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Abstract

Exhaust pipes of furnaces and similar equipment (e.g. for gasifi-
cation) may get clogged up by deposition of sticky particles (ashes,
tar, soot) carried by the gas mixture. The possibility of detecting the
presence of such an obstruction by the reflection of an acoustic wave
1s investigated by a mathematical model. An important part of the
problem is the considerable temperature variation along the pipe. It
is argued that the high frequency components of the wave may be not
reliable because of refraction and spurious reflection effects caused by
this temperature gradient. Therefore, the reflection of low-frequency
(one mode propagating) waves is investigated. It appears that the
reflection becomes significant for a blockage area of more than 50%.

1. INTRODUCTION

Mathematics has, historically, its sources of inspiration in applica-
tions [1]. Indeed, unexpected questions from practice force one to go
off the beaten track. Also it is easier to portray an abstraction with
a concrete example at hand. Therefore, most mathematics is applied,
or at least applicable or emerging from applications. And if we give
up the mathematico-centric point of view there is even more applied
mathematics hidden in the various theoretical disciplines of science.

Most of this applied mathematics is now applied to a practical
problem as existing mathematical results, rather than mathematics
invented for the problem. Mathematics is fed back to the application.
However, there is more.
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Before mathematics may be applied, the problem must be mathe-
matized: formulated in equations and formula’s, to render it amenable
to formal manipulations. This is called mathematical modelling. If the
problem considered does not have an accepted model, the modelling
is evidently very important, and the mathematical discipline with this
crucial rdle of modelling is (now) called industrial mathematics [2].

If the problem has a longer history (like from fluid mechanics, acous-
tics, elasticity, etc.) there is usually a universally accepted general
model. Such a model is, however, often too general to be useful and
it pays to break it down a bit to a simplified model which contains
exactly the essential elements of the problem. In that case mathe-
matics serves also as a language in which we can express precisely the
various elements of the model and formulate exactly what we mean
with “essential elements”.

Finally the main role of mathematics comes into play, as the model
may be analysed by mathematical techniques, not rarely originating
from other scientific disciplines or problems, and thus realizing a fruit-
ful cross-fertilization [3].

This last type of mathematics finds its area of applications mainly
in the traditional engineering problems, which is why we call it En-
gineering Mathematics: applied mathematics where the problem is
central and the mathematics most important.

In the present paper we present a problem of this type. It is typ-
ically engineering: acoustic wave propagating and scattering in an
exhaust pipe with temperature gradients. The mathematics is, al-
though not very difficult, not trivial. Furthermore, advantageous for
the present introductory purposes, the problem consists of a number
of subproblems, each requiring a suitable mathematical technique that
heavily leans on the physics of the problem.

2. THE PROBLEM

The exhaust ducting of furnaces and gasification installations trans-
fers a mixture of sometimes highly pressurized gases from the high
temperature furnace chamber to an area of lower temperatures. Sticky
particles of ashes, tar, and soot are carried away with this gas mixture.
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During the design of a new type of industrial gasification furnace
doubts were raised as to what extent the liquid particles would be
deposited on the (colder) wall. If this really occurs, in spite of the
precautions taken, it is necessary to measure it during the process in
operation, because the contamination will accumulate at about the
same location in the pipe and the resulting constriction may finally
block the pipe.

Due to the very polluting and hostile conditions inside the pipe it
is very difficult to apply measuring devices directly. A possible alter-
native proposed is to measure the contamination acoustically. At a
distance sufficiently downstream in the pipe a transducer mounted in
the wall generates an acoustic wave, which is reflected by the possible
obstacle in the pipe. By measuring the reflected wave this obstacle
may be detected.

The present paper reports a theoretical investigation to quantify
this idea by a mathematical model, and to find out under which con-
ditions a sufficiently discriminative reflection is obtained, not afflicted
or spoiled by unwanted other reflections. In particular, the reflection
from the pipe-furnace connection, and possible reflections caused by
the temperature gradients may mask the reflections from the sought
constriction.

To distinguish between incident and reflected wave easily it is prob-
ably most convenient to deal with a wave of finite duration. However,
if the wave is very much pulse-like, the incident wave form is practi-
cally unknown, and the spectrum contains many high frequency com-
ponents which propagate down the duct mainly via spiralling paths
(modes), in contrast to the straight, axial path of the low frequency
components [4]. Apart from the longer travel time, these spiralling
modes are also very vulnerable to the temperature gradients. If the
pitch of the spiral is small enough, a temperature increase will cause
a reflection of the sound at a point in the duct determined only by an
unfortunate but otherwise fortuitous combination of problem param-
eters. A reflection which has nothing to do with any obstacle in the
duct!

For this reason it may be safer to restrict ourselves to the low
frequencies. This, however, has the disadvantage that the open end
generates a strong reflection and at the same time any obstacle a weak
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reflection, and that the front end of the reflected wave is not well de-
fined. On the other hand, the spatial distribution of the wave is very
well known, and measuring the pressure at one point is sufficient to
know the wave.

The model we will elaborate will contain as essential elements:

(i)  temperature variation, both axially and radially, in the duct
to include the wave form variations attended with it, and to
predict possible spurious reflections;

(ii)  reflection and scattering by an annular constriction;

(iii) reflection by the flanged open end connecting the pipe to the
large furnace chamber.

This rather ambitious object to incorporate the extra complexities
of a non-uniform medium and reflection effects needs, however, to be
accompanied by limitations in other respects to keep sight of the phys-
ically essential processes. Only after that we understand the problem
well we are ready to turn to a more complete model, using a numer-
ical approach. Therefore, the problem will be modelled to allow an
analytical treatment as much as is reasonable.

3. THE MODEL

3.1. Differential equations

As a fluid mechanical phenomenon, sound has to satisfy the con-
servation laws of fluid motion. Introduction of the usual acoustical
approximations then will yield a version of the wave equation per-
taining to the present problem. For a simple and uniform, quiescent
medium the equation for acoustic perturbations is just the standard
wave equation, cited in many textbooks [4,5]. For the present con-
figuration, however, with a varying temperature the result is different
and not entirely straightforward. It is therefore instructive to derive
the equations in detail and see which assumptions are underlying the
model.

e e
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In tensor notation we have [4,5,6]:
the equation of mass conservation

8
5P TV () =0, (3.1)

the equation of momentum conservation

gg(pv) +V - (=P+pvv)="1, (3.2)
and the equation of energy conservation
9 1,2 1.2
5;(Pe+ 300 + V- (pev + JpvPv) =
V.(v:P)-V.q+f-v, (3.3)

where ¢ is the time, p is the density, v is the velocity, P is the stress
tensor, f is an external force (like gravity), € is the internal energy,
and’ q is the heat flux due to heat conduction. The stress tensor is
split up into a normal stress and a shear stress component

P=—pI+r (3.4)

where p is the hydrostatic pressure, T the viscous stress tensor and I
denotes the identity tensor with elements ij.

The second law of thermodynamics for reversible processes relates
for a fluid element the internal energy change de, thermodynamic pres-

sure pgp, and volume change dp~! to temperature T and entropy change
ds

Tds=de+ppdp™t. (3.5)

Stokes’ hypothesis is that the fluid is locally in thermodynamic equi-
librium so that thermodynamic pressure and hydrostatic pressure are

equivalent (pgn, = p), and p, p and s are related via a single constitutive
equation of state
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p=1p(p,s) . (3.6)

If we neglect for the acoustic perturbations viscous dissipation (~
7) and heat transfer (~ q) then equations (3.2) and (3.3) may be
simplified. Equation (3.3) becomes

D
Ppi€ = —pV - v (3.7)

with convective derivative

d
‘]2———+V-V. (3.8)

Dt dt
It is important to note that since the convective derivative just de-

scribes temporal variations of a fluid element travelling with the fluid
flow, equation (3.5) is only to be interpreted as

D D D _,
Tms— me-{— PP (3.9)

which reduces, with (3.7) and (3.1), to the equation of isentropy along
a streamline, Ds/Dt = 0. All in all, we have now

D

BiP eV V=0 (3.10)
D

%3 =0. (3.12)

Equation (3.6) with (3.12) can be written out as

D, el

5P =25 (3.13)
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where ¢* = (9p/dp), is the square of the local sound speed. For an
ideal gas is

p=pRT (3.14)

(R the gas constant) and € only dependent on T, so that the specific
heat capacities (for constant volume and pressure) are given by

ey =de/dT, ¢,=R+ec,

while

dp dp~?
ds = ¢,— + c,——.
p P

As a result is
¢ =p/p =~vRT (3.15)

where v = ¢,/¢,. So in general ¢ is a function of the temperature alone.
In the present problem experiments have shown that the medium be-
haves like an ideal gas with constant specific heat capacities. This
implies that ¢? varies linearly with 7.

If we write the variables as a mean stationary component plus an
acoustic perturbation

p:p0+p’> P=P0+P'a V=v0+vl’

we can linearize the equations. Furthermore, we ignore the mean
flow vo. It is, however, not immediately clear if this is an acceptable
simplification, because the mean flow, although much slower than the
sound speed c, is not necessarily much slower than the acoustic particle
velocity v'. In fact, both are of the order of a few meters per second.

The reason why we indeed can ignore vq is because the (small) mean
flow only affects the sound field if vorticity is injected from the wall
by separation at an edge. In that case the coupling with the vorticity
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may result in either a source or a sink of acoustic energy. This source
or sink is, however, only of importance if the Strouhal number wb/vy,
based on circular frequency w and radius of curvature b of the edge,
is of order 1 ([7]). In the present problem we expect no appreciable
separation at the duct inlet, and as far as separation occurs at the
obstacle, a typical Strouhal number very much larger than 1.

As a result, if we ignore vy and assume the external force to be
stationary with Vpy, = f, we obtain

1 Rk
pociV - (p0 vp') - 5P =0, (3.16)
9]
pog;V' +Vp =0, (3.17)

with ¢ = yRTy = vpo /po. Note that, other than in the constant- cg
case, the equatlons would have been different if written in p/, since

Py = cg(pt +V'+ Vpo) (eq. (3.13)).

Since gravity will be negligible here, we have p, = constant, and
(3.16) can be simplified further. Moreover, since we will con81der the
behaviour of a single frequency wave it is convenient to introduce

P'(x,t) = Re (p(x)e™?)
v/(x,t) = Re (v(x) i)

with circular frequency w, and p(x) and v(x) complex functions sat-
isfying

.
V. (k2 Vp) +p=0 (3.18)
wpev+Vp=0 (3.19)

and k(x) = w/co(x). The equations (3.18) and (3.19) will be the basis
of the analysis to follow.
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3.2. Geometry

We will consider a cylindrical hard-walled pipe, in cylindrical coor-
dinates (z,7,0) given by r = a (a ~ 0.75 m) (Figure 1). Atr =«
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Figure 1. Model geometry

the normal velocity vanishes, (v -n) ~ 9p/dr = 0. At z = 0 a source
generates a sound field of circular frequency w (w ~ 2000/s). The
frequency is assumed to be so low that only the plane wave is propa-
gating, and no details of the source are to be known. (This requires
typically a wavelength larger than a duct diameter.) The part of the
pipe ¢ < 0 is irrelevant. At @ = L (L ~ 10 m) the pipe is con-
nected via a flanged opening to the half space > L. The sound
speed variation of the mean flow is assumed to be radially symmetric:
co = co(z,7), k = k(z,r), and constant in z > L. Also for the scatter-
ing obstacle there is no need to unnecessarily complicate the problem,
and we assume an annular hard walled iris at £ = D between r = h
and r = a.

One observation is important and will be utilized in the analy-
sis: although the variation in r of the temperature is rather steep
(from 500 K at the wall to 1000 — 2000 K at the center) and can-
not be ignored or otherwise simplified, the variation in z-direction is
relatively smooth. It appears that the ratio between a typical wave-
length A and the typical length (L) associated to substantial varia-
tions in k or cp is small. This parameter, which we will denote by
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e = AL (e ~ 0.1 — 0.2), suggests an approach of solution where
locally the sound speed is constant in x and the field can be described
by a modal expansion. On the larger scale this is to be corrected by
slowly varying modal amplitudes and wave numbers.

Where it facilitates the analysis, we will make this slow variation
explicit by writing k = k(ez, r) without using any special notation.

4. SOLUTION

4.1. Modal expansion

When ¢, is independent of z, equation (3.18) is separable in the
cylindrical coordinates (z,r,6). That means that there exist solutions
p(z,r,0) = F(z) G(r) H(9), satisfying a uniform boundary condition
at the coordinate surface r = a. These solutions are called modes
[4,5]. Mathematically, these modes are interesting because they form
a complete basis by which any other solution can be represented by
a so-called modal expansion. Physically, these modes are interesting
because the usually complicated behaviour of a general field is easier
understood via the simpler properties of its modal elements.

If ¢y is constant the modes of a hardwalled infinite duct are the
well-known products of Bessel function and exponential functions

0E,(2,7,0) = Jon(myr) eFbmsz=imt (4.1)

where J,,, is the m-th order ordinary Bessel function of the 1st kind
[3], @mua = j;,, is the p-th nonnegative nontrivial zero of JL,, kp,, =
/k? — aZ,, is the axial wave number with Re (k,.,) > 0, Im (kp,) <
O,p=1,2,... ,m=0,£1,£2,... .

Since @, grows without limit both for increasing p and increasing
Im|, there are only a finite number of real km,. The rest is purely
imaginary. At the right side of a source the df,, modes are generated,
of which the ones with real k,,, are propagating (cut on), the other
ones with imaginary k., are exponentially decaying (cut off). At the
left side of a source the same is true for Aoy

In the complex plane, the axial wave numbers are typically located
as given in Figure 2. A finite number is cut on, between —k on k, and
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Figure 2. Axial wave numbers.

an infinite number is cut off, along the imaginary axis. It is important
to note that if we take k (i.e., w) small enough, there is only one (two if
we count left- and right-running separately) mode propagating. This
is just what we want in the present problem where we don’t want to
know details of the source: the other possibly generated modes are
exponentially decaying and quickly negligible.

A general solution may be built from the modes d% myu @S the sum
(with amplitudes to be determined)

p(z,r,0) }: Z (Amud}, + Bm,ud;,,) . (4.2)

m=—co u=l

Obviously, at the right side of any source or scattering object we have
only right-running waves (Bm, = 0), and at the left side only left-
running waves (A, = 0). Furthermore, if the field is radially sym-
metric the double series simplifies to a single series for m = 0 only.

In the case of a soundspeed depending on r (but not on z or 0)
the above theory is qualitatively the same. Only the Bessel function
becomes now a slightly more general function Ymu(r), defined by the
Sturm-Liouville type eigenvalue problem [3]
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Lm(z,b;'y)zk;g;(?%g; )+ (k2 - 2_%>¢:0 (4.3)
[%(0)| < oo, O¢(a)/Or =0 (4.4)

where k,,,, = v and ¥, = 9. According to the standard theory, the
eigenvalues 42 form a real sequence, monotonically tending to — —oo0.
The eigenfunctions 1, form a basis orthogonal to the inner product

a

(¢mya "l)mu) = / wmuwmu Tk—Z dr . (45)

0

Ymu has exactly p — 1 zeros on (0, a). By integrating (4.3) we find for
_the 1st eigenvalue

J (1= m?[kr?) v gy dr
[1]

[ boark-2dr
0

A/ml -

Since ¥y, has no zeros, 74, > 0, whereas 42, for m # 0 is only positive
if k is large enough compared to m.

4.2. Slowly varying amplitude and wave number

In the present problem we cannot have a solution built up from
modes because the sound speed cq varies in z. However, we can bor-
row the idea of modes. Since ¢y varies relatively slowly in z the solu-
tion is locally representable by an approximate modal expansion. For
suitably defined modes such a modal representation then remains the
same for all z; only modal amplitude, shape and wave number vary
slowly with z [8,9].

Since we are primarily interested in the symmetric problem, we con-
sider from here on only m = 0, and do not mention the m-dependence.

For the sake of demonstration it is necessary to make the “slow vari-
ation” explicit, and we introduce
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X =ex (4.6)
where k = k(X,r), co = ¢o(X,7), po = po(X,1).
The slowly varying mode is then assumed to have the form
pla,r) = $(X,rie) exp(—i [ y(ete)de) . (4.7)
0
Since the z-derivatives are given by

pe = (=ivp + etpx) exp(—i [ 7de)

Pex = (=7 — ievxth — Ziembx + cxx) exp(~i [ yde)
equation (3.18) becomes
L{; ) = iek* ™ (v*h~%)x — 2k (pxk~?)x (4.8)

with ¥(r = 0) < oo, dY(r = a) /dr = 0, where we collected certain
groups for later convenience. Since ¢ is small we expand

(X, rie) = o(X,7) + ep1 (X, ) + O(e?)
X5 €) = %(X) + O(e?)

and 9o will be found to be a satisfactory approximation for 1. We
find to leading order

L(tho; 10) = 0 (4.9)

which indeed corresponds to the eigenvalue problem (4.3,4), with now
T as a parameter, and solutions 1, v, ( Im Y4 < 0). The problem
that remains is the way 1, varies with z (the amplitude of ¥, 1s still
undetermined, but should vary with z if the energy content of a single
mode is to remain the same). For this we consider the equation for
perturbation ty:
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L(%157%0) = k%5 (0§ k)x - (4.10)

We don’t have to solve for ;. It is sufficient to make use of the
self-adjointness properties of £, and integrate

a a

/ ¥1.£(o; 7o) rk™*dr =/ ¢o£(¢1;’7’o) rk~2dr

0 0

=1 / (yop2k™*)xrdr =0
0

a

Yo / Yirk™?dr = constant (4.11)
0

to find (4.11), the equation defining ¥, as a function of z. For conve-
nience we take here the constant equal to 1 or —7 and obtain

(/lib;n ¢u) = |7u1_1 6;1.1/ . (412)

A very important conclusion to be drawn from equation (4.11) or
(4.12) is that the theory is invalid and the mode becomes singular at
any position  where v, = 0. (This may occur for any eigenvalue other
than vo1.) This is to be interpreted as follows. If the soundspeed co
varies along the duct in such a way that v, vanishes at, say, z = z,
(which depends on both ¢y and frequency w), then the mode is locally
in resonance and changes from propagating (cut on) into decaying (cut
off). Since the energy is conserved the mode cannot just disappear
but reflects into its backrunning counterpart. These are the spurious
unwanted reflections mentioned in chapter 2. They may, as a result,
interfere with the reflections from the obstacle and confuse the signal.
Therefore, it is important to select a frequency without a resonance
for any mode (also m # 0) along the whole interval (0, L). In that case
we do not have to include this turning-point behaviour in the theory
[3].

Since, by assumption, there is no interaction between the modes




ACOUSTICAL DETECTION OF OBSTRUCTIONS IN A PIPE 165

along the smoothly varying interval 0 <z < D, we have the general
(approximate) solution

u=1

par) = 3 Au(Xor) exp(i [ 7u(e€)de)

z

+Babu(X,r) expli [ vu(e€) de) .

0

It is notationally convenient to introduce

Au(2) = Au exp(=i [ 7,(c€) d€)
o (4.13)
B,(2) = By exp(i [ 7(e€)de)

0

and similarly along D < & < L for right running modal amplitudes
C, and left running D,. Then we have

oo

plz,r) = Z: (Au(z) + Bu(z)) ¢u(X,r) for 0<z< D, (4.14)
plz,r) = i (Cu(z) + Dpu(2)) Yu(X,r) for D<z< L. (4.15)

A,(0) are given (the source); B,(0) are to be found; at z = D the
incident A,(D) and D, (D) are scattered by the annular obstacle into
B,.(D) and C,(D); at & = L the incident C,(L) are reflected into
D,(L). So to find B,(0) we have to combine reflection and transmis-
sion properties of the obstacle at z = D and the open end at z = L.

4.3. Scattering by annular obstacle
For a given set of modes incident from z < D (A-modes) and modes
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incident from z > D (D-modes) we want to know the reflected and
transmitted modes generated in ¢ < D (B-modes) and in z > D (C-
modes). If we identify with the modal amplitudes A,(D) the vector
A(D), and similarly B(D), C(D) and D(D), this relation is most
conveniently expressed by a reflection matrix R and a transmission
matrix 7.

B=RA+TD

(4.16)
C=TA+RD.

(Due to symmetry, reflection and transmission from the left is the
same as from the right.)

A natural method to determine R and T is the technique of mode
matching. By projecting the conditions of continuity along an inter-
face to a suitable modal basis (i.e., taking inner products) the problem
may be reduced to one of linear algebra. This method is well-known,
also for the present iris problem. However, a rather subtle detail in
the numerical realisation is only relatively recently well understood
[10]. To make this point clear, we will work right from the start with
truncated series, and assume that our solution will be represented by
N modes.

Since the problem is linear it is sufficient to determine the scattered

field of a single mode. So we have for n =1,..., N at
N
z=D— : Z 5“,,—{-}2#” Yy,
N
Pz = Y (6un — Run) Yuthu (4.17)
u=1

N
r=D+ :p =ZTpn¢u)
p=1

N
Pz = Z Tun Tu lbl-t ) (418)

p=1
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for matrices Ryxny and Tnxn. For the moment, the circular area
0 <r < hatz= D is considered as a duct of length = 0, with
a set of modes 1/3“ defined by exactly the same equation (4.3) as for
Yu(r, z = D) but now with boundary conditions (4.4) applied at r = h.
The corresponding inner product will be denoted by

h

[ ] = / Yuthyr k(r, D)2 dr ~ &, . (4.19)
0

We have now in the iris a representation by Q modes,

Q .
=D : ip,=Y Upmtppon 0<r<h,

p=1

ip. =0 on h<r<a (4.20)

where we introduced an auxiliary matrix Ugxn.

It is reasonable to take in the iris the number of modes, @, smaller
than N, the number in the full duct. Since the number of zeros of the
p-th mode is u — 1, the typical radial wavelength of ¢, is (z — 1)/2a
and of ¢, (u— 1)/2h (see Figure 3).

So a balance between representation accuracies in the iris and the full
duct requires about the same smallest wave lengths, or

Q = [Nh/a] . (4.21)

Indeed, this choice yields the fastest convergence for N — oo to the
physical solution we are interested in. As an example, this behaviour
is illustrated in Figure 4.

In addition, it should be noted, that if we take N/Q very much
different from a/h, we may converge to another solution. This is
not an artefact of the method. The problem stated has indeed a
non-unique solution. The additional condition necessary to select the
correct solution is the so-called edge condition [10]: the integrated
energy of the field in a neighbourhood of the edge » = A must be
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T = a
r =nh
7‘:@ ———————————————————————————

Figure 3. Mode matching through iris.

finite (no source hidden in the edge). Therefore, we may conclude
that for the edge condition we should take N /@ not too far from a/h;
for reasons of efficiency it is best to take N /@ near a/h as close as
possible (eq. (4.21)).

Since p, is continuous along the full interval 0 < r < ¢ (p- =0
on both sides of the obstacle along A < r < a), we have immediately
from (4.17) and (4.18) that

6/1:/ - Ruu = Tuu (422)

or in matrix notation Inyxy — Byxn = Tvxn. Using this in the con-
dition of p continuous along 0 < r < A we find

N N
Z 5”"¢”=Z Tonthy for 0<r<h.

v=1 vzl

Multiply left- and right-hand side with zﬁ#r /k? and integrate, to obtain

N

[Bosr ¥n) = 3 (s 5] Tom -

v=1




ACOUSTICAL DETECTION OF OBSTRUCTIONS IN A PIPE 169

aN)

]

-~

Pl B
z
}
A\

«

~J

[o)]
III:IIII

®

~J

bk
1

h7a = 8.5

(o]
N
N
2]
o 0 4
‘—\
[\]
|-.\
N
}..\
D
%Y
oy

Figure 4. Re (T1;) depending on N for various N/Q rates.

If we do this for u = 1,.

., & then we have for the auxiliary matrix
Sqgxn with elements S,,,,, = [, ¥

]
Soxn = Soxn Tnxn - (4.23)
(Note that this implies that Ty« has at least Q eigenvalues equal to

1.) Finally, from equality of p, in (4.18) and (4.20) we have

N Q R
Z Tun'Yu";bv:Z Upmtpyon 0<r < h

v=1 v=1

=0 on h<r<a.

Multiply left- and right-hand side with ¢, #/k? and integrate, to obtain

Q

T;m'Yu(’Qbm ¢u) = Z [¢ua 1/311] U

v=1
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For the auxiliary matrix Myygo with elements

Muv = ['ﬁbu)z)&u] /7ﬂ(¢ﬂ7 ¢#)

we have then

Tnxn = Mnxq Ugxn - (4.24)
Combining (4.23) with (4.24) and eliminating U gives the final result

Tnyny = Myxq(Soxy Mnxo)™ Soxn - (4.25)

4.4. Reflection at open end

The reflection of a sound field in a semi-infinite pipe at a flanged
open end is (at least for the uniform sound speed as we assumed here
in ¢ > L) classic and goes back to Rayleigh [4,5].

As in the previous chapter the reflection of incident modes C(L)
into backwards running modes D(L) is most conveniently expressed
by an end reflection matrix E as

D=EC. (4.26)

This matrix F is found as follows.

Using the free field Green’s function and its image in the surface
¢ = L we can express the field p in # > L in terms of a normal velocity
distribution at the pipe end cross section. For the field just in the pipe
opening this Rayleigh integral becomes

2r a

1 ! e_ikoa ! ' !
PLir) =~ / / pa(L,r') S r'dr'do (4.27)
0 0

where ko = k(z > L,r) (constant) and 0% = r2 + 72 — 2rr' cos(§ — 6").
Since at z = L 1, is now just a multiple of a Besselfunction (equation
(4.1) with normalization (4.12)) we may write
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(L) = 3 (CuL) + Dul(D)) bulLor) = 3 g Jolcour),  (4.28)

p=1 p=1
qu = (Cu(L) + Du(L)) 1y, ny = \/iko/a Jﬂ(j(,)y) kg — atz)plllz ;

and similarly

pz(L,7) = —2 i vy Jo(aopr) , (4.29)

vu = &(Cu(L) = Du(L)) Yuny -

Substitute (4.28) and (4.29) into (4.27), and introduce Sonine’s inte-
gral

—ikoo s %
I G (4.30)
o a J w(z)

w(z) = y/(koa)? — 22 with Im (w) <0,
and Gegenbauer’s addition theorem

Jo(zola)= 3 &m0 I (ar/a) Tu(ar'fa) (4.31)

m=—co

so that the r'- and @’-integrals can be evaluated. We arrive at the
equation

: qu Jo(cour) = —i U Jo(Jou) / z;‘(fzgzé/za_)__j‘éz,(;) dz . (4.32)

Multiply left- and right-hand side with Jo(co,7)r and integrate over
0 < r < a (note orthogonality). Substitute for g, and v, the original
C, and D,. Then we obtain finally
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CulL) + DulL) = 3 Z,(CulL) - Do(L) (433)
with
2 =2, T ih) T 2 (=) W

Y nudolib) | w(z) (2 - 2 (2 — 2

In matrix notation this is C+D = Z(C—D), or D = (Z + 1)1 (Z —
I) C. Hence, the reflection matrix is

E=Z+1)(Z-1). (4.34)

(of course, finally to be truncated to N x N ).

Finally, we include an additional reflection matrix to matrix E to
allow for a possible discontinuous temperature across z = L. The
proper transition conditions used are continuity of pressure ([p] = 0)
and momentum ([k~? p,] = 0). For the present purposes this is a mi-
nor detail, and will not be further worked out here.

4.5. Gathering the pieces

Now that we have prepared the building blocks of our complete
solution ((i) propagation in the smooth parts of the duct; (ii) scat-
tering by the annular obstacle; (iii) reflection by the open end) it is
relatively straightforward to assemble them to one coupled system of
reflecting and transmitting acoustical elements. The coupling becomes
especially clear if we retain the matrix notation already introduced,
and present the solution as a modal amplitude vector B(0) for given
source A(0).

To describe the modal phase shift from z = 0 to D and from D to
L we introduce the diagonal matrices

F with elements F),, = exp(—i

’Yu(f) df)

\b

°. (4.35)
G with elements G, = exp(—i / Yu(€) dE) .
D
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Using (4.26) and (4.16) we have now immediately
D(D) =GD(L) =GEC(L) = GEGC(D)
= GEGT A(D)+ GEGRD(D)
and so
D(D)= (I - GEGR)™ GEGT A(D)=HA(D) . (4.36)
Finally, the solution we were looking for is
B(0) = FB(D)= FRA(D)+ FTD(D)
=F(R+TH) A(D)
B(0)=F(R+TH)F A(0) . (4.37)
Note that although the exponential decay of the cut-off modes

would make it possible to consider only one mode in [0, D], this is
not the case along [D, L] because this interval may be relatively short.

5. RESULTS

5.1. Introduction

Any sufficiently complex mathematical model of a serious engi-
neering problem has to be implemented, eventually, as a computer
program. Of course, trends, simplified cases, the behaviour near sin-
gularities in parameter and variable space, and the character of single
isolated effects should be understood analytically as much as possible.
But the interaction of various equally important components and the
role of more general configurations and more realistic geometries can
only be studied by numerical simulation.

The solution of the present problem is split up in components for



174 S. W. RIENSTRA

which the numerical solution is, although not straightforward, stan-
dard in the sense that we can utilize the world-wide available well-
tested robust public-domain software [11], or routines of commercial
libraries of numerical software like NAG [12] or IMSL [13].

The first important problem to be solved numerically is the Sturm-
Liouville eigenvalue problem (4.3) and (4.4). In particular the eigen-
values are essential, because we want to design the configuration such
that for m = 0 only the first eigenvalue ~o; is real, and that for Im| > 1
all eigenvalues are imaginary.

If the temperature (and therefore k(z,r)) is independent of r, the
solution is just the Bessel function of the first kind Jm, so this can
serve as a check for the numerics. The routine we used is the Fortran
translation TSTURM by B.S. Garbow (Argonne National Laboratory)
of the Algol procedure Tristurm by Peters and Wilkinson ([14]). De-
tails of the application like accuracy and prediction of the number
of eigenvalues are necessary but will not be considered here because
these evidently depend on the routine chosen.

i
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Figure 5. Temperature profile.
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For the open end reflection we need to evaluate the integral in each
matrix Z,, element (eq. (4.33)). The convergence rate at infinity of
the integrand is rather poor, especially for increasing p and v, and we
rewrote the integral by using complex contour deformation into a set
of numerically more pleasant integrals. One Bessel function is rewrit-
ten as a sum of Hankel functions: J§ = %Hél)' + %ng),, the first of
which converges in the upper complex half plane, and the other in the
lower half plane. The integral may subsequently be split up in two of
which the contours can be deformed to the positive and to the nega-
tive imaginary axis. After taking care of the branch cut of square root
w(z) and possible residues if p = v, we arrive at two integrals which
can be evaluated in a standard way (we used Romberg integration).

The matrix and vector manipulations necessary for the scatter-

3 4]

7 275 H=z ]

i s
2+ -1+

i Re (7 (x)) ’ Im(y,(x))
i+ 108 Hz -2

7 Tt
8_ T : T : T } T : T “3_ T = T : T : T } ¥

%] 2 4 6 8 10 (%] 2 4 6 8 108

X X

Figure 6. First two modes for f =100 Hz and f = 275 H=z.

ing problem (eq. [4.22-25]) and the coupling of the various parts (eq.
[4.36,37]) are taken from the BLAS/LINPACK package written by
Dongarra et al. ([15]).

5.2. Example
The realistic example we have considered is a duct of length L =
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10 m, radius @ = 0.75 m, and a temperature profile as given in Fig-
ure 5. The temperature varies along the centerline from 2000 K to
1350 K, and remains along the wall at 500 K, such that the cross sec-
tional average is constant 1250 K. (This is also the temperature in the
furnace chamber z > L).

We scanned the modal z-variation of two frequencies: f = 100 Hz
and f =275 Hz. One much lower and the other just low enough for
the first mode to be the only one cut-on (Figure 6). Note that the
first few modes appear to vary only very slightly in z. This is caused
by the temperature varying such that the average 1s constant. As a
result only a few positions in z are necessary.

The most important question for the engineer involved with the
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Figure 7. Relative transmitted power A for D =8.5, 9, 9.5 m at
f =100, 175, 275 Hz.

contamination problem is of course how much of a constriction of the
pipe can be observed from the acoustical reflection. To this end we var-
led the iris radius A for three frequencies (Figure 7), and the frequency
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Figure 8. Relative transmitted power A for D = 8.5, 9, 9.5 m at
h/a =04, 0.5, 0.6.

[ for three radii & (Figure 8), at three positions D. We compared the
acoustic transmitted power P ~ |A(0)]> — | B(0)|? [4,5] with (P) and
without (Po) the obstacle. This is commonly expressed in decibels as
A =10 log,o(Po/P)dB. If the reflected signal is strong enough, P
becomes small, and for a difference larger than, say, A = 3dB we can
safely say that the obstacle can be detected.

We see that in general a high frequency is favourable for the obsta-
cle to be visible. There is, however, always the inopportune possibility
of resonance and the excitation of a standing wave, increasing the net
transmission so much that with obstacle more energy is transmitted
than without (A < 0).

This effect may be considered as a typical example of an interac-
tion effect, adverse to intuition, and only found (usually) by numerical
experiments.

Of course, what we now should do is to further investigate the in-
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fluence of position D, temperature profile, and consider in detail the
behaviour of the reflection matrices R and E, and the sound pressure
profile in r. However, this is a bit outside the scope of the present
introductory purposes.

We end our discussion of results here with the remark that it is very
important for the applied mathematician to understand the physics of
his problem well. Apart from the selection of the model and the nu-
merical methods, this is vital for the interpretation and feed back to
the model of the final results.

6. CONCLUSIONS

As an example of a mathematical engineering problem we have
considered the acoustical detection of constrictions in a pipe due to
contamination by liquid particles of ashes in gasified coal. By applying
a semi-analytical solution based on slowly varying modes one can se-
lect an acoustic frequency such that there are guaranteed no spurious
reflections due to the temperature gradients. Although for relatively
low frequencies small obstacles are not visible, a constriction of say
50% is well visible for high enough frequencies. For some frequencies
the constriction appeared, in some cases, to reduce the reflection and
spoil the detection. It is clear that for any diagnosis a complete fre-
quency range is to be taken into consideration.
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