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Sound Transmission
in a Slowly Varying Lined Flow Duct

S.W. Rienstra

Wiskundige Dienstverlening, Katholieke Universiteit
Toernooiveld, 6525 ED Nijmegen, The Netherlands

Sound transmission through straight circular ducts with a uniform (inviscid)
mean flow and a constant acoustic lining (impedance wall) is classically
described by a modal expansion. A natural extension for ducts with, in axial
direction, slowly varying properties (like diameter, wall impedance, and mean
flow) is a multiple-scales solution. It is shown in the present paper that a con-
sistent approximation of boundary condition and mean flow allows the
multiple-scales problem to have an exact solution. Turning points and other
singularities of this solution are discussed.

1. INTRODUCTION

The theory of sound propagation in straight ducts with (constant) impedance
type boundary conditions and a homogeneous (stationary) medium is classical
and well-established (MORSE and INGARD [7]; PIERCE [14]). Per frequency w,
the sound field, satisfying Helmholtz’ equation (V2 +w?)$p=0, may be built up
by superposition of eigensolutions or modes. These are certain shape-
preserving fundamental solutions. The existence of these modes is a conse-
quence of the relatively simple geometry, allowing separation of variables. For
cylindrical ducts, the configuration we will consider here further, with associ-
ated cylindrical coordinate system (x,r,0) the modes are given, in the usual
complex  notation, by  exponentials and  Bessel  functions:
Jm(ar)exp(iwt —im@—ikx). The eigenvalue m, or circumferential wave number,
is, due to the periodicity in 6, an integer; the eigenvalue a, or radial wave
number, is determined by the appropriate boundary condition at the duct wall
r =1, while the axial wave number k is related to a and w via a dispersion
relation.

If we introduce a mean flow in the duct (motivated by aircraft turbofan
engine applications; NAYFEH et al. [10]), the acoustic problem becomes rapidly
much more difficult. Spatially varying mean flow velocities produce non-
constant coefficients of the acoustic equations, which usually spoils the possi-
bility of a modal expansion. Perhaps the simplest non-trivial mean flow is a
uniform flow, in the limit of vanishing viscosity. Then modal solutions are pos-
sible, of a form rather similar to the one without flow. A most important prob-
lem here is the way the sound field is transmitted through the vanishing mean
flow boundary layer at the wall, which thus effectively modifies the impedance
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boundary condition at r =1 into an equivalent boundary condition for r—1.
This modified boundary condition was first proposed by INGARD [5], and later
on proved by EVERSMAN and BECKEMEYER [2] and TESTER [17] to be indeed
the correct limit for a boundary layer which is much smaller than a typical
acoustic wave length.

In certain applications the geometry of a cylindrical duct is only an approxi-
mate model, and it is therefore of practical interest to consider sound transmis-
sion through ducts of varying cross section. In general, this problem is, again,
very difficult, and one usually resorts to numerical methods. However, quite
often, especially when the duct carries a mean flow, the diameter variations of
the duct are only gradual, thus introducing prospects of perturbation solutions.
Indeed, several authors have utilized the small parameter related to the slow
cross section variations (EISENBERG and Kao [1]; TaM [16]; HUERRE and
KARAMCHETI [4]; THOMPSON and SEN [18]). A particularly interesting and sys-
tematic approach is the method of multiple scales elaborated by Nayfeh and
co-workers, both for ducts without (NAYFEH and TELIONIS [12]) and with flow
(NAYFEH, TELIONIS and LEKOUDIS [13]; NAYFEH et al. [11]), and with hard and
impedance walls. The multiple-scales technique provides a very natural gen-
eralization of modal solutions since a mode of a constant duct is now assumed
to vary its shape according to the duct variations, in a way that amplitude and
wave numbers are slowly varying functions, rather than constants.

In the present study we will proceed along these lines, and present an expli-
cit multiple-scales solution of a problem, similar to the one considered previ-
ously by Nayfeh et al. We will consider a mode propagating in a slowly vary-
ing duct with impedance walls and containing almost uniform (inviscid, isen-
tropic, irrotational) mean flow with vanishing boundary layer.

A somewhat puzzling aspect of Nayfeh et al’s solutions was that without
flow the differential equation for the slowly varying amplitude could be solved
exactly, whereas with flow this was not the case. Also, in RIENSTRA [15] the
amplitude equation for a similar problem of a duct with (slowly varying)
porous walls could be solved exactly. We will show that, at least in the present
type of problems, an exact solution appears to be the rule rather than an
exception, if the entire perturbation analysis is consistent at all levels. In the
problem under consideration, Nayfeh et al. used an ad hoc mean flow velocity
profile (quasi one dimensional with some assumed boundary layer) which is
not a solution of the mean flow equations, and, furthermore, in case of a van-
ishing boundary layer they used an incorrect effective boundary condition,
although at that time this was not known. MYERS [8] showed that INGARD’s
[5] effective boundary condition for an impedance wall with uniform mean
flow is to be modified significantly in case of non-uniform mean flow along
curved surfaces.

Both MYERS’ [8] boundary condition and a consistent approximation of the
mean flow will be seen to be essential for the explicit solution that will be
presented here.
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2. FORMULATION OF THE PROBLEM

We consider a cylindrical duct with slowly varying cross section. Inside this
duct we have a compressible inviscid isentropic irrotational mean flow with
harmonic perturbations. To the mean flow the duct is hard-walled, but for the
acoustic field the duct is lined with an impedance wall.

It is convenient to make dimensionless: spatial dimensions on a typical duct
radius R, densities on a reference value p,,, velocities on a reference sound
speed c.,, time on R, /c, pressure on p,c, and velocity potential on
RyCw.-

We then have in the cylindrical coordinates (x,r,#), with unit vectors e,, e,
and ey, the duct

r =R(X), X = ex, —oo<x<o0, 0<<0<27

where € is a small parameter, and R is by assumption only dependent on €
through ex. The fluid in the duct is described by (see, for example, PIERCE

[14]).

P+ V) =0

PV, +V-VV) + Vp' =0

' =p"

cr2 — dp'/dp' — pry-—l
(with boundary and initial conditions), where v’ is particle velocity, p’ is den-
sity, p’ is pressure, ¢’ is sound speed, and y is the specific heat ratio, a con-
stant. Since we assumed the flow to be irrotational, we may introduce a
potential ¢’, with v =V¢'.

This flow is split up into a stationary (mean) flow part, and an acoustic per-
turbation. This acoustic part varies harmonically in time with circular fre-
quency w, and with small amplitude to allow linearization. To avoid a compli-
cating coupling between the two small parameters (e and the acoustic ampli-

tude), we assume this acoustic part much smaller than any relevant power of e.
In the usual complex notation we write then

V=V +ve o =D+ pe', p/ =P + pe',
¢ =C+ e, ¢ =+ ¢e“.

Substitution and linearization yields:
mean flow field

vV(DV) =0

D(V-V)V + VP =0

yP = DY M
C? = yP/D = D!

V= v,
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acoustic field

iwp + V(D v+pV) =0

Dliwv+(V-Vv) + (vVV)] + p(V-V)V + Vp =

p=C% @
1 hasl
c = lz——p /D 2
v=Vo
For the mean flow the duct wall is solid, so the normal velocity vanishes
Vn =0 atr = R(X) 3)

where the outward directed normal vector at the wall is given by

1
n = (—eRye, +¢,)/(1+ER%).

For the acoustic part the duct wall is a locally reacting impedance wall with
complex impedance Z =Z(X) - slow variations of Z in x may be included -,
meaning that ar the wall, at a hypothetical point with zero mean flow,

p = Z(vn).

However, this is not the boundary condition needed here. Since we deal with a
fluid of vanishing viscosity, the boundary layer along the wall in which the
mean flow tends to zero is of vanishing thickness, and we cannot apply a
boundary condition at the wall. The required condition is for a point near the
wall but still (just) inside the mean flow. For arbitrary mean flow along a
(smoothly) curved wall it was given by MYERs [8], eq. 15):

io(vn) = [iwt+V-V—n@VV)(p/Z) atr = R(X) (@)

with the remark that for simplicity we will exclude here the case Z =0. More-
over, we will assume Z =O(1). The above equations and boundary conditions
are evidently still insufficient to define a unique solution, and we need addi-
tional conditicns for mean flow and sound field. Since we are studying axial
variations due to the geometry of the pipe, the natural choice is to con:ider a
mean flow, almost uniform, with axial variations only in X, and a sound field
consisting of a constant-duct mode perturbed by the X-variations. Further-
more, this choice indeed implies the absence of vorticity (apart from the vortex
sheet along the wall), allowing the introduction of a potential.

Before turning to the acoustic problem, we will derive in the next section the
solution of the mean flow problem as a series expansion in e. As noted before,
a consistent mean flow expansion is necessary to obtain the explicit multiple
scale solution of the acoustic problem.
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3. MEAN FLOW
Since we assumed a mean flow, nearly uniform, with axial variations in X, we
have

V = VO®(X,r;e) = U(X,r;ee, + V(X,r;ee,.
Integration of the momentum equation of (1) yields Bernoulli’s equation
%(U2+V2) + T—YTP/D = E, a constant. )
A useful relation, to be used later, for the cross-sectional mass flux is obtained
by application of Gauss’ divergence theorem to the mass equation of (1), with

a volume enclosed by the duct walls and two axial cross-sections (e.g., PIERCE
[14]). Since the normal velocity at the wall vanishes, we have

R(X)
2r [ D(X,r;U(X,r,rdr = nF, a constant (6)
0

Since the variations in x are through X only, we may assume the constants E
and F to be independent of . In addition, from the continuity equation of (1)
it follows that the small axial mass variations can only be balanced by small
radial variations, so ¥ =0(e), and hence

d(X,r;e) = € 10_1(X) + ¢®,(X,r) + O@F).
Therefore
UX,r;e) = Up(X) + 0(&), V(X,r;e) = eV (X,r) + O()
and so, with Bernoulli’s equation,
P(X,r;¢) = Po(X) + O(€), D(X,r;¢) = Do(X) + O(),
C(X,r;¢) = Co(X) + O(&).
With equations (5) and (6) it follows readily that
Uo(X) = F/Do(X)R*(X) ()
with D, given by

L(FIDoRY + YTIIDa“ =E @®)
which is to be solved numerically, per X. Of course,
1 i §
P0:7D5, Co=Dy? .

For ¥, we return to the continuity equation, which is to leading order
(DoUg)x + (rDoVy),/r = 0.

The boundary condition
—RxUy + ¥V, =0 atr = R(X)
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is already satisfied, through the application of (6) leading to (7). The (finite)
solution is then
Vi(X,r) = rUo(X)Rx(X)/R(X). (€)

The above solutions Uy, Py,D are recognized as the well-known one dimen-
sional gas flow equations (e.g., MEYER [6]). It should be stressed, however, that
the radial velocity component V', is essential for a consistent mean flow
description, and therefore necessary here.

4. THE ACOUSTIC FIELD
In this section we will derive the main result of the present paper: the explicit
multiple-scales solution for a mode-like wave described by equation (2) with

4).
Since we introduced a velocity potential, we can integrate the momentum
equation of (2). So we have

iwp + V-(DVeo+pV®) =0
iwp + VO-Ve + p/D =0 (10)
p= C?p.

(We will ignore from here on the uninteresting equation for c.) An unper-
turbed modal wave form would be a function of r multiplied by a complex
exponential in § and x. Then a mode-like wave is obtained by assuming the
amplitude and axial and radial wave numbers to be slowly varying, ie.
depending on X (NAYFEH et al. [12]). So we assume

X
o(x,1,05¢) = AX,r;e)exp(—imf—ie”" [u(Edé) (11)

p(x,r;0;€) = B(X,r;e)exp(—imf—ie! fu(&)d’g’).
Then the partial derivatives to x become formally (suppressing the exponent)
3, = —ip + €y, 0% = —p? — ieuy — iepdy + €0%:.
Substitution in (10), and collecting like powers of ¢ yield up to order €
i®B + Do(A,, +A,/r—p2A—m2A/r?)
+ {(UpB)x + (V1B), + ViB/r—i(uDo)xA —2ipDoAx] = 0

i@A + C3B/Dg + qUoAx+V 14,1 =0

where @=w—pUy. It is now convenient to eliminate B; the equation for A4 is
then (up to order )

DoR(A) = ied " V[(UgDowA?/C§)x + (rV1Dowd?/C}),/r + (uDoA?)x] (12)
where the operator £is defined by
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£=20% +9,/r + &)Z/C% —p2—m?/r2.
The boundary condition (4), up to order €, is now
(0, +ieuRy)A = [i& + e(Ugdx+ V13, —V1,)CFB/Z) atr = R(X)
which becomes, after eliminating B,
iwA,——&:zDoA/Z = ewpRyA + €A " [Ugdx+ V10, — V1, (—ioDoA?/Z). (13)
Now assume
AX,r;e) = Ag(X,r) + eA(X;r) + -+ -,

then £(4)=0, which is, up to a radial coordinate stretching, Bessel’s equation
in r, with X acting only as a parameter. The mode-like solution we are looking
for is then

Ao(X,r) = NXWpm(a(X)r)
where J,, is the m-th order Bessel function of the first kind (finite in r =0)
(WATSON [19]), the ‘eigenvalue’ a is a solution, continuous in X, of

i0at'y(@R)—& DoJm(@R)/Z = 0 (14)
and a and p are related by the dispersion relation

o + 1 =& /Ch

The amplitude function N(X) is determined from the condition that there
exists a solution 4 ;. This is not trivial since we assumed the solution to behave
in a certain way, namely, to depend on X rather than x. Now suppose that we
would proceed and solve the equation for 4, and subsequently find the neces-
sary form of N, then it would appear that we end up with similarly undeter-
mined functions in 4. So this approach looks rather inefficient. Indeed, it is
not necessary to work out the equations for 4, in detail. We only need a sol-
vability condition (NAYFEH [9]), sufficient to yield the required equation for N.
Since the operator rf is self-adjoint in r, we have

R
—iDg [ AofA1)rdr = —iDoR(A00,41 ~ 413, 40)r =k-
0

Further evaluation of this expression (using (13)) and the corresponding right-
hand side of (12) gives finally, after some calculus, the following equation

R
3‘% Do(u+oUqy/Ch) f Afrdr—iFoDyA%/RZw| = 0.
0

Use is made of equations (7) and (9), and the identities

R R
Of 85 /(X,r)dr = % 0/ AX,rdr—Ryf(X,R),

and
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Updy + V19, = along r = R(X).

d
Uoax
The above equation can be integrated immediately, with a constant of integra-
tion Nj. The integral of A}r, finally to be evaluated, is a well-known integral
of Bessel functions (WATSON [19] p. 135), with the result (using (14))

R
[ A3rdr = 5N, (@R)P[R —(m/af —(RDo&' /aZw))
0

After some further simplifications we thus obtain

N(X) = (15)
- n 172

No/J,(aR)DY? [%QRZU —(m/aR) —(Dowz/azo))?-]—iFw/RZw] g

with Q= w(1-U3/C3) + wU,y/C3,
so & = (w/Col—a*(1-U/C}).

An interesting special case is the hard-walled duct, where Z=oc0. In that case
aR is a constant >m(=m if m =0), and we can absorb some constant factors
of (15) into N to obtain

N(X) = No/DY?QV2R (Z=0). (16)

Expression (15) for N(X) is the principal result of the present paper. In the
next section we will discuss qualitatively some of the properties. In particular,
we will consider the singularity of the mode at points of a vanishing denomi-
nator of N.

5. DISCUSSION AND CONCLUSIONS

If the multiple-scales solution is valid, the mode-like wave behaves locally like
a mode of a straight duct. Rotating with angular velocity w/m, it propagates in
axial direction with or without attenuation (unattenuated or cut on: Imp=0;
attenuated or cut off: Imp+<0). The more interesting aspects here are, of
course, connected to the slow variations in X. These are mainly represented by
the amplitude function N and the phase function p.

When R and Z vary with X, the mode changes gradually, except at the
points where the denominator of N (eq. (15)) vanishes and the approximation
breaks down. These points are just found at the double eigenvalues, i.e., where
two eigenvalues p (or a) coalesce. These are given by equation (14) and its
partial derivative to p, which is just equivalent to the denominator of N.

Clearly, the approximation breaks down because the two coalescing modes
couple (the energy of the incident mode is distributed over the two) in a short
region. A local analysis is necessary to determine the resulting amplitudes N.
In general the two modes propagate in the same direction, but in some cases
the second mode is running backwards while at the same time the incident
mode becomes cut-off in such a way that beyond the point no energy is pro-
pagated. Points with this behaviour are usually called turning points (NAYFEH
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[9]), since the incident mode is totally reflected into the backward running
mode (we assume, of course, the absence of other interfering turning points).

Since it is sometimes instructive to illustrate this behaviour by a more glo-
bal, energy-like, quantity, we interrupt the discussion to introduce the acoustic
power & of a single (slowly varying) mode at a duct cross section. Following
GOLDSTEIN [3], we define the acoustic power at a surface S

?P:fl-nds
S

where I is the time-averaged acoustic intensity or energy flux, here given by
I = 3Re[(p/D+ VS VeXDVo+pVd)]

with * denoting the complex conjugate. Considering here for S a duct cross
section, we need the axial component of I, which is to leading order (see
expression (11))

X
I, = 30DoRe(@)| 4o I2exp2e™! [ Imp()dt) a7)

We will now consider a few examples of turning points in detail. Evidently
important is the case of a duct with hard walls (Z=o0), where a real Q tends
to zero to become pure imaginary (a is always real). At =0, N is singular
(eq. (16)), and the incident mode couples to a backwards running mode. For
real & we have

9 = T70| Ny 12(1—m?/a2R?),,(aR)?

whereas for pure imaginary
P=0

so the mode must reflect indeed. Note that this behaviour is irrespective of the
presence of mean flow. This is not the case in the next example. If Z is pure
imaginary (Z =iY) and U,=0 we have again a turning point at Q=p=0
(equation (15) with F =0). Using the fact that a remains real when p changes
from real into imaginary, we find for real u

P = ‘7Tw|N0|2
and for imaginary p
2=0

which is similar to the hard wall case. However, with flow (Uy+#0), we have
the interesting result that @=0 is not a turning point. Indeed, the mode
changes from cut-on (2 real) to cut-off (£ complex), but there is no reflection
possible now because the backward running mode becomes cut-on at another
point. Also from energy considerations there is no need for a reflection,
because the power remains non-zero for the cut-off mode: from equation (14)
we see that a cut-on mode with a, £, and p real cannot become cut-off (u
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complex) with a real; as a result Re 20, and so 940 (eq. (17)).

As a conclusion, we may summarize that the approximation breaks down at
the double eigenvalues when the mode couples with other modes. In particular,
if Z=o00, or Z=iY with Uy=0, the mode reflects at the double eigenvalue
2=0. If Z=iY and Uy#0,Q2=0 is not a double eigenvalue, and the mode
changes smoothly and without reflection from propagating to dissipating.
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