numerical details on the integration

The typical integral to determine the split functions ~K±ðtÞ and their derivatives has the formZ ∞

0

f ðτÞ dτ (25)

for a complex function f (τ) that is analytic in the upper halfplane, with a branch cut along [1,∞), and
a pole in τ = t possibly along the integration contour, or along the imaginary axis. To avoid the
branch point and the poles we deform the contour from the positive real axis a little bit into the upper
halfplane (Figure 2) according to

τ ¼ σðζ Þ ¼ ζ þ id
qtq�1

0 ζ
ðq� 1Þtq0 þ ζ q

, 0# ζ <∞ (26)

The deformed contour τ = σ starts at the origin τ = 0, then has an indentation of height d around
τ = t0 and returns to the real τ-axis for ζ → ∞ by a convergence rate of τ ¼ ζ þ iOððt0=ζ Þq�1Þ.
Finally, the contour is mapped to the unit interval by

ζ ðsÞ ¼ s

ð1� sÞn, 0# s < 1, (27)

420 International Journal of Aeroacoustics 21(5-7)



such that Z ∞

0

f ðτÞdτ ¼
Z 1

0

f ðσðζ ðsÞÞÞσ0ðζ ðsÞÞζ 0ðsÞ ds (28)

and f(τ) dτ ∼ τ�2 log τ dτ for τ → ∞ is turned into ∼ (1 � s)n�1 log (1 � s) ds for s ↑ 1. The values
used here are d = 0.1, q = 6 and n = 2, and the location of the indentation is taken t0 ¼ maxð1, ReðtÞÞ.

The other relevant integral is the power of the far field Pf , over the squared directivity |Dmμ(ξ)|
2. The

integral is taken per lobe, from zero to zero, by aGauss-Legendre integration scheme of 100 nodeswhich is
(in general) enough for an accuracy of 10–14 digits. Only for m = 20 we had to increase to 200 nodes.

A survey of the power contributions

In order to assess the relative importance of the various power contributions, we made a survey of
several configurations, all involving a full Kutta condition (γ = 1).

We made plots of the powers Pt,Pf ,Pi
H ,Po

H ,Pw as a function of frequency, complemented for a
few typical cases by the values given in their full numerical accuracy. As long as Pt � ðPf þ
Pi

H þ Po
H þ PwÞ is very small we have a confirmation of the analytical and numerical correctness of

the solution and its numerical implementation. The remaining difference should be in the order of
the total numerical accuracy. Optimally, this is O(10�12), but of course it varies. A deterioration is
seen, for example, for highm, highω, frequencies very near cut-off, or Mach numbers close to unity.

For the interpretation of the graphs it is important to realize that there is a certain arbitrariness in
the way the modes depend on frequency. The incident modes, and thus the resulting powers, are
normalized on the pressure, more specifically on the mean squared modal functionUmμ(r). We could
have normalized the incident potential or velocity, but we chose for pressure because this is what is
normally measured. A normalization on the transmitted power Pt is obviously preferable, but this is
simply not possible, because in some occasions Pt becomes zero or negative.

For most cases we used a single radial mode as incident field, because several modes at the same
time is too general to be informative. However, for a numerical check a single mode case is less
stringent because phase errors may remain unnoticed. Therefore we start with a sum of 5 radial modes,
with Am1 = / = Am5 = 1, h = 0.5, m = 0 and m = 1, and M = 0 and M = 0.5 (Table 1 and Figure 3).

We see from the table, evaluated at ω = 3, that without mean flow, Pt and Pf are (within the
numerical accuracy) the same. With mean flow,Pt is equal to the remaining powers, indicated in the
table by

PP ¼ Pf þ Pi
H þ Po

H þ Pw. This is exactly as it should. All in all this gives us a very high

Figure 2. Examples of deformed integration contours in complex τ-plane.
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confidence of the formulas. (Note that in particularPw is mathematically not incontrovertible, as it is
the result of a non-convergent integral which has to be interpreted in a physically meaningful way.)

Figure 3 shows the behavior as a function of ω. Most interesting is the fact that for many
frequencies Pw is negative, indicating energy production by the wake. Remarkably, this production
is, for low enough frequency and m = 1, strong enough to render Pt negative.

In Table 2 and Figure 4 we present a series of configurations withm = 0, incident radial modes μ =
1, = 2, = 3, h = 0.0, and M = 0.0, = 0.2, = 0.5, = 0.8. For all incident modes except the plane wave
(mμ = 01), Pw is negative for low enough ω. As could be verified from the formulas, if m = 0, Pi

H
tends to a finite value for ω → 0, in contrast to Po

H which tends to zero. This is interesting for the
plane wave case (1st column of Figure 4). ForM = 0 the exit is “closed” and Pt ¼ Pf → 0. For any
M > 0 the shedding of vorticity reduces the reflection coefficient and effectively “opens” the exit. As
a resultPt → 4πM remains now finite forω→ 0. This is balanced byPi

H only, sincePf ,Pw andPo
H

still vanish.

Figure 3. h = 0.5, sum over amplitudes Am1 =/ = Am5 = 1, for frequencyω2 (0, 10]. PowersPt = black,Pf =
red, P i

H = green, Po
H = yellow, Pw = blue. See Table 1.

Table 2. m = 0, h = 0.0, M = 0.2 at ω = 1. See Figure 4.

μ 1 2 3 4

Pt +3.576185456995646 +0.534981991515257 +0.215233977630079 +0.059890681780837PP +3.576185456995588 +0.534981991515217 +0.215233977630038 +0.059890681780802
Pf +1.723284029432968 +0.118755082602218 +0.065292372266931 +0.045514909392450
P i

H +0.563373304414484 +0.285622492444845 +0.291053617393213 +0.248217438274667
Po

H +0.372358765156304 +0.188780756479334 +0.192370431324303 +0.164058073185194
Pw +0.917169357991832 �0.058176340011180 �0.333482443354409 �0.397899739071509

Table 1. h = 0.5, sum over amplitudes Am1 = / = Am5 = 1.
PP ¼ Pf þ P i

H þ Po
H þ Pw . See Figure 3.

M = 0, m = 0, ω = 3 M = 0.5, m = 0, ω = 3 M = 0.5, m = 0, ω = 8 M = 0.5, m = 1, ω = 3

PtPP
+7.950756577684844
+7.950756577683573

+8.881798462480251
+8.881798462479171

+12.04433506608146
+12.04433487934420

+6.261453561753953
+6.261453561964006

Pf

P i
H

+7.950756577683573
+0.000000000000000

+6.911117043933849
+2.127020691414524

+7.912821216168379
+1.698062708322932

+3.604346605067720
+1.785364700094981

Po
H

Pw

+0.000000000000000
+0.000000000000000

+1.475884116866221
–1.632223389735423

+1.498003567612718
+0.935447387240170

+1.274305293191131
–0.402563036389825
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For other than the plane wave modes (the 2nd and 3rd columns of Figure 4), Pw may be negative
but (and this is more surprising) also Pt if ω is small enough. Apparently, the shed vortices produce
(low frequency and therefore long) sound waves that do not radiate away since the scattering duct
exit is a compact and therefore inefficient source. Instead, they propagate upstream into the duct on
the backward running cut-on plane wave mode, yielding a negative Pt.

Another phenomenon of interest is the important role played by the cut-off frequency of the
incident mode (i.e. where Vmμ = 0). Except for the plane wave (with cut-off frequency ω = 0), all
power contributions vanish there. Mathematically, this is mainly due to the vanishing of ~K�ðVmμÞ.

For high frequencies the sound waves become ray-like and the part of the field that interacts with
the edge becomes smaller and smaller. It is therefore no surprise that for ω → ∞ the power
contributions are dominated by PtxPf .

Figure 4. m = 0, h = 0.0,M = 0.0, 0.2, 0.5, 0.8, and incident modes μ = 1, 2, 3. Powers Pt = black, Pf = red, P i
H =

green, Po
H = yellow, Pw = blue, for frequency ω 2 (0, 10]. See Table 2.
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Table 3. m = 1, h = 0.5, M = 0.5, ω = 1.5. See Figure 5.

μ 1 2 3 4

Pt +1.941885698925230 �0.003965563040558 �0.047460548206990 �0.041399789727046PP +1.941885698928027 �0.003965563044226 �0.047460548208855 �0.041399789728307
Pf +0.610604821641485 +0.037775452326324 +0.021183079414968 +0.014612502774287
P i

H +0.540301406674775 +0.173641314199742 +0.115511672314417 +0.082633275388866
Po

H +0.269075913121263 +0.086475242515879 +0.057526055494567 +0.041152260117738
Pw +0.521903557490504 �0.301857572086170 �0.241681355432807 �0.179797828009197

Figure 5. m = 1, h = 0.5,M = 0, 0.2, 0.5, 0.8, and incident modes μ = 1, 2, 3. PowersPt = black,Pf = red,P i
H =

green, Po
H = yellow, Pw = blue, for frequency ω 2 (0, 10]. See Table 3.
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Table 4. m = 20, h = 0.0, M = 0.2, ω = 5 (top), =25 (bottom), incident modes μ = 1, 2, 3, 6. See Figure 6.

μ 1 2 3 6

Pt +1.625566427644335 +0.472163008825096 +0.290415752254500 +0.120477585028266PP +1.625566427644079 +0.472163008825004 +0.290415752254433 +0.120477585028224
Pf +8.6901617649e�21 +2.4680297608e�21 +1.5813419842e�21 +8.1208181997e�22
P i

H +0.446397934256077 +0.161450255619367 +0.117437082035453 +0.073616621554546
Po

H +0.440330647332084 +0.159255879369784 +0.115840917677271 +0.072616049797665
Pw +0.738837846055918 +0.151456873835853 +0.057137752541709 �0.025755086323987

μ 1 2 3 6

Pt +1.661575103643486 +0.189417602093594 +0.088705444382308 +0.054465324851519PP +1.661575103642349 +0.189417602093297 +0.088705444382049 +0.054465324851371
Pf +1.490131664087533 +0.153596746287418 +0.056668025740713 +0.022060513522550
P i

H +0.042193832300105 +0.009925108755137 +0.009025089168765 +0.009627522115405
Po

H +0.041565199911696 +0.009777237739829 +0.008890627256905 +0.009484084748094
Pw +0.087684407343015 +0.016118509310913 +0.014121702215666 +0.013293204465322

Figure 6. m = 20, h = 0.0,M = 0.2, incident modes μ = 1…6. For comparison 3 modes atM = 0.0. PowersPt =
black, Pf = red, P i

H = green, Po
H = yellow, Pw = blue, for frequency ω 2 (0, 25]. P i

H and Po
H are practically

equal and almost non-distinguishable. See Table 4.
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In Table 3 and Figure 5 we present a series of configurations withm = 1, incident radial modes μ =
1, = 2, = 3, h = 0.5, and M = 0.0, = 0.2, = 0.5, = 0.8. Again for all incident modes except the first
(mμ = 11), Pw is negative for low enough ω. An interesting feature is that forM = 0.5, μ = 3, there is
an interval in ω, where Pt < 0 and Pf > 0 and are both non-negligible. Apparently, the production of
sound by the mean flow through the wake (Pw is big negative) is strong enough for radiation of
sound upstream into the duct and to the far field.

The first mode is cut-off under (roughly) ω x 1, and in general (M = 0 or MP0.5) not much
energy is passing the exit. However, for small Mach numbers (like M = 0.2), a large amount of
acoustic energy in the duct is used for the vortex shedding, but without radiating to the far field. This
is different from the previous case of m = 0 (Figure 4), because now the production from the duct
field Pt is turned into both the hydrodynamic field inside Pi

H and outside Po
H the jet, and absorbed

by the Pw, instead of only the inside part Pi
H . Moreover, it happens only for small Mach numbers.

Finally, we consider also high m-number cases in Table 4 and Figure 6. The values chosen are
m = 20, h = 0.0, with M = 0.0 for μ = 1…3, and M = 0.2 for μ = 1…6. In all case the strong r20

behavior of the field in the duct blocks the radiated field almost completely for (say) ω < 15. The
transmitted powerPt is then also vanishing forM = 0.0, but not at all forM = 0.2. Similar to the case
for m = 1 discussed above, the production from the duct field Pt is turned into the hydrodynamic
fields insidePi

H and outsidePo
H and absorbed by the wakePw. Due to the highm-value, the incident

field is concentrated to the duct wall region. This makes the role of the edge symmetric for inside and
outside, with the result that Pi

H and Po
H are practically equal and almost non-distinguishable in the

graphs.

Conclusions

Acoustic energy in mean flow is in general not conserved, as was shown conclusively by Myers.19

Energy may be produced by or disappear into vorticity or entropy. In particular in the case of
production there must be an exchange with the energy of the mean flow, because there is no other
source. One way to study this is by model problems that are simple enough for analytically exact
energy expressions and can be evaluated without approximation. The simplest (to our knowledge)
of such model problems is the convective Sommerfeld problem of plane waves diffracting at a half
plane with uniform mean flow.14 The absorption of energy by the wake of shed vortices has a
remarkable simple form and it is easy to show that it can be both positive and negative, depending on
Mach number and angle of incidence. However, the vortices are shed by incident plane waves with,
in principle, an infinite content of acoustic energy. So it is still hard to compare the amount of
dissipated energy with the incident energy, and in particular to conclude if and how much of the
energy must be produced by the mean flow.

Therefore it is interesting to revisit the next simplest model problem, namely of sound radiated
from a semi-infinite duct with uniform mean flow.16 Here the incident energy carried by the duct
modes is definitely finite, but otherwise the various contributions are very similar as in the con-
vective Sommerfeld problem.

Although the energy components (power transmitted through the duct Pt, far field Pf , hy-
drodynamic fields inside Pi

H and outside Po
H the vortex sheet, and the power absorbed by the wake

Pw) were presented (as part of the Wiener-Hopf solution for the acoustic field) long ago, it was, due
to not altogether straightforward numerical evaluation, never studied in any detail other than for a
single sample case (a “proof of concept”).

In the present paper we filled this lacuna and gave a survey of the various energy components as
function of frequency and other problem parameters. The main conclusions are that (i) the global
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energy conservation Pt ¼ Pf þ Pi
H þ Po

H þ Pw is recovered in all cases leading to the conclusion
that the formulas are correct; (ii) for high frequencies the energy bookkeeping is dominated by the
transmitted power Pt and the radiated power Pf ; (iii) for lower frequencies there is a strong in-
teraction between all contributions often leading to negative Pw (energy produced by the wake) and
sometimes a negative Pt (so much energy is produced that more propagates back into the duct than
was used for its creation).
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Notes

* The usual complex representation for the field variables is assumed.
# In words: C� denotes the lower complex half plane extended with the positive real axis, and Cþ denotes the
upper complex half plane extended with the negative real axis.
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Appendix

Two ways to apply the Prandtl-Glauert/Lorentz transformation

From a given no-flow solution ψ, we may obtain a solution with flow35 by means of the Prandtl-
Glauert (or Lorentz) transformation, which amounts toω = βκ, x = βX and an exponential factor. This
may be done either on the potential, or on the pressure, since both satisfy the convectedwave equation.
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The results are, however, not equivalent. The two approaches are pictured in the following diagram.

If we transform the continuous potential ψ, equation (29), we obtain a continuous potential fc,
but (due to the extra x-derivative) a pressure pc, singular at the edge. This solution constitutes no
vortex shedding, although this is often physically expected. However, the responsible processes are
not included in an inviscid linearized model.

If we, on the other hand, transform the pressure p = �iωψ, equation (30), we obtain a regular
pressure pk (satisfying the Kutta condition), but now the corresponding potential fk (to be found
from the momentum equation) must be discontinuous, in order to be bounded at infinity. This
discontinuity is a vortex sheet, the result of shedding of vorticity.

Note that we need to adjust the amplitude of ψ in order to obtain solutions fc and fk that match
the incident mode far upstream in the duct. If that is done correctly, fk � fc = fe is also a solution,
but such thatfe→ 0 for x→�∞. It is therefore an eigensolution, existing without excitation. Hence
we can consider for any constant γ valid other solutions

f ¼ fc þ γfe (31)

The term γfe represents the field of the shed vortices. In the present paper, γ is scaled such that
γ = 1 yields a fully regular solution. The question if and how much vorticity is shed is a physical one
and depends on Reynolds number, frequency and amplitude.14,25

Rienstra 429


	Acoustic energy balances for sound radiated from duct exit with mean flow
	Introduction
	Shôn Ffowcs Williams
	Time
	The model
	Non

	Solution
	The solution made explicit in various parts of the field

	Power integrals
	Numerical details on the integration
	A survey of the power contributions
	Conclusions
	Declaration of conflicting interests
	Funding
	ORCID iD
	Notes
	References
	Appendix
	Two ways to apply the Prandtl-Glauert/Lorentz transformation




