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Thin Layer Flow Along Arbitrary Curved Surfaces

To model the inertia and gravity driven stationary flow of a thin layer of water along a curved surface (for example,
in a washing bowl, a toilet, or other technical applications) the equations for free-surface potential flow (Laplace,
Bernoulli, b.c.) are rewritten in surface-bound, curvilinear orthogonal coordinates. Assuming a small parameter,
measuring the thin fluid layer, a systematic perturbation analysis is made, producing, to leading order, equations
similar to the eikonal and energy equation in ray theory. These hyperbolic equations can be integrated along stream-
lines, with explicit results for some geometries. In these equations the smoothing backreaction of the pressure is
decoupled, leading to the possibility of singular lines, being the envelope of crossing streamlines (caustics).

1. The model

Consider along a surface S(z,y,2) = 0, with gravity field —g€,, a thin layer of incompressible, inviscid,
irrotational, stationary flow (water), at constant atmospheric pressure at the free surface S*(z,y, z) = 0. Inside the
layer we have a potential ®, a pressure p, and a constant density p, satisfying

V2®(x,y,2) =0 (mass conservation) (1)
p/p+ 3|V®|?> + gz = constant along a streamline (Bernoulli) (2)
V®.VS=0 at S=0, and V®.VS*=0, p=constant at S* =0 (boundary conditions) (3)

2. Local Coordinates

Assume we can define a curvilinear orthogonal coordinate system (o, 7, v), given by z = z(o, 7,v), y = y(0, T, V),
z = z(o,7,v), and attached to the surface such that v = 0 corresponds to S = 0, where v > 0 is the wet side and
v = eH(o,7) is the free surface (g is small). For simplicity we will write ®(z,y,2) = ®(o,7,v). We utilize the
calculus of vectors and tensors in curvilinear orthogonal coordinates [1] and introduce
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And so we have for the Laplace equation and boundary conditions
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3. Perturbation Analysis

For small € we scale v = e7, and expand ®(o,7,7;¢) = Bo(0,7,7) + O(€), halo,T,en) = ha(o,7,0) + O(e),
and &,(0,7,en) = €4(0,7,0) + O(g), assuming that the surface is sufficiently smooth such that ko = O(1) and
%(é’a /ho) = O(1). We substitute this in the equations and boundary conditions, collect like powers of ¢, and
obtain that &, = ¢(o,7) is a function independent of 7, satisfying

1 (g_f)z + hiz (%)2 + 2gz(o, 7,0) = constant, (6)
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These two equations (6,7) are are very similar to the eikonal and energy equation of ray theory. Equation (6) is of
first order hyperbolic type, and may be solved by integration along characteristics (= streamlines). Define g, = a%tb,
qr = (%d). Then along the curve (o (t), 7(t)), parameterized by t, we have the system of ordinary differential equations
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with suitable initial conditions o(0) = 0%, 7(0) = °, 2¢(0) = 42, 2¢(0) = ¢2. Equation (7) is equivalent to
V.(HV¢) =0, so for any given ¢ the height H is found by application of Gauss’ theorem, leading to the relation:
H|V¢$|df = constant for any small distance d¢ between streamlines. The envelopes of the crossing streamlines
(caustics) are found by observing that neighbouring streamlines touch each other there [2]. If the streamlines are
parametrized by 8 (for example, the azimuthal angle of a point source) and formally given by ¥(o,t,0) = 0 and
T(r,t,0) =0, then we have the additional conditions {%(c,%(6),6) =0 and LT (r,1(6),6) = 0, leading to

Lo/Z¢ = To /T (12)

4. Applications

For really arbitrary surfaces the characteristic equations have to be solved numerically. Relatively simple
configurations (see the figures) allow also an analytical treatment. For a flat plane, inclined under an angle v, and
described by x = ocosy —vsiny, y =7, z = osin<y + v cos+y, we find the family of streamlines

c=0"+ ¢t - 1gt?sin~, =710+ ¢%t. (13)

For a point source at the origin, of strength ¢2 = @ sinf and ¢° = Q cosé, we have the parabola-shaped caustic

_ gsiny Q* _ 2
o= (g2sin27 T) (14)

_Similar results may be obtained for a flow inside an inclined cylinder, and inside a sphere (with solutions in terms of
elliptic integrals). It is instructive to investigate the pattern of crossing streamlines and to compare with experiments.
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