
Eindhoven, August 5, 2008

Tools for parameterized

boolean equation

systems

by

Simon Janssen

in partial fulfillment of the requirements for the degree of

Master of Science

in Computer Science and Engineering

Supervisor:
T.A.C Willemse, TU/e department of Mathematics and Computer Science
J.W. Wesselink, TU/e department of Mathematics and Computer Science

ii

Abstract

Boolean equation systems (BESs) are useful for verifying properties on transition systems. An
extension of BESs are the parameterized boolean equation systems (PBESs). A PBES extends
a normal BES with data, which increases the expressiveness of the equation system. A typical
use of a PBES is verifying a modal mu-calculus formula on a possibly infinite process. Solving a
PBES for the general case is undecidable, but when certain data sorts, like finite data sorts, are
used, a PBES can be solved. Sometimes a PBES holds too much data, i.e. not all data influences
the solution of a PBES. If this is the case the parameters containing this data can be removed.
It can also happen that only the solution of a certain predicate about the PBES is required. In
this case the PBES can sometimes also be reduced. This article discusses some ways to reduce
PBESs.

ii

iii

Acknowledgments

I would like to thank my supervisor Tim Willemese for his guidance and input throughout this
project, and for all the help to make this thesis consistent.
Many thanks also go to Wieger Wesselink for his great input, feedback and of course for imple-
menting the algorithms described in this article. Wieger helped out a lot when Tim was taking
care of his newborn son.
I also would like to thank Rink Springer for reading earlier versions of this thesis and providing
it with useful comments.

iii

iv

Contents

1 Introduction 3

2 Parameterized Boolean Equation System 5
2.1 Syntax . 5
2.2 Semantics . 7

3 Removing superfluous parameters 13
3.1 Parameter reduction . 14

3.1.1 Influential parameters in a data term . 14
3.1.2 All influential parameters . 15
3.1.3 Removing parameters . 18

3.2 ParElm for LPSs . 20
3.2.1 Linear process specifications . 20
3.2.2 Comparison . 20

3.3 Example using ParElm . 21

4 Detecting constants 25
4.1 The algorithm ConstElm . 25

4.1.1 Finding constants . 26
4.1.2 Adding conditions . 32

4.1.2.1 True/false conditions . 33
4.1.2.2 inf-condition . 38

4.2 Example using ConstElm . 43
4.2.1 Algorithm without conditions . 43
4.2.2 Algorithm with conditions . 44
4.2.3 ConstElm combined with ParElm . 44

5 Conclusion 47

Appendices

A Implementation of ParElm 49

B Implementation of ConstElm 53

C mCRL2 specification of the alternating bit protocol 59

1

2

Chapter 1

Introduction

Boolean equation systems (BESs) have been the topic of study for some time. In [Mad97] a
detailed overview of properties of BESs is described. There are a number of problems that can
be encoded into a BES. By solving a BES the encoded problem is solved as well. An extension
of BESs are parameterized boolean equation systems (PBESs). A PBES extends a BES with
data. This makes it possible to express a larger range of problems. One way a PBES can be
constructed is from a process specification and a modal µ-calculus formula [SW89]. Such a modal
µ-calculus formula states a property about the process. A PBES created from a process and a
modal µ-calculus formula can be solved; if the solution is true the used property holds on the
used process, if the solution of the PBES is false the property does not hold. This makes PBESs
a powerful model checking tool.

The goal of the theory and algorithms presented in this thesis is to simplify PBESs by reducing
the number of data parameters that occur in the equations of PBESs. Reduction of parameters is
not only important because it speeds up the calculation of a PBES; solving a PBES in general is
undecidable, however, if all parameters with infinite data sorts can be removed from the PBES,
the PBES can always be solved. There are different ways to solve a PBES. In this thesis we will
discuss the impact of the algorithms presented on two known techniques, namely instantiation,
see [DPWar], and symbolic approximation, see [GW04].

Tools from the mCRL2 toolkit [GMR+07] are used to construct PBESs from mCRL2-specifications.
The algorithms described in this thesis will be implemented and added to this mCRL2 toolkit.
Both techniques mentioned for solving PBESs can benefit from the proposed algorithms, how-
ever we can only conduct tests for instantiation, since only this algorithm is implemented in the
mCRL2 toolkit.

We start this thesis be defining the syntax and semantics of PBESs in Chapter 2. After that
we introduce the algorithm ParElm, which detects and removes superfluous parameters from
PBESs. This is done in Chapter 3. Chapter 4 introduces the algorithm ConstElm, which tries
to replace parameters by a constant value. We finish by giving a conclusion and a word on
future work in Chapter 5. A way both ParElm and ConstElm can be implemented is found in
Appendix A and Appendix B.

3

4

Chapter 2

Parameterized Boolean Equation
System

Before we discuss algorithms for simplifying PBESs, we first present the syntax and semantics
of a PBES. The syntax and semantics follow those of [DPWar, GW05]. The algorithms we will
discuss only use the syntax of PBESs. Although not used in our algorithms, the semantics are
presented to give a better understanding of PBESs.

2.1 Syntax

In this section we describe the syntax of a PBES. A PBES is an equation system consisting of
several parameterized boolean equations.

Definition 2.1.1. A parameterized boolean equation is defined as:

σXi(
−→
di :
−→
Di) = ϕi

Here σ is a fixed point operator which is either a ν (a greatest fixed point) or a µ (a least fixed
point). Xi ∈ X , where X = {Xj |j ∈ N}, is a variable; the solution of such a variable is a
predicate, which is why Xi is called a predicate variable.

−→
di is a vector of parameters, for which

parameter (
−→
di)j (the jth parameter) has data sort

−−→
(Di)j (the jth data sort) . Every parameter

name of an equation has to be unique for that equation. Finally, ϕi is a predicate formula, which
will be defined later.
During this thesis we will use notes to introduce conventions which we will use throughout the rest
of the thesis. Here we present some conventions with regard to parameterized boolean equations:

Note.

• Whenever the fixed point sign of an equation is irrelevant, we use σ as a fixed point operator.

• Whenever the term ϕi or
−→
di is used in the context of an equation, the i denotes the equation

in which they occur; so ϕi is the predicate formula that belongs to the equation for Xi and

5

6 Chapter 2. Parameterized Boolean Equation System

−→
di is the vector of the parameters that belongs to the equation for Xi.

• In this thesis we consider vector
−→
di as a set when the order of the parameters does not

matter (note that the parameters
−→
di are unique).

• If the number of parameters are not important we will use only one parameter; instead of
parameter list (

−→
d :
−→
D), a single parameter (d : D) is used.

We must still give the syntax of predicate formula ϕ, which we will do next.

Definition 2.1.2. The syntax of a predicate formula ϕ is defined as:

ϕ ::= b | X(−→e) | ϕ⊕ ϕ | Qd:D.ϕ

Here b is a data term of sort B; an example of a data term is: (n > 5 ∧ n 6= 10), where n is a
variable of type N. X is a predicate variable with as instantiation the terms −→e . The operator ⊕
is either a conjunction (∧) or a disjunction (∨). Q is a quantification, either a universal quan-
tification (∀) or an existential quantification (∃), where variable d is a fresh variable of sort D.
Note that negation does not occur in the syntax of a predicate formula, but it may be present as
part of a data term. For convenience we allow implications (→) after a data term b. This is valid
because b → ϕ ≡ (¬b) ∨ ϕ, and negation may be part of b. For an equation σX(

−→
d :
−→
D) = ϕ it

must hold that all variables in ϕ are bound in the scope of the equation X, either by a parameter
or by a quantification. Outside the context of an equation it can happen that variables are not
bound. To illustrate this we present a small example:
For equation σX(n : N) = ∀m:N.n > m, the predicate formula ∀m:N.n > m, contains vari-
able n which is not bound in this context. Furthermore, the predicate formula can be written as
∀m:N.ϕ

′, where ϕ′ = n > m. Here, in the context of ϕ′, there are two unbound variables, m and n.
For some definitions we will need the set of free (i.e. unbound) variables of a predicate formula ϕ.

Note. As a convention we will write FV (ϕ) as the set of all free variables of predicate formula
ϕ, in the context of ϕ.

Now that the syntax of a parameterized boolean equation is fully defined we can give a definition
of a PBES

Definition 2.1.3. A parameterized Boolean Equation System E is defined as:

E ::= ε | (σXi(
−→
di :
−→
Di) = ϕi)E

A PBES is either ε, which is an empty equation system, or an equation followed by an other
PBES E .

We want the constraint that predicate variables that occur in ϕ are bound. Therefore we must
first state what it means for a predicate variable to be bound.

Definition 2.1.4. For PBES E , a predicate variable Xi is bound if it occurs on the left hand
side of an equation of E .

If all predicate variables occurring in a predicate formula of an equation of PBES E are bound,

6

2.2. Semantics 7

E is called closed ; if there is an unbound predicate variable in E , E is called open. In this thesis
we only consider closed PBESs.

Example 2.1.5. We finish this section by presenting a closed PBES E . This PBES will be used
in some examples in later chapters.

µX1(n1,m1 : N) = ((n1 > 2)→ X2(m1 + n1 + 1)) ∧ ((n1 < 5)→ X3(n1 + 3))
νX2(n2 : N) = ∀k : N.(k > 3 ∨X1(k, n2))
νX3(n3 : N) = X1(n3, n3 + 1)

This PBES is closed because all predicate variables that occur in a predicate formula (i.e.
{X1, X2, X3}) also occur in the left hand side of an equation.

2.2 Semantics

Here we present the semantics of PBESs. We start by describing the semantics of a predicate
formula ϕ. This is given in the context of a certain data environment ε and a certain predicate
environment η. The data environment ε assigns values to data variables. The predicate envi-
ronment has type η : X → (D → B). η takes a predicate Xi ∈ X as argument and returns a
function with type (D → B). For an environment θ, where θ is either η or ε we write θ[v/d] if
we assign the value v to the variable d. For example, if we want to assign 3 to the data variable
n in ε we write ε[3/n].

Definition 2.2.1. The semantics of a predicate formula is defined as:
(1) JbK ηε = JbKε
(2) JX(e)K ηε = (η(X))(JeKε)
(3) Jϕ1 ⊕ ϕ2K ηε = Jϕ1Kηε⊕ Jϕ2Kηε
(4) JQd:D.ϕK ηε = Qv:D.JϕKη(ε[v/d])

As no predicate variables occur in data terms, rule (1) states that the predicate environment
is unimportant regarding the interpretation of a data term. The interpretation of a predicate
variable X with the term e is the function η(X) : D → B with the interpretation of e applied on
this function yielding either true or false. The interpretation of the conjunction of two predicate
formulas is the conjunction of the interpretation of the two predicate formulas. This is similar
for disjunction and quantification.

Example 2.2.2. To illustrate how semantics of a predicate predicate formula can be used we
present an example. Consider the data environment ε and predicate environment η which have
the following assignments:

ε(n) = 3
ε(m) = 5
η(X) = λv,w:N.v < w

7

8 Chapter 2. Parameterized Boolean Equation System

We can now find the interpretation of X(n+ 1,m+ 2) in the given environments:

JX(n+ 1,m+ 2)Kηε
= {(2)}

(η(X))(J(n+ 1,m+ 2)Kε)
= {definition of η}

(λv,w:N.v < w)(J(n+ 1,m+ 2)Kε)
= {definition of ε, algebra}

(λv,w:N.v < w)(4, 7)
= {λ-calculus}

4 < 7
= {algebra}

true

To be able to use parameters with the semantics of a predicate formula, we lift such a predicate
formula to a function of type D → B. In the general case this function is:

λv:D.JϕKηε[v/d].

Here d is a parameter which can be assigned a value using function application. This function
will be used to give a definition of the semantics of a parameterized boolean equation.

The solution of a parameterized boolean equation is a function of type D → B. When the fixed
point of a parameterized boolean equation is left out, the equation can have many solutions. For
example, the equation X(n : N) = X(n) has infinitely many solutions (e.g. λv:N.true, λv:N.v > 1,
λv:N.v > 2, . . .). With fixed point, the solution of an equation is a least (µ) function or a greatest
(ν) function. For this we need an ordering on functions, which we will define next.

Definition 2.2.3. We denote the set of all functions of type D → B as BD. Here we introduce
a partial ordering on functions from BD:

f v g ⇔ ∀d:D.(f(d)→ g(d))

f is smaller than g iff f v g, f is greater than g iff g v f

(BD,v) is a complete lattice, this is proved in [GW05]. This means there is always a unique
greatest fixed point and a unique least fixed point as the solution of an equation. Using the
ordering v we can define the solution of a parameterized boolean equation.

Definition 2.2.4. For equation σX(d : D) = ϕ we define an operator F , which takes as input a
function f and returns the semantics of ϕ lifted to a function and instantiates predicate variables
X in ϕ with function f :

F = λf : BD.λv:D.JϕKη[f/X]ε[v/d]

8

2.2. Semantics 9

A solution of a parameterized boolean equation without fixed point then is a function g where:

g = (F)(g)

If σ is a greatest fixed point ν, the solution of the equation is the greatest function g; if σ is a
least fixed point µ, the solution of the equation is the least function g. Here greatest and least
are determined by the ordering v.
As a shorthand notation we write νg ∈ BD.F (g) as the greatest function g for which g = F (g)
holds, and we write µg ∈ BD.F (g) as the least function g for which g = F (g) holds.

We will now give an example of how Definition 2.2.4 can be used.

Example 2.2.5. Consider the equation µX(n : N) = n > 2∧X(n). The function F is defined as:

F = µf ∈ BD.λv:N.Jn > 2 ∧X(n)Kη[f/X]ε[v/n]
= {Environments}

F = µf ∈ BD.λv:N.v > 2 ∧ f(v)

We now consider two solutions of this equation; note that here we are not taking the fixed point
µ into account. A solution g must have the following property:

g = (F)(g)

One solution for g is λv:N.false:

λv:N.false = (F)(λv:N.false)
= {definition of F}

λv:N.false = (λf ∈ BD.λv:N.v > 2 ∧ f(v))(λv:N.false)
= {λ-calculus}

λv:N.false = λv:N.v > 2 ∧ (λv:N.false)(v)
= {λ-calculus}

λv:N.false = λv:N.v > 2 ∧ false)
= {logic}

λv:N.false = λv:N.false)
= {logic}

true

9

10 Chapter 2. Parameterized Boolean Equation System

An other solution for g is λv:N.v > 2:

λv:N.v > 2 = (F)(λv:N.v > 2)
= {definition of F}

λv:N.v > 2 = (λf ∈ BD.λv:N.v > 2 ∧ f(v))(λv:N.v > 2)
= {λ-calculus}

g = λv:N.v > 2 ∧ (λv:N.v > 2)(v)
= {λ-calculus}

λv:N.v > 2 = λv:N.v > 2 ∧ v > 2)
= {logic}

λv:N.v > 2 = λv:N.v > 2)
= {logic}

true

This means there are two solutions for the formula g = (F)(g), but using the relation v there is
only one least (µ) solution, which is λv:N.false.

Now that we know the solution of a parameterized boolean equation, we can define the solution
of a PBES.

Definition 2.2.6. The solution of a PBES in the context of a data environment ε and a predicate
environment η is defined as:

(1) JεKηε = η
(2) J(σX(d : D) = ϕ)EKηε = JEK(η[σ f ∈ BD.λv:D.JϕK(JEKη[f/X]ε)ε[v/d]/X)ε

The solution of an empty PBES is defined to be the predicate environment, which is the as-
signment of a function of type (D → B) to each equation. The solution of a PBES with
equation (σX(d : D) = ϕ) in front of E is JEK(η[f/X])ε, which is the solution of E in a
predicate environment where X has the solution f . f is the solution of equation X, which
is: σ f ∈ BD.λv:D.JϕK(JEKη[f/X]ε)ε[v/d]. If σ is µ, f is the least function for which f =
λv:D.JϕK(JEKη[f/X]ε)ε[v/d] holds and if σ is ν it is the greatest function f for which f =
λv:D.JϕK(JEKη[f/X]ε)ε[v/d] holds. Note that this formula is similar to F of Definition 2.2.4,
except now the solution of the rest of the PBES (E) is taken into account as well.
To get a better understanding of Definition 2.2.6 we present an example.

Example 2.2.7. Here we will illustrate how to find a solution of a PBES. Consider the PBES

µX1(n1 : N) = X2(n1)
νX2(n2 : N) = X1(n2)

According to our definition we have:

J(µX1(n1 : N) = X2(n1))(νX2(n2 : N) = X1(n2))Kηε
= {semantics of a PBES}

JνX2(n2 : N) = X1(n2)K
(η[µ f ∈ BN.λv:N.JX2(n1)K (JνX2(n2 : N) = X1(n2)Kη[f/X1]ε) ε[v/n1] /X1)ε

10

2.2. Semantics 11

We now investigate the part: (JνX2(n2 : N) = X1(n2)Kη[f/X1]ε)

JνX2(n2 : N) = X1(n2)Kη[f/X]ε
= {semantics of a PBES}

JεK(η[ν g ∈ BN.λw:N.JX1(n2)K(JεKη[f/X1][g/X2]ε)ε[w/n2] /X2)ε
= {semantics of JεK}

η[ν g ∈ BN.λw:N.JX1(n2)K(η[f/X1][g/X2])ε[w/n2] /X2]
= {environments}

η[ν g ∈ BN.λw:N.f(w) /X2]

We are now looking for the greatest fixed point ν of function g = λw:N.f(w). There is only one
solution for g, which is the function f itself. The solution to (JνX2(n : N) = X1(n)Kη[f/X1]ε) is
thus η[f/X1][f/X2].

JνX2(n : N) = X1(n)K(η[µ f ∈ BN.λv:N.JX2(n)Kη[f/X1][f/X2]ε[v/n] /X1)ε
= {semantics of predicate formula}

JνX2(n : N) = X1(n)Kη[µ f ∈ BN.λv:N.fJnKε[v/n]/X1]ε
= {environments}

JνX2(n : N) = X1(n)Kη[λv:N.f(v)/X1]ε

We are now looking for the least solution (µ) of f in the equation f = λv:N.f(v). This can be
calculated with approximation, which is f = λv:N.false. This is the solution for equation X1.
When we fill this in we obtain:

JνX2(n : N) = X1(n)K(η[(λv:N.false)/X1)ε

The derivation for the solution of X2 is similar and is left to the reader. The solution of the
PBES is η[λn:N.false/X1][λn:N.false/X2]. Note that should we swap the two equations the
result is (νX2(n : N) = X1(n))(µX1(n : N) = X2(n)). The solution of the swapped PBES is
different. The derivation is similar until we calculate f . The least fixed point that we calculated
was λn:N.false, but now we want the greatest fixed point, which is λn:N.true. The solution to
the PBES with the equations swapped is η[λn:N.true/X2][λn:N.true/X1]. This illustrates that
the order of the equations is important in a PBES.

11

12

Chapter 3

Removing superfluous parameters

In this chapter we introduce the algorithm ParElm which removes superfluous parameters from
PBESs. A superfluous parameter is a parameter that cannot influence the solution of a PBES.
E.g. parameter n of PBES µX(n : N) = ϕ is superfluous if:

∀i,j:N.JX(i)Kηε = JX(j)Kηε

Removing superfluous parameters can be very useful when using instantiation to solve a PBES.
Instantiation transforms a PBES to a Boolean Equation System (BES)[Mad97], which is a PBES
without data parameters. The number of boolean equations in the BES created by instantiation
is partly determined by the number and type of parameters of a PBES. For instance, removing
one parameter of type B from a PBES and then using instantiation can result in halving the
number of equations of the resulting BES, which greatly reduces the time needed to find a so-
lution. When removing a parameter with a certain type that has more elements than a type B,
the reduction in the resulting BES can be even greater.
Instantiation is a technique that is undecidable in general. When used on a PBES with only finite
data types however, it can always compute a PBES. If ParElm is able to remove all infinite data
types from a PBES, this PBES can be solved using instantiation. Because of this more PBESs
can be solved when first applying ParElm. This makes ParElm a useful technique when using
instantiation.

A parameter is superfluous if it does not affect the solution of a PBES, like with the PBES
νX(n : N) = false, the parameter n is superfluous. Note that the solution to X is λv : N.false,
which is strictly not the same as false. The PBES νX = false does have false as solution. We
still wish to consider both PBESs to be equal since, apart from their typing, both solutions are
indistinguisable, i.e.:

∀n:N.((λv : N.false)(n) = false)

The goal of ParElm is to compute a set of parameters that does not influence the solution of a
PBES. This is achieved by determining which parameters might influence the solution of a PBES.
Section 3.1 presents a technique to find these influential parameter. Note that there already is an
algorithm for finding superfluous parameters in process descriptions [GL02] (LPS ParElm). This
has inspired some aspects of ParElm on a PBES level. However, some techniques introduced
in Section 3.1 can be brought back to improve the ParElm algorithm for processes. In Section

13

14 Chapter 3. Removing superfluous parameters

3.2, improved LPS ParElm is compared to the current LPS ParElm algorithm. Finally, some
tests and results of an implementation of ParELm for PBESs are presented in Section 3.3

3.1 Parameter reduction

The solution of a PBES is a function assignment to every predicate variable in the equation sys-
tem. If the solution of an equation changes then so does the solution of the PBES. A parameter
d can change the solution of an equation if it occurs in a data term b, or it can influence the
solution by changing the solution of a predicate variable X(e). This is the case since a parameter
can only be present in data terms and predicate variable instantiations. We will investigate both
these cases in the next sections.

3.1.1 Influential parameters in a data term

Just by inspecting a data term b it cannot be decided if parameter d that occurs b is influential. To
illustrate this, consider the equation µX(n : N) = n > 2∧X2, parameter n occurs in conjunction
with a predicate variable. If the solution of predicate variable X2 is false, the solution of X1

is the function λv:N.false. Here it is clear that n is not an influential parameter. To know this,
the solution of X2 is required, which has to be calculated. This is not desired because we want
to run ParElm before the calculation of a PBES. This is why we stay on a syntactic level when
determining the set of influential parameters.
On a syntactic level we usually cannot tell if a parameter that occurs in a data term is influential.
Therefore we use an over-approximation of the set of influential parameters. The approximated
set is the set of all parameters that occur in data terms. Sometimes we can syntactically
determine that a parameter in a data term is not influential. This is usually the case when the
predicate formula can be simplified using some simple rules like:

• ϕ ∧ false ≡ false

• ϕ ∨ true ≡ true

• ϕ ∧ ¬ϕ ≡ false

• ϕ ∨ ¬ϕ ≡ true

Because of this, simplifying a PBES before using ParElm can help to find more parameters
that can be eliminated. Here we give a formal definition of all influential parameters that occur
in data terms of a PBES. For this, we first introduce a definition of influential parameters in
a single predicate formula. These are all parameters that occur in a data term of a predicate
formula.

14

3.1. Parameter reduction 15

Definition 3.1.1. The parameters that occur in a data term b of predicate formula ϕ is DPf (ϕ),
where DPf (ϕ) is defined as:

DPf (b) = FV (b)
DPf (X(−→e)) = ∅
DPf (ϕ1 ⊕ ϕ2) = DPf (ϕ1) ∪DPf (ϕ2)
DPf (Qd:D.ϕ) = DPf (ϕ)\{d}

Note that variables bound by a quantification are excluded from the set. This is because we
are only interested in parameters. Since all variables in an equation are bound and we omit the
variables bound by a quantification, DPf (ϕ) is indeed the set of all parameters which occur in
data terms of ϕ.

Example 3.1.2. Definition 3.1.1 used on the PBES of Example 2.1.5 results in:

DPf (ϕ1) = {n1} because n1 occurs in a data term and m1 does not occur in a data term.
DPf (ϕ2) = ∅ because n2 does not occur in a data term.
DPf (ϕ3) = ∅ because n2 does not occur in a data term.

The set of influential parameters of a PBES that occur in data terms, is simply the union of all
influential parameters that occur in all predicate formulas of the PBES. Here we formally define
this set.

Definition 3.1.3. For PBES E , the set DPp(E) of influential parameters in data terms of PBES
E is defined as:

DPp(ε) = ∅
DPp((σX(d : D) = ϕ)E) = DPf (ϕ) ∪DPp(E)

Example 3.1.4. The set DPp(E) of the PBES of Example 2.1.5 is:

{n1} ∪ ∅ ∪ ∅ = {n1}

With DPp(E) a set can be constructed containing all influential parameters in data terms of
PBES E .

3.1.2 All influential parameters

It can also be the case that a parameter d influences the solution of a PBES when it oc-
curs in a term e used in a predicate variable instantiation X(e). For example, in the PBES
(νX1(n1 : N) = X2(n1 + 3))(µX2(n2 : N) = n2 > 2), n1 occurs in the term n1 + 3 of predicate
variable instantiation X2(n1+3). In this situation n2 is instantiated with n1+3 , so n1 influences
n2. This does not mean n1 influences the solution of the PBES, n1 only influences the solution
if n2 itself is influential. Here the main problem arises; to determine if a parameter is influential,
we might need to check if one or more other parameters are influential. This means there are
(possibly circular) dependencies between parameters.
To solve this problem we compute which parameter influences which other parameter and com-
bine these relations in an influential graph. Such a graph has parameters as vertices and directed

15

16 Chapter 3. Removing superfluous parameters

edges (di, dj) which represent that a parameter di influences parameter dj .
When parameter d1 influences parameter d2, d1 is influential if d2 is influential. Parameter d2

is influential when it occurs in a data term (see Section 3.1.1), or if d2 influences an influential
parameter d3. This can be computed using the influential graph; If a parameter di can influence
(reach in the graph) an influential parameter dj , then di is influential too. Since we know which
parameters are influential using Section 3.1.1, we can calculate all influential parameters that oc-
cur in predicate variables. When we combine these parameters with the ones already calculated
in Section 3.1.1, we have the set of all influential parameters.

To help construct the influential graph we first introduce a definition that defines a set of all
predicate variables instantiations that occur in a predicate formula.

Definition 3.1.5. The set PV (ϕ) contains all predicate variable instantiations of ϕ and is
defined as:

PV (b) = ∅
PV (X(−→e)) = {X(−→e)}
PV (ϕ1 ⊕ ϕ2) = PV (ϕ1) ∪ PV (ϕ2)
PV (Qd:D.ϕ) = PV (ϕ)

Example 3.1.6. Using Definition 3.1.5 on the equations of Example 2.1.5 results in:

PV (ϕ1) = {X2(m1 + n1 + 1), X3(n1 + 3)}
PV (ϕ2) = {X1(k, n2)}
PV (ϕ3) = {X1(n3, n3 + 1)}

Next we define the influential graph that is associated to a PBES.

Definition 3.1.7. The influential graph for PBES (σX1(
−→
d1 :
−→
D1 = ϕi) . . . (σXn(

−→
dn :
−→
Dn) = ϕn)

is the directed graph G = (V,E) where:

V =
⋃
i

−→
di

E = {(
−→
di)a, (

−→
dj)b))|Xj(−→e) ∈ PV (ϕi) ∧ (

−→
di)a ∈ FV ((−→e)b)}

where i, j ∈ {1, . . . , n}, a ∈ {1, . . . ,#(
−→
di)}, and b ∈ {1, . . . ,#(−→e)}

This graph captures which parameters influence which other parameters in a single step. We
can use this information to compute set of influential parameters in predicate variables. First
we present an example of Definition 3.1.7.

Example 3.1.8. Using Definition 3.1.7 to construct an influential graph of the PBES of Example
2.1.5 results in:

V = {n1,m1, n2, n3}
E = {(m1, n2), (n1, n3), (n1, n2), (n2,m1), (n3, n1), (n3,m1)}

V is the set of all parameters that occur in the PBES of Example 2.1.5 and E is the set of
directed edges. Each edge (di, dj) states that parameter di influences parameter dj . The visual
representation of this graph is presented in Figure 3.1.

Using an influential graph of a PBES E , together with the set of influential parameters DPp(E),

16

3.1. Parameter reduction 17

m1

n2

n3

n1

Figure 3.1: Influential graph of Example 2.1.5

we can calculate the set of influential predicate variables. This is a reachability problem, which
can for instance be solved by taking the transitive closure of the influential graph and marking
all parameters with an edge to a parameter di ∈ DPp(E) as influential. To get the set of all
influential parameters that occur in either a predicate variable or a data term we can combine
these two sets. Another way is by taking the transitive, reflexive closure of the influential graph
and marking all parameters that have an edge to parameter di ∈ DPp(E) as influential.

Definition 3.1.9. Let G = (V,E) be an influential graph of PBES E . Let E′ be the transitive,
reflexive closure of E. The set I(E) of influential parameters is defined as:

I(E) = {di|(di, dj) ∈ E′ ∧ dj ∈ DPp(E)}

The set I(E) is the set of parameter which directly or indirectly might influence the solution of
PBES E .

Note. Finding influential parameters is a reachability problem. Definition 3.1.9 uses the transi-
tive reflexive closure to define the set of influential parameters. This method has time complexity
O(n3), where n are the number of vertices. Such an algorithm is presented in [CLRS01]. In the
implementation of Appendix A a more efficient technique is used, which has time complexity
O(e), where e is the number of edges.

When a parameter is in the set I(E), it is not guaranteed that it is influential; this is due to the
fact that we are using an over-approximated set DPp(E). All parameters that are not in the set
I(E) are superfluous. The set S(E) is the dual of the set I(E), that is, for all parameters d in
PBES E , d ∈ I(E)⇔ d /∈ S(E).

Example 3.1.10. To illustrate how to find all the parameters of S(E) we will use the PBES
E of Example 2.1.5. Figure 3.2a presents the influential graph of E , where the parameters from
DPp(E) are marked. In this case only one parameter is marked as influential, but all parameters
that can reach an influential parameter are indirectly influential too. Using Definition 3.1.9 we
can do a reachability test. In this case n3 can affect the value of influential parameter n1, so it is
marked as influential. Figure 3.2b presents the set I(E). The set S(E) consists of all parameters
that are not marked. All parameters of S(E) = {m1, n2} are superfluous.

17

18 Chapter 3. Removing superfluous parameters

m1

n2

n3

n1

(a)

m1

n2

n3

n1

(b)

Figure 3.2: Influential graph of Example 2.1.5: (a) parameters from the set DPp(E) marked, (b)
parameters of I(E) marked

3.1.3 Removing parameters

The previous sections described how we can find the set S(E) of superfluous parameters. All
superfluous parameters can be removed from a PBES without affecting the solution (apart from
the typing). Here we give a definition of how this is done.

Definition 3.1.11. Assume S is a set of superfluous parameters. Furthermore ∀i(
−→
d)i ∈ S and

∀i(−→e)i /∈ S. Without loss of generality, we assume that in the definition of an equation, the
superfluous parameters

−→
d are in front of the influential parameters −→e . This is valid since we

known the set of superfluous/influential parameters and, if parameters of all predicate variables
Xi are swapped in the same way, the solution of a PBES does not change. Now we can define
PE(E), where E is a PBES:

PE(ε) = ε

PE((σX(
−→
d :
−→
D,−→e :

−→
D) = ϕ)E) = (σX(−→e :

−→
D) = Rem(ϕ, S))PE((E)

Rem(b) = b

For #(−→a) = #(
−→
di) and #(

−→
b) = #(−→ei)

Rem(Xi(−→a ,
−→
b)) = X(

−→
b)

Rem(ϕ1 ⊕ ϕ2) = Rem(ϕ1)⊕Rem(ϕ2)
Rem(Qd:D.ϕ) = Qd:D.Rem(ϕ)

In the next example we demonstrate the methods described in this chapter by applying them on
a larger example.

Example 3.1.12. Here we demonstrate all ParElm steps needed to reduce a PBES. The PBES
we are using is:

µX1(n1,m1, l1 : N) = n1 > 2 ∧ (X2(m1) ∨X3(l1 > 2))
µX2(n2 : N) = ∀m : N.X5(n2, n2 +m)
νX3(b3 : Bool) = b3 ∧ ∃m : N.X4(m,m+ 1)
µX4(n4,m4 : N) = X5(n4,m4) ∨X1(n4, 5, 5)
νX5(n5,m5 : N) = X4(n5,m5)

18

3.1. Parameter reduction 19

Using Definition 3.1.3 we can determine the set DPp(E):

DPf (ϕ1) ∪DPf (ϕ2) ∪DPf (ϕ3) ∪DPf (ϕ4) ∪DPf (ϕ5) = {n1} ∪ ∅ ∪ {b3} ∪ ∅ ∪ ∅ = {n1, b3}.

The parameters DPp(E) directly influence the solution of E ; to determine which parameters are
indirectly influential we construct the associated influential graph. Using Definition 3.1.9 we
obtain the graph G = (V,E) where:

V = {n1,m1, l1, n2, b3, n4,m4, n5,m5}
E = {(m1, n2), (l1, b3), (n2, n5), (n2,m5), (n4, n5), (m4,m5), (n4, n1), (n5, n4), (m5,m4)}

The result obtained by marking the parameters of DPp(E) in graph G is presented in Figure
3.3. The set I(E) is made by marking all states that can reach an influential parameter as
influential. The result is presented in Figure 3.4. From this graph we can conclude that the
parameters {m4,m5} ∈ S(E) may be removed. This can be done using Definition 3.1.11; The
resulting PBES is:

µX1(n1,m1, l1 : N) = n1 > 2 ∧ (X2(m1) ∨X3(l1 > 2))
µX2(n2 : N) = ∀m : N.X5(n2)
νX3(b3 : Bool) = b3 ∧ ∃m : N.X4(m)
µX4(n4 : N) = X5(n4) ∨X1(n4, 5, 5)
νX5(n5 : N) = X4(n5)

n1

b3l1

n4

m4

n5

m5

n2 m1

Figure 3.3: Influential graph of Example 3.1.12, with parameters from the set DPp(E) marked

n1

b3l1

n4

m4

n5

m5

n2 m1

Figure 3.4: Influential graph of Example 3.1.12, with all influential parameters marked

19

20 Chapter 3. Removing superfluous parameters

3.2 ParElm for LPSs

An algorithm for removing superfluous parameters from an LPS is proposed in [GL02], and im-
plemented in the mCRL2 tool set [GMR+07]. This version shares the same idea as ParElm for
PBESs; it marks the set of parameters that directly influences the solution of an LPS as influen-
tial, and searches for parameters that indirectly influences the solution of an LPS by checking if
a parameter influences a marked parameter. In the mCRL2 version, however, finding the set of
parameters that indirectly influence the solution of an LPS is not done with an influential graph.
Currently this is done by recursively checking all parameters and marking every parameter that
instantiates an influential parameter. This results in quadratic time complexity (quadratic in
the number of parameters). Since a reachability test in graphs takes linear time (linear in the
number of edges), the LPS ParElm can profit from the influential graph technique. An imple-
mentation of LPS ParElm using a influential graph has been created; a comparison with the
mCRL2 version is presented in Section 3.2.2. We first present the syntax of LPSs and describe
how to construct an LPS ParElm algorithm in the next section.

3.2.1 Linear process specifications

An LPS describes a process using process algebra. The advantage of an LPS is that it is always
in a certain (simple) form. Some advantages of this form is that it contains no parallelism and
there is only one recursion variable. Here we present the syntax of an untimed linear process:
X(d : D) =

∑
i∈I

∑
e:Ei

ci(d, e)→ ai(fi(d, e))X(gi(d, e)) +
∑
i∈J

∑
e:Ei

ci(d, e)→ δ

We will not go into detail about the syntax and semantics of LPSs. More information about
LPSs can for instance be found in [GR01]. The parts that are important for ParElm are:

• ci: a condition that may contain parameters

• ai: an action that may contain parameters

• X: a process parameter, if used on the right hand side it instantiates the process X with
values which may depend on parameters.

From the definition of LPSs we can conclude that a parameter can occur in an action, a condition
or an instantiation of a linear process. The set of parameters that are directly influential are all
parameters that occur in either a condition or an action. The set of parameters that indirectly
influence the solution of an LPS can be calculated with an influential graph. The construction
of this graph is similar as it is for PBESs; the set of vertices is the set of all parameters, and the
directed edges can be extracted from the process parameter instantiations. Using the influential
graph all influential parameters can be calculated. All parameters that are not influential can
be removed from the LPS.

3.2.2 Comparison

In this section we will compare ParElm for LPSs which is currently distributed with the mCRL2
tool set (up to revision 4833) with a new implementation of ParElm for LPS using an influential
graph. First we note that both versions find the same superfluous parameters. This is because
the general idea of which parameters are influential is the same; the only difference is the time
complexity of the implemented algorithms. For the comparison we will construct LPSs, each

20

3.3. Example using ParElm 21

26 52 78 104 130 156 182 208

0

100

200

300

400

500

600

700

parallel processes

ti
m

e
in

se
co

nd
s

mCRL2 ParElm
new ParElm

Figure 3.5: Running time comparison of the implementation of the mCRL2 tool set and LPS
ParElm using an influential graph

with increased numbers of parallel processes. The test case we present here has the following
mCRL2 specification:

act
a1,a2: Nat;

proc
P(d1,d2:Nat) = a1(d1).a2(d2).P(d1,d2);

init
P(0,0) || ... || P(n,n)

Here init = P (0, 0)|| . . . ||P (n, n), which are n processes of P in parallel. When n increases, the
number of parameters in the resulting LPS increases linearly. Using the mCRL2 specification
described above we can construct LPSs for varying values of n, and apply both the LPS ParElm
algorithms. The running time is measured; the results are presented in Figure 3.5. From this
figure we can conclude that the algorithm using the influential graph performs better for big
numbers of n, which is due to the linear running time of the algorithm.

3.3 Example using ParElm

In this section we show the importance of ParElm using the mCRL2 tool set [GMR+07]. As an
example we will use the alternating bit protocol (ABP) which sends data from a sender, through
a medium that nondeterministically garbles messages or not, to a receiver. Until now the mCRL2
toolkit could only verify properties of the ABP if there is a finite set of data which can be sent,

21

22 Chapter 3. Removing superfluous parameters

i.e. it can only send data from the set of data messages D, where {d1, d2, . . . , dn} ∈ D for finite
n. Using ParElm we can also prove some properties of the ABP where we consider arbitrary
data, in this case from the infinite set N.
As we are using the mCRL2 tool set, we start with a mCRL2 specification of the ABP. A version
of the ABP is present as an example in the mCRL2 tool set. This version works, as stated above,
with a finite set D. We change the definition of D from:

D = struct d_1 | d_2;

to:

D = Nat;

The complete mCRL2 specification of the ABP is presented in Appendix C. We will now make
four PBESs, each encoding a property we wish to check about the ABP specification. These
four properties are specified with modal µ-calculus formulas. These properties are the same as
defined in [GW04], except that some errors have been fixed:

Property 1: No deadlock may occur

nu X. ([true]X && <true>true)

Property 2: A message that is sent can always eventually be received

nu X. ([true]X && forall d:Nat. [r1(d)] mu Y. (<true>Y || <s4(d)>true))

Property 3: The protocol does not generate new messages

forall d:Nat. nu X. (([!r1(d)]X && [s4(d)]false))

Property 4: The protocol does not duplicate messages

[true*] forall d:D. [r1(d).(!r1(d) && !s4(d))*.s4(d).(!r1(d))*.s4(d)]false

Using the mCRL2 tool set we can make a PBES from a mCRL2 specification and a modal µ cal-
culus formula. Using the four formulas presented above we make four PBESs and apply ParElm
on them. Creating the PBESs is done with the tools mcrl22lps and lps2pbes. Note that there
is an intermediate LPS file, on which we can apply ParElm for LPSs as discussed in Section
3.2, but no parameters can be removed using this technique. Note that the resulting PBESs
have more parameters than the mCRL2 specification. These parameters are introduced to make
the intermediate LPS file. All tests are done on a Windows machine with a 1.8Ghz Pentium M
processor and 1GB of RAM. The results are presented below:

22

3.3. Example using ParElm 23

Property Running time Parameters removed Parameters remaining Type
1 108 ms 3 0 Nat

0 4 Pos
0 4 Bool

2 125 ms 0 7 Nat
0 8 Pos
0 8 Bool

3 110 ms 0 7 Nat
0 8 Pos
0 8 Bool

3 125 ms 0 7 Nat
0 8 Pos
0 8 Bool

From this table we can see that the running time of ParElm is low, while for the PBES encoding
the model checking problem for property 1, all parameters of type Nat are removed. The
parameters with type Pos are added by the tool mcrl22lps and only use a finite subset of
numbers from the set of positive integers. Because of this there are only parameters left with
finite data for this PBES. The result is that this PBES can always be solved, for example by using
instantiation [DPWar]. For the other three PBESs other techniques must be applied because it
depends on infinite type Nat. Symbolic approximation [GW04] is a technique that can be used
to solve these PBESs. ParElm is also tested on other PBESs and is able to remove parameters
for a number of them. This makes it fruitful to run ParElm before trying to solve a PBES.

23

24

Chapter 4

Detecting constants

It is not always the case that we want to know the solution of a whole PBES. When a PBES
is created from a process specification and a modal µ-calculus formula, we usually only want to
know if X1(−→e) holds. Here X1 is the predicate variable of the first equation and −→e are data
terms which encodes the initial state of the used process. If X1(−→e) is true, the µ-calculus formula
holds for the given process. ConstElm can use the information of X1(−→e) to reduce a PBES in
such a way that the solution of X1(−→e) does not change. Note that solutions of other predicate
variables may change if this does not influence the solution of X1(−→e). A PBES is not only
used to verify properties of processes, this is why we generalize the specification of ConstElm.
Given a predicate κ, where κ contains predicate variables of PBES E , ConstElm(E , κ) will try
to reduce E in such a way that the solution of κ does not change:

JκK(JEKηε)ε ≡ JκK(JConstElm(E , κ)Kηε)ε

In the predicate κ, the parameters of some predicate variables are instantiated with concrete
values. What ConstElm does is determining if parameters instantiated by these values are
constants. If this is the case, parameters in the PBES can be replaced with constants. When
some parameters are constant and used in predicate variable instantiations, even more constants
can be found. A parameter that is constant can be considerd to be an invariant of a PBES. As
explained in [OW08], invariants are very useful when using symbolic approximation [GW04] to
solve a PBES. How constants can be detected will be explained in Section 4.1. Some tests and
results are presented in Section 4.2

4.1 The algorithm ConstElm

In this section we define the algorithm ConstElm. The goal of this algorithm is to find param-
eters d for which the invariant d = v holds, where v is a constant value. Such an invariant holds
if parameter d will always be instantiated with the same constant value v. If this is the case
the parameter d can be replaced with constant v. Furthermore we only have to make sure that
the solution of κ does not change. Because of this we can replace a parameter by a constant if
the parameter remains constant during the calculation of κ. To illustrate this we give an example:

25

26 Chapter 4. Detecting constants

Example 4.1.1. Take κ = X1(1) with PBES E =

µX1(n1 : N)= n1 > 2
νX2 = X1(4)

Parameter n1 is instantiated with the value 1, taken from predicate κ. Parameter n1 is also
instantiated with the value 4 by predicate variable instantiation X1(4) of the second equation.
Since the second equation is not needed for the calculation of X1(1) it can be safely ignored.
ConstElm can reduce E to E ’=

µX1= 1 > 2
νX2= X1

Here JκKEηε = JκKE ′ηε = false. The solution of the PBES has changed, but the solution for κ
has not. We can even do one more reduction; since the second equation is not needed to calculate
the solution of κ, it can be removed.

We cannot tell beforehand which equations are needed to calculate the solution of a predicate
κ. Section 4.1.1 presents a method that will detect if parameters are constant when the solution
of κ may not change. Section 4.1.2 introduces a way to find more constants by inspecting data
terms that can be evaluated using the known constants.

4.1.1 Finding constants

Because parameters are instantiated by predicate variables, we treat predicate variables as
assignments; if a predicate variable X instantiates parameter d with as value the term e,
we consider X to be the assignment d := e. For instance with PBES (µX1(m1, n1 : N) =
X2(n1, 4))(νX2(m2, n2 : N) = n2 > m2), the predicate variable instantiation X2(n1, 4) is treated
as the assignment m2, n2 := n1, 4, as the parameters of the equation for X2 are instantiated
with the values n1 and 4 respectively. In this example, parameters of the equation for X2 are
assigned values from the equation for X1. If values of the parameters of the equation for X1 are
known we can use the assignments to inspect the parameters of the equation for X2. For this
reason we make a graph with predicate variables as vertices and assignments as edges. If values
of the parameters of the equation for Xi are known we should check all the edges starting from
vertex Xi. This way updates are done on a local level. Such a graph shows the dependency of
one equation to another equation. Therefore we call this a dependency graph.

Definition 4.1.2. A dependency graph G = (V,E,L) of a PBES E , where V are the vertices,
L is a set of labels and E ∈ (V × l × V) is a set of labeled directed edges, is defined as:

V =
n⋃

i=1

{Xi}

L = {
−→
dj := −→e |Xj(−→e) ∈ PV (ϕi)}

E = {(Xi, l, Xj)} where l ∈ L} if Xj(−→e) ∈ PV (ϕi)

26

4.1. The algorithm ConstElm 27

Here the vertices V are the predicate variables, L is the set of assignments and E is a set of
labeled directed edges, which represents the instantiations of parameters of equation Xj using
label l from equation Xi.

Note. The label l of edge (Xi, l, Xj) is a list of assignments. For the remainder of this article we
will use the word assignment instead of label.

Example 4.1.3. Here we give an example of the dependency graph of a given PBES E =

µX1(n1,m1, o1, p1 : N)= (n1 ≤ m1 ∨X2(o1, p1)) ∧X3(n1) ∧X1(n1,m1, 4, p1)
µX2(n2,m2 : N) = X5(n2,m2) ∨X5(m2, n2)
νX3(n3 : N) = n3 ≤ 3 ∨X1(n3, n3, 4, n3 + 1)
νX4(n4,m4, o4 : N) = n4 ≤ (m4 + o4) ∨ (X3(n4) ∧X4(n4,m4 + 1, n4))
µX5(n5,m5 : N) = n5 > m5 ∨X3(n5)

According to Definition 4.1.2, G = (V,E, L), where

V = {X1, X2, X3, X4, X5}
L = {

(n2,m2 := o1, p1)
(n3 := n1)
(n1,m1, o1, p1 := n1,m1, 4, p1)
(n5,m5 := n2,m2)
(n5,m5 := m2, n2)
(m1, n1, o1, p1 := n3, n3, 4, n3 + 1)
(n4,m4, o4 := n4,m4 + 1, n4)
(n3 := n4)
(n3 := n5)

}
E = {

(X1, (n2,m2 := o1, p1), X2),
(X1, (n3 := n1), X3),
(X1, (n1,m1, o1, p1 := n1,m1, 4, p1), X1),
(X2, (n5,m5 := n2,m2), X5),
(X2, (n5,m5 := m2, n2), X5),
(X3, (m1, n1, o1, p1 := n3, n3, 4, n3 + 1), X1),
(X4, (n4,m4, o4 := n4,m4 + 1, n4), X4),
(X4, (n3 := n4), X3),
(X5, (n3 := n5), X3)

}

Figure 4.1 shows the resulting graph.

When evaluating the assignments on a dependency graph we only have information about the
parameters, the local variables are not known in this scope. Local variables are introduced by
∀ and the ∃ quantifications. It is usually not the case that an argument that contains variables
bound by quantifications are constant. This is why we replace a term (−→e)i of predicate variable

27

28 Chapter 4. Detecting constants

X1

X2

X3

X5

X4

(n1,m1, o1, p1 := n1,m1, 4, p1)

(n2,m2 := o1, p1)

(n3 := n1)

(n5,m5 := n2,m2)

(n5,m5 := m2, n2)

(m1, n1, o1, p1 := n3, n3, 4, n3 + 1)

(n3 := n4)

(n5 := n3)

(n4,m4, o4 := n4,m4 + 1, n4)

Figure 4.1: Dependency graph of Example 4.1.3

X(−→e) to the value NaC if (−→e)i contains a local variable. Here NaC stands for not a constant.
If we have a set of local variables we can use the function RemoveLocal, as defined below, to
remove local variables from assignments.

Definition 4.1.4. For assignment
−→
d := −→e the function RemoveLocal(local,−→e), where local is

the set of local variables, is defined as:

(−→e)i :=
{

(−→e)i if FV ((−→e)i) ∩ local = ∅
NaC if FV ((−→e)i) ∩ local 6= ∅

The set of local variables of predicate formula ϕ of equation σX(
−→
d :
−→
D) = ϕ is FV (ϕ) \

−→
d

Using the dependency graph we know how parameters are affected by other equations, moreover
how some parameters affect other parameters. We now need a way to keep track which param-
eters are assumed to be constant, which parameters are not constant and for which parameters
we do not know it yet. Here we encode these three possibilities by adding assertions:

Parameter n is assumed to be constant assertion {n = v}, where v is a constant
value, is present

Parameter n is not constant assertion {n = NaC}, where NaC is short
for Not a Constant, is present

It is unknown if parameter n is constant or not No assertion about parameter n is present

There can be at most one assertion per parameter since a parameter cannot have multiple con-

28

4.1. The algorithm ConstElm 29

stant values. The predicate κ is used to obtain the initial assertions. Every predicate variable in
κ instantiates parameters of the corresponding PBES. These instantiations are the initial asser-
tions. For example for κ = X4(1, 2, 3) with the PBES of example 4.1.3, the initial assertions are
{n4 = 1}, {m4 = 2} and {o4 = 3}. It can be the case that a predicate κ instantiates a predicate
variable with two different values, e.g. κ = X(0) ∧X(1) for PBES µX(n : N) = n > 2. In this
case parameter n cannot be a constant, thus the assertion {n = NaC} is the initial assertion.
The assertions can now be used to calculate values of the right hand side of the assignments of
the edges of the dependency graph. Not all edges have to be calculated, only the edges starting
from vertices for which assertions are added. In the previous example, only edges starting from
X4 have to be calculated since only the parameters of X4 have an assertion.

We now present an analysis of what happens if we investigate edge {Xi, dj := di, Xj} and have
the assertion {di = v} for constant v. We consider the following three cases for dj :

1. No assertion for dj is present; this means it is not yet known if dj is a constant or a non
constant. After the assignment dj := di, the assertion {di = v} must be added.

2. There already is an assertion for dj , namely {dj = w}, where w is a constant. If:

• v = w: after the assignment dj := di the existing assertion is still correct.

• v 6= w: after the assignment dj := di the assertion {dj = w} is wrong because dj is
assigned a different value than w. This means dj is not a constant and the assertion
{dj = w} must be replaced by {dj = NaC}.

3. There already is an assertion for dj , namely {dj = NaC}. This assertion can never change.

Note that during this analysis new assertions are added, and old assertions are replaced. We
need to check if this new set of assertions is valid and detect if more assertions can be added.
This is done by inspecting the edges again. Not all edges have to be inspected, only those edges
starting from an equation of which the parameters have new assertions. This can be done with
the help of the dependency graph. Using this analysis we can derive an algorithm that detects
constant parameters:

We will now describe an algorithm for finding constants using predicate κ and PBES E . For this
we will use a set S, which is the set of vertices that has to be inspected. This set is initially empty.

29

30 Chapter 4. Detecting constants

1. G = (V,E, L) = dependency graph of E

2. For every predicate variable instantiation Xi(v) in κ, where v is a constant value:

• If there is no assertion for di yet, add assertion {di = v} and add Xi to global set S.

• If there is already is an assertion {di = w} (because predicate variable Xi occurs
multiple times in κ) and v 6= w, replace {di = w} by {di = NaC}. Note that Xi was
already placed in the set S when assertion {di = w} was added.

3. While S is not empty do:

(a) Take a vertex Xi from S, and remove Xi from S.

(b) For all edges (Xi, l, Xj), use the assertions to calculate the right hand side of assign-
ment l.

(c) For all parameters of Xj :

• If the value of the assignment to parameter dj cannot be calculated because it
depends on an unknown value:

– If there was an assertion {dj = v} present, replace the assertion {dj = v} by
{dj = NaC} and add Xj to S.

– If there was no assertion for dj present, add the assertion {dj = NaC} and
add Xj to S.

• If the value v of the assignment to parameter dj can be calculated:

– If v invalidates an assertion {dj = w}, replace {dj = w} by {dj = NaC} and
add Xj to S

– If there is no assertion for dj , add the assertion {dj = v} and add Xj to S.

In the first step the graph is constructed using Definition 4.1.2. The second step initializes the
algorithm. Step three propagates known values and detects constants and non constants. If an
assertion is added or replaced for a parameter of vertex Xi, this vertex has to be investigated
again, so it is put back in the global set S.
Every iteration a vertex is removed from S, however, also multiple vertices can be added to
S. Still this algorithm always terminates. This is true because a vertex is only added when an
assertion changes. An assertion for parameter d can change from:

• no assertion for d to assertion {d = v} for constant v.

• no assertion for d to assertion {d = NaC}.

• assertion {d = v} for constant v to {d = NaC}.

Here it is clear that an assertion can change at most two times, i.e. from no assertion to {d = v}
to {d = NaC}. This means the iteration can only be executed # parameters ×2 times.

After the algorithm finishes, some parameters have an assertion and some do not. Here we dis-
cuss what to do in such a case.

30

4.1. The algorithm ConstElm 31

There is an assertion {d = v} for parameter d Parameter d is a constant for the calcula-
tion of predicate variables κ. All occur-
rences of parameter d in the correspond-
ing predicate formula may be replaced
by constant v. Since parameter d does
not occur in the predicate formula any-
more it can be removed from the equa-
tion. This can be done with using Defi-
nition 3.1.11.

There is an assertion {d = NaC} for parameter d Parameter d is a non constant, it may
not be replaced by any value

There is no assertion for parameter d Note that parameters of a certain equa-
tion for predicate variable X only get as-
sertions when X can be reached in the
dependency graph from a node in the set
S. The fact that parameter d belong-
ing to the equation for a predicate vari-
able Xi does not have an assertion means
that the equation for predicate variable
Xi cannot be reached. This means that
the equation for predicate Xi is not in-
fluential for the calculation of κ and may
be removed.

Example 4.1.5. Here we discuss how we can use the algorithm presented above to find constants
of the PBES presented in Example 4.1.3 if we want to know the solution of predicate κ =
X4(0, 0, 0). For this the dependency graph which was already created in Example 4.1.3 will be
used. In step two of our algorithm three assertions are added: {n4 = 0}, {m4 = 0} and {o4 = 0}.
Finally vertex X4 is put in the global set S. Here we present the bookkeeping for the initialization
phase:

S = {X4}
Assertions: {n4 = 0}, {m4 = 0},{o4 = 0}

The iteration step removes X4 from S and the values of the right hand side of l of all outgoing
edges of X4 are calculated. This results in (X4, (n4,m4, o4 := 0, 1, 0), X4) and (X4, (n3 := 0), X3).
According to the algorithm, the assertion {m4 = 0} is replaced by {m4 = NaC}, the assertion
{n3 = 0} is added, and X4 and X3 are added to the set S. We can continue the iteration step
until S is empty. The bookkeeping when the algorithm finishes is presented below.

S = ∅
Assertions: {n1 = NaC}, {m1 = NaC},{o1 = 4}, {p1 = NaC},

{n2 = 4}, {m2 = NaC},
{n3 = NaC},
{n4 = 0}, {m4 = NaC}, {o4 = 0},
{n5 = NaC}, {m5 = NaC}

From the list of assertions we can read that X1 has one constant, X2 has one constant and X4

has two constants. The constants from the assertions can be substituted for the corresponding
parameters. When we do this we obtain the following PBES:

31

32 Chapter 4. Detecting constants

µX1(n1,m1, p1 : N)= (n1 ≤ m1 ∨X2(4, p1)) ∧X3(n1) ∧X1(n1,m1, 4, p1)
µX2(m2 : N) = X5(4,m2) ∨X5(m2, 4)
νX3(n3 : N) = n3 ≤ 3 ∨X1(n3, n3, 4, n3 + 1)
νX4(m4 : N) = 0 ≤ (m4 + 0) ∨ (X3(0) ∧X4(0,m4 + 1, 0))
µX5(n5,m5 : N) = n5 > m5 ∨X3(n5)

Note that now data term 0 ≤ (m4 + 0) of the equation for X4 can be reduced to true. This
means the whole right hand side of the equation for X4 can be simplified to true.
In the next section we use the ability to calculate the value of data terms using the assertions to
present a ConstElm algorithm that can find more constant values.

4.1.2 Adding conditions

The algorithm described in Section 4.1.1 finds constants by inspecting the dependency graph.
The dependency graph does not consider that some assignments do not influence the solution of
a PBES. For example, if we want to know the truth of predicate X(5), given that X is defined
by the PBES µX(n : N) = (n > 3 ∨ X(n + 1)) ∧ X(n), substituting 5 for parameter n in this
PBES, results in µX(n : N) = (5 > 3 ∨ X(6)) ∧ X(5). Here n is not constant, but simplifying
the right hand side yields µX(n : N) = X(5), since 5 > 3 yields true and true ∨ X(6) yields
true. In this example n is constant, but our algorithm will not mark n as such. The reason that
n is not marked as a constant is because of the predicate variable instantiation X(n+ 1). This
predicate variable instantiation results in the edge (X, (n := n+ 1), X) in the dependency graph
of the PBES. This edge will mark n as NaC. When n > 3 holds, predicate variable X(6) is
not influential; the predicate formula (n > 3 ∨X(6)) ∧X(5) can be rewritten to a form where
predicate variable X(6) is no longer present. This means that predicate variable instantiation
X(6) only is influential, if n ≤ 3. On a dependency graph level, edge (X, (n := n + 1), X)
only has to be inspected if n ≤ 3. Here n ≤ 3 is a condition that can be placed on the edge
(X, (n := n+1), X). In the next sections we present a way to calculate the conditions that can be
placed on edges. When we use the algorithm of the previous section, but do not consider edges
in step 3b where the condition can be reduced to false, more constants can be found. When
the improved algorithm is applied on the example presented above, n will be marked as constant.

By the structure of a predicate formula, we can represent the formula as a tree. This representa-
tion can enhance readability and can make reasoning about the formula easier. In the following
sections we will use both the tree representation and the textual representation. For example,
we will use both the following notations:

∧

b ∨

X c

b ∧ (X ∨ c)

32

4.1. The algorithm ConstElm 33

4.1.2.1 True/false conditions

We usually cannot tell whether a predicate variable evaluates to true or false before calculating
the whole PBES. Data terms on the other hand can be evaluated when parameter values are
known. Therefore, determining if a predicate formula ϕ is true or false is done by inspecting
data terms. For example, if ϕ = b1 ∧ b2, ϕ is only true if b1 ∧ b2 holds, and ϕ is false when
¬b1 ∨ ¬b2 holds. In this case condition ”b1 ∧ b2” is the negation of ”¬b1 ∨ ¬b2”. Unfortunately
this is not always the case because we do not know the value of predicate variables; if we have
ϕ = b ∧ Y (−→e), we know ϕ is false if ¬b holds, but cannot determine when ϕ is true without
evaluating the predicate variable Y (−→e). Therefore we keep track of a true-condition and a false-
condition, that state what should hold for a predicate formula to evaluate to true and false
respectively.
The following observation explains why true/false conditions are necessary: for predicate vari-
able instantiation X(e) ∈ PV (ϕ) and, using the assertions discussed in Section 4.1.1, if we know
that the true-condition or false-condition holds, then X(e) is not influential. This is true be-
cause ϕ can be reduced to true if its true-condition holds, and ϕ can be reduced to false if its
false-condition holds. Next we define what the true-condition and false-condition for a predicate
formulas are.

Definition 4.1.6. The true-condition and false-condition of a predicate formula ϕ are calculated
with the functions TC(ϕ) and FC(ϕ), defined as:

TC(b) = b
FC(b) = ¬b
TC(X(e)) = false
FC(X(e)) = false
TC(ϕ1 ∧ ϕ2) = TC(ϕ1) ∧ TC(ϕ2)
FC(ϕ1 ∧ ϕ2) = FC(ϕ1) ∨ FC(ϕ2)
TC(ϕ1 ∨ ϕ2) = TC(ϕ1) ∨ TC(ϕ2)
FC(ϕ1 ∨ ϕ2) = FC(ϕ1) ∧ FC(ϕ2)
TC(∀d:D.ϕ) = ∀d:D.TC(ϕ)
FC(∀d:D.ϕ) = ∃d:D.FC(ϕ)
TC(∃d:D.ϕ) = ∃d:D.TC(ϕ)
FC(∃d:D.ϕ) = ∀d:D.FC(ϕ)

Property 4.1.7. The functions TC(ϕ) and FC(ϕ) have the following properties:

1. TC(ϕ) → (ϕ)
ϕ → ¬FC(ϕ)

2. TC(ϕ) and FC(ϕ) do not contain predicate variables

3. TC(ϕ) and FC(ϕ) are the weakest functions for which property (1) and (2) holds.

Proof.
(1) The proof of this property is straightforward using induction on the structure of a PBES.
here we will only present the proof of TC(ϕ1 ∧ ϕ2) → (ϕ1 ∧ ϕ2)

33

34 Chapter 4. Detecting constants

Induction Hypothesis: TC(ϕ1) → (ϕ1) ∧ TC(ϕ2) → (ϕ2)
TC(ϕ1 ∧ ϕ2) → (ϕ1 ∧ ϕ2)

= {Definition of TC(ϕ)}
TC(ϕ1) ∧ TC(ϕ2)→ (ϕ1 ∧ ϕ2)

⇐ {Induction Hypothesis}
ϕ1 ∧ ϕ2 → (ϕ1 ∧ ϕ2)

= {logic}
true

(2) The proof of this property again can be proved using induction on the structure of a PBES.
By looking at the base cases it can also be seen that no predicate variables are present in the
conditions.
(3) We will only prove this for TC(ϕ), the proof for the FC(ϕ) is similar. Suppose there is a
weaker function T (ϕ) for which (1) and (2) holds. Then we can show this function T (ϕ) = TC(ϕ),
for all environments η and ε:
(JT (ϕ)→ ϕKηε ∧ JTC(ϕ)→ T (ϕ)Kε)→ JT (ϕ)Kε = JTC(ϕ)Kε

case b:

JT (b)Kηε→ JbKηε
= {Semantics, T contains no predicate variables}

JT (b)Kε→ JbKε

Solutions for JT (b)Kε are: false, b
The weakest function JT (b)Kε = b = TC(b)

case X:

JT (X(e))Kηε→ JX(e)Kηε
= {Semantics, T contains no predicate variables}

JT (X(e))Kε→ (η(X))(JeKε)
⇒ {Take η(X) = λv:D.false}

JT (X(e))Kε→ false

Solutions for JT (X(e))Kε are: false
The weakest function JT (X(e))Kε = false = TC(b)

Using induction hypothesis:
(JT (ϕi)→ ϕiKηε ∧ JTC(ϕi)→ T (ϕi)Kε)→ JT (ϕi)Kε = JTC(ϕi)Kε

case ϕ1 ∧ ϕ2:

JT (ϕ1 ∧ ϕ2)Kηε→ Jϕ1 ∧ ϕ2Kηε
= {Semantics, T contains no predicate variables, logic}

(JT (ϕ1 ∧ ϕ2)Kε→ (Jϕ1Kηε) ∧ (JT (ϕ1 ∧ ϕ2)Kε→ (Jϕ2Kηε)

34

4.1. The algorithm ConstElm 35

From JTC(ϕ1 ∧ ϕ2)→ T (ϕ1 ∧ ϕ2)Kε we can derive:
(JTC(ϕ1)Kε→ JT (ϕ1 ∧ ϕ2)Kε) ∨ (JTC(ϕ2)Kε→ JT (ϕ1 ∧ ϕ2)Kε)
Case distinction:

• Case JTC(ϕ1)Kε→ JT (ϕ1 ∧ ϕ2)Kε ∧ ¬(JTC(ϕ2)Kε→ JT (ϕ1 ∧ ϕ2)Kε)
From the induction hypothesis it holds that JT (ϕ1 ∧ ϕ2)Kε = JTC(ϕ1)Kε.
Since we have ¬(JTC(ϕ2)Kε→ JT (ϕ1∧ϕ2)Kε) = JTC(ϕ2)Kε∧¬JT (ϕ1∧ϕ2)Kε and JT (ϕ1∧
ϕ2)Kε = JTC(ϕ1)Kε, we may conclude that JTC(ϕ1)Kε→ JTC(ϕ2)Kε. This means we have:
JT (ϕ1 ∧ ϕ2)Kε = JTC(ϕ1)Kε ∧ JTC(ϕ2)Kε

• Case JTC(ϕ2)Kε→ JT (ϕ1 ∧ ϕ2)Kε ∧ ¬(JTC(ϕ1)Kε→ JT (ϕ1 ∧ ϕ2)Kε)
Symmetrically

• Case JTC(ϕ1)Kε→ JT (ϕ1 ∧ ϕ2)Kε ∧ JTC(ϕ2)Kε→ JT (ϕ1 ∧ ϕ2)Kε
Induction hypothesis: JT (ϕ1 ∧ ϕ2)Kε = JTC(ϕ1)Kε
Induction hypothesis: JT (ϕ1 ∧ ϕ2)Kε = JTC(ϕ2)Kε
Hence: JT (ϕ1 ∧ ϕ2)Kε = JTC(ϕ1)Kε ∧ JTC(ϕ2)Kε

Conclusion: JT (ϕ1 ∧ ϕ2)Kε = JTC(ϕ1)Kε ∧ JTC(ϕ2)Kε

case ϕ1 ∨ ϕ2:

JT (ϕ1 ∨ ϕ2)Kηε→ Jϕ1 ∨ ϕ2Kηε
= {Semantics, T contains no predicate variables, logic}

(JT (ϕ1 ∨ ϕ2)Kε→ (Jϕ1Kηε) ∨ (JT (ϕ1 ∨ ϕ2)Kε→ (Jϕ2Kηε)

From JTC(ϕ1 ∨ ϕ2)→ T (ϕ1 ∨ ϕ2Kε we can derive:
(JTC(ϕ1)Kε→ JT (ϕ1 ∨ ϕ2)Kε) ∧ (JTC(ϕ2)Kε→ JT (ϕ1 ∨ ϕ2)Kε)

We will invest this case:

• Induction hypothesis: JT (ϕ1 ∨ ϕ2)Kε = JTC(ϕ1)Kε
Induction hypothesis: JT (ϕ1 ∨ ϕ2)Kε = JTC(ϕ2)Kε
Hence: JT (ϕ1 ∨ ϕ2)Kε = JTC(ϕ1)Kε ∨ JTC(ϕ2)Kε

Conclusion: JT (ϕ1 ∨ ϕ2)Kε = JTC(ϕ1)Kε ∨ JTC(ϕ2)Kε

Case Qd:D.ϕ1:

JT (Qd:D.ϕ1)Kηε→ JQd:D.ϕ1Kηε
= {Semantics, T contains no predicate variables, logic}

(JT (Qd:D.ϕ1)Kε→ Qv:D.Jϕ1Kηε[v/d])

35

36 Chapter 4. Detecting constants

From JQd:D.TC(ϕ1)→ T (Qd:D.ϕ1)Kε we can derive:
JQd:D.TC(ϕ1)Kε→ JT (Qd:D.ϕ1)Kε

We will invest this case:

• Induction hypothesis: JQd:D.TC(ϕ1)Kε = JT (Qd:D.ϕ1)Kε

Conclusion: JQd:D.TC(ϕ1)Kε = JT (Qd:D.ϕ1)Kε

To keep track of which true/false conditions hold at a certain point in the tree of a predicate
formula, the true/false conditions are placed on nodes of the predicate formula. For node ⊗, we
write the true/false conditions to this node as ⊗TC(⊗)

FC(⊗) . Now the true-condition on a node states
what condition should hold to make the whole subtree of the node true, and the false-condition
states what condition should hold to make the whole subtree of the node false. For readability
purposes we do not write true/false conditions on data terms and predicate variables. These
conditions can be read directly from the data term/predicate variable using Definition 4.1.6.

Example 4.1.8. Here we show how to use the functions TC(ϕ) and FC(ϕ) as defined in Defi-
nition 4.1.6 to add conditions to the nodes of predicate formula ϕ = X ∧ (b ∨ (c ∨ Y)). Here X
and Y are predicate variables and b and c are data terms. We apply the definitions to get the
following derivation:

TC(X ∧ (b ∨ (c ∨ Y)))
= {def TC(ϕ1 ∧ ϕ2)}

TC(X) ∧ TC((b ∨ (c ∨ Y)))
= {def TC(X), def TC(ϕ1 ∨ ϕ2)}

false ∧ (TC(b) ∨ TC((c ∨ Y)))
= {def TC(b), def TC(ϕ1 ∨ ϕ2)}

false ∧ (b ∨ (TC(c) ∨ TC(Y)))
= {def TC(b), def TC(X)}

false ∧ b ∨ c
= {logic}

false

This derivation continued even though it is clear that (false∧ . . .) would result in the condition
false. This is done because now all true-conditions of all sub trees of ϕ are known:

TC(X ∧ (b ∨ (c ∨ Y))) = false
TC(b ∨ (c ∨ Y)) = b ∨ c
TC(c ∨ Y) = c

The false-conditions can be calculated in a similar way using FC(ϕ). When we place the
true/false conditions on the corresponding nodes the result is:

36

4.1. The algorithm ConstElm 37

∧false
false

X ∨b∨c
false

b ∨c
false

c Y

When looking at the predicate formula ϕ, if there is a predicate variable X in the subtree of ϕ,
and TC(ϕ) or FC(ϕ) holds, X is not influential. This means the predicate variable can only
be influential if both the true-condition and the false-condition do not hold. Furthermore, if for
example ϕ = ϕ1 ∧ ϕ2 and X is in the subtree of ϕ2, X is not influential if either TC(ϕ2) or
FC(ϕ2) holds. All nodes ϕ on the path from the root to X are nodes of which X ∈ PV (ϕ). This
means that in general, a predicate variables is not influential if any true/false condition holds on
a node which is on the path from the root to that predicate variable.

True/false conditions consist of data terms, together with logical connectors. A data term can
contain variables; such a variable is either a parameter or a variable bound by a quantification,
which is higher up in the tree. The true/false conditions obtained using Definition 4.1.6 however,
do not bind these variables. As an illustration take the following predicate formula: ∀d:N.(n+d >
2 ∧X) ∨ Y , where n is a parameter of type N. In the tree with true/false conditions added, d
not bound in the false-condition n+ d ≤ 2

∀false
false d : N

∨false
false

∧false
n+d≤2

n+ d > 2 X

Y

This is solved by binding the data term in which d occurs with a quantification. Similar like
in Definition 4.1.6, for a universal quantification, the true-condition is prefixed with a univer-
sal quantification and the false-condition is prefixed with an existential quantification. For an
existential quantification this is the other way around. In this case the new false-condition is
∃d:N.(n+ d ≤ 2), X is influential if ¬(∃d:N.(n+ d ≤ 2)) holds. Later we will give a definition that
adds quantifications to a set of conditions.

37

38 Chapter 4. Detecting constants

4.1.2.2 inf-condition

In this section we will give the definition of the inf-condition for a certain predicate variable
instantiation X(e). An inf-condition is the condition that must hold for the predicate variable
instantiation to be influential. When constructing edges for the dependency graph from the
predicate variable instantiation, the inf-condition can be placed on the edges to indicate when
the edge is influential. We start by giving a definition of a function that adds quantifications to
a set of conditions. This will later be used to bind unbound variables in true/false conditions,
as discussed in the previous section.

Definition 4.1.9. To add quantifications to elements of a set of true/false conditions cs, we
introduce ApplyQ(Qd:D, cs) which is defined as:

ApplyQ(Qd:D, cs) = {Qd:D.c|c ∈ cs}

Using Definition 4.1.9 we can collect all true-conditions and false-conditions for a predicate vari-
able instantiation Xi(e) in predicate formula ϕ, without having free variables. This is done by
collecting all conditions from the root of ϕ to Xi(e). Here we assume that predicate variable in-
stantiations are unique in a certain predicate formula ϕ. The algorithm in Appendix B provides
an algorithm without this constraint. This is done by constructing the conditions of all predicate
variable instantiations at the same time.

Definition 4.1.10. The set of all true-conditions of predicate variable instantiation Xi(e) in
predicate formula ϕ is CondT (Xi(e), ϕ), where CondT (Xi(e), ϕ) is defined as:

CondT (Xi(e), b) = ∅
CondT (Xi(e), Xj(k)) = ∅
CondT (Xi(e), ϕ1 ⊕ ϕ2) = TC(ϕ1 ⊕ ϕ2) ∪ CondT (Xi(e), ϕ1) if Xi(e) ∈ PV (ϕ1)

TC(ϕ1 ⊕ ϕ2) ∪ CondT (Xi(e), ϕ2) if Xi(e) ∈ PV (ϕ2)
∅ otherwise

CondT (Xi(e),∀d:D.ϕ) ={
TC(∀d:D.ϕ) ∪ApplyQ(∀d:D, CondT (Xi(e), ϕ)) if Xi(e) ∈ PV (ϕ)
∅ otherwise

CondT (Xi(e),∃d:D.ϕ) ={
TC(∃d:D.ϕ) ∪ApplyQ(∃d:D, CondT (Xi(e), ϕ)) if Xi(e) ∈ PV (ϕ)
∅ otherwise

The set of all false-conditions of predicate variable instantiation Xi(e) in predicate formula ϕ is
CondF (Xi(e), ϕ), where CondF (Xi(e), ϕ) is defined as:

CondF (Xi(e), b) = ∅
CondF (Xi(e), Xj(k)) = ∅
CondF (Xi(e), ϕ1 ⊕ ϕ2) = FC(ϕ1 ⊕ ϕ2) ∪ CondF (Xi(e), ϕ1) if Xi(e) ∈ PV (ϕ1)

FC(ϕ1 ⊕ ϕ2) ∪ CondF (Xi(e), ϕ2) Xi(e) ∈ PV (ϕ2)
∅ otherwise

38

4.1. The algorithm ConstElm 39

CondF (Xi(e),∀d:D.ϕ) ={
FC(∀d:D.ϕ) ∪ApplyQ(∃d:D, CondF (Xi(e), ϕ)) if Xi(e) ∈ PV (ϕ)
∅ otherwise

CondF (Xi(e),∃d:D.ϕ) ={
FC(∃d:D.ϕ) ∪ApplyQ(∀d:D, CondF (Xi(e), ϕ)) if Xi(e) ∈ PV (ϕ)
∅ otherwise

Using CondT (Xi(e), ϕ) and CondF (Xi(e), ϕ) we can collect all true/false conditions for a predi-
cate variable in a certain predicate formula. A predicate variable instantiation is only influential
if the conjunction of the negation of all these conditions does not hold. Therefore we introduce
a new definition.

Definition 4.1.11. For a set of true/false conditions cs, Neg(cs) is defined as:

Neg(cs) =
∧
{¬c|c ∈ cs}

Note that if cs = ∅, Neg(cs) = true

We can now give a formal definition of an inf-condition

Definition 4.1.12. inf-condition of predicate variable Xi(e) in predicate formula ϕ is defined
as:

Neg(CondT (Xi(e), ϕ)) ∧Neg(CondF (Xi(e), ϕ))

If the inf-condition for predicate variable Xi(e) holds, Xi(e) is influential.

Note. An inf-condition is expressed in predicate logic, which is in general undecidable. Therefore
we cannot always evaluate the condition. If the inf-condition for predicate variable Xi(e) does
not hold, Xi(e) is not influential. If the inf-condition for predicate variable Xi(e) holds Xi(e) is
influential. If the inf-condition for predicate variable Xi(e) cannot be reduced to true or false
we consider Xi(e) to be influential and do not skip the corresponding edge in the dependency
graph. This is a safe approximation.

Now that the inf-condition is defined, we give an example of how to construct it.

Example 4.1.13. When true/false conditions are added to a predicate formula, the inf-conditions
can be read from the formula. To illustrate this the tree with conditions of Example 4.1.8 is used
to read inf-condition for X and Y . For X the only true/false-conditions on the path from the
root to X is false, the negation of this is true. On the path from the root to Y we encounter the
true/false-conditions (b∨ c) and (c). The inf-condition of Y is the conjunction of the negation of
both, which is ¬(b ∨ c) ∧ ¬c, which can be simplified to ¬(b ∨ c). When looking at the predicate
formula we indeed see that if b or c holds, the expression b ∨ c ∨ Y is always true and Y is thus
only influential if its inf-condition holds.

When we have an inf-condition for every predicate variable instantiation, we can make a depen-
dency graph and add these conditions. An edge of a dependency graph can now be written as

39

40 Chapter 4. Detecting constants

the four tuple (Xi, (
−→
d) := (−→e), cond,Xj):

• Xi ∈ V is the source of the edge.

•
−→
d := −→e are the argument assignments.

• cond are the conditions that should hold before examining this edge.

• Xj ∈ V is the destination of the edge.

Now we give an example of how ConstElm with conditions works.

Example 4.1.14. Here we give an example of how the algorithm ConstElm(E , κ) works. Con-
sider the following PBES:

µX1(n1 : N) = (n1 ≤ 2 ∨X2(n1, n1)) ∧ (n1 > 2 ∨X3(n1, n1))
µX2(m2, n2 : N) = (∀p : N.n2 = m2 ∨X1(p)) ∨ n2 > 5
νX3(m3, n3 : N) = (n3 ≤ m3 ∨X3(n3,m3)) ∧ (∃p : N.p ≤ n3 ∨X2(n3, p))

We first make a dependency graph and then discuss the result for different predicates κ. Using
the definitions we can add true-conditions and false-conditions on the nodes. We also add quan-
tifications to true/false-conditions of nodes below a quantification, and replace arguments with
local variables to NaC. The result is shown below.

40

4.1. The algorithm ConstElm 41

∧false
false

∨n1≤2
false

n1 ≤ 2 X2(n1, n1)

∨n1>2
false

n1 < 2 X3(n1, n1)

∨(∀p:N.n2=m2)∨n2>5
false

∀∀p:N.n2=m2
false

∨∀p:N.n2=m2
false

n2 = m2 X1(NaC)

n2 > 5

∧false
false

∨n3≤m3
false

n3 ≤ m3 X3(n3,m3)

∃∃p:N.p≤n3
false p : N

∨∃p:N.p≤n3
false

p ≤ n3 X2(n3, NaC)

We can now read the inf-conditions for predicate variables and using these conditions we can
make edges for the dependency graph. First we simplify the inf-conditions, then we add them
to the edges of the dependency graph:

(X1, (m2, n2 := n1, n1), n1 > 2, X2)
(X1, (m3, n3 := n1, n1), n1 ≤ 2, X3)
(X2, (n1 := NaC), (n2 = m2 ∧ n2 ≤ 5), X1)
(X3, (m3, n3 := n3,m3), n3 > m3, X3)
(X3, (m2, n2 := n3, NaC), false,X2)

41

42 Chapter 4. Detecting constants

We can now make a dependency graph with conditions. In the figure below, the conditions are
added between square brackets.

X1 X2

X3

(m2, n2 := n1, n1)

(m3, n3 := n1, n1)

(n1 := NaC)

(m2, n2 := n3, NaC)

(m3, n3 := n3,m3)

[n1 > 2]

[n1 ≤ 2]

[m2 = n2 ∧ n2 ≤ 5]

[false]

[n3 > m3]

In this graph, an edge is called enabled if its condition does not reduce to false using the current
assertions. We will now investigate some scenarios:

• Assume κ = X1(0), this means the assertion {n1 = 0} is added and vertex X1 is marked
for further inspection. The only valid edge now is (X1, (m3, n3 := n1, n1), n1 ≤ 2, X3),
which means the assertion {m3 = 0} and {n3 = 0} are added, and vertex X3 is inspected
further. Since vertex X3 has no more valid edges the algorithm stops, the result is that the
parameters of X1 and X3 are marked as constants with the value 0. The second equation
can be removed.

• Assume κ = X1(10), this means that the assertion {n1 = 10} is added and vertex X1 is
marked for further inspection. After one iteration the assertions {m2 = 10} and {n2 = 10}
are added and vertex X2 is marked for further inspection. Since vertex X2 has no more
valid edges the algorithm stops. The constant parameters are the parameters of X1 and
X2, their values are 10. The third equation can be removed.

• Assume κ = X(3), this means that the assertion {n1 = 3} is added and vertex X1 is
marked for further inspection. After one iteration the assertions {m2 = 3} and {n2 = 3}
are added and vertex X2 is marked for further inspection. The next iteration the edge
(X2, (n1 := NaC), (n2 = m2 ∧ n2 ≤ 5), X1) is valid, so the assertion {n1 = 3} is replaced
by the assertion {n1 = NaC} and vertex X1 is marked for further inspection. Since
conditions with NaC values cannot be reduced to false, the next iteration both the edge
(X1, (m2, n2 := n1, n1), n1 > 2, X2) and (X1, (m3, n3 := n1, n1), n1 ≤ 2, X3) are valid.
When we continue the algorithm it ends in a state where all parameters are not constant.

42

4.2. Example using ConstElm 43

4.2 Example using ConstElm

In this section we show the importance of ConstElm using the mCRL2 tool set. Here we apply
ConstElm on the same PBESs as discussed in Section 3.3. These PBESs specify properties about
the alternating bit protocol, which is presented in Appendix C. For completeness we repeat the
four properties:
Property 1: No deadlock may occur

nu X. ([true]X && <true>true)

Property 2: A message that is sent can always eventually be received

nu X. ([true]X && forall d:Nat. [r1(d)] mu Y. (<true>Y || <s4(d)>true))

Property 3: The protocol does not generate new messages

forall d:Nat. nu X. (([!r1(d)]X && [s4(d)]false))

Property 4: The protocol does not duplicate messages

[true*] forall d:D. [r1(d).(!r1(d) && !s4(d))*.s4(d).(!r1(d))*.s4(d)]false

While creating a PBESs an intermediate LPS file is made. The mCRL2 tool kit has a tool
called lpsconstelm which, as the name suggests, detects constants in the LPS file. In this case
no constants are detected in the LPS file. Since a PBES only verifies a property of the ABP
specification (i.e. not always the whole specification is used), it may detect more constants. We
will present two tests, one test with only the algorithm as presented in Section 4.1, thus without
the use of conditions, and one test which also takes conditions into account.

4.2.1 Algorithm without conditions

All tests are done on a windows machine with a 1.8Ghz Pentium M processor and 1Gb of RAM.
The results are presented below:

Property Running time Constants found Parameters remaining Type
1 172 ms 0 3 Nat

0 4 Pos
0 4 Bool

2 218 ms 0 7 Nat
0 8 Pos
0 8 Bool

3 187 ms 0 7 Nat
4 4 Pos
2 6 Bool

4 219 ms 0 7 Nat
0 4 Pos
0 6 Bool

From this table we see that the running time of the algorithm is low. For the PBES encoding
property three, the algorithm finds constants and the PBES can be simplified. This shows that

43

44 Chapter 4. Detecting constants

ConstElm is useful on a PBES level, even more because no constants were found on a LPS level.
These simplifications usually (see Section 4.2.3) are not useful when using instantiation [DPWar]
to solve a PBES. This is because instantiation also uses the information of κ. On the other
hand, symbolic approximation will benefit from ConstElm. Since no stable implementation of
this algorithm exists we cannot measure how much can be gained.

4.2.2 Algorithm with conditions

Here we present the results for ConstElm applied in the same PBESs as the previous section,
now using the algorithm with conditions:

Property Running time Constants found Parameters remaining Type
1 1406 ms 0 3 Nat

0 4 Pos
0 4 Bool

2 1718 ms 0 7 Nat
0 8 Pos
0 8 Bool

3 1125 ms 0 7 Nat
4 4 Pos
2 6 Bool

4 1765 ms 0 7 Nat
0 4 Pos
0 6 Bool

Although ConstElm with conditions can detect more parameters in theory, it does not do so
with for the four PBESs used here. This while the running time of the algorithm has increased.
The extra time needed is mainly used to (try to) rewrite conditions. Unfortunately, for the
systems tested, ConstElm with conditions cannot find more constants than ConstElm without
conditions. Only with specially constructed test PBESs, ConstElm with conditions removes
more parameters than ConstElm without conditions. An example of such a constructed PBES
is:

µX(n : N) = 2 < n ∨X(n+ 1)
κ = X(5)

Here ConstElm with conditions detects parameter n as constant. ConstElm without conditions
does not detect the constant parameter n.

4.2.3 ConstElm combined with ParElm

ParElm detects parameters that do not influence the solution of a PBES and ConstElm uses
information of a predicate κ which we want to check to remove parameters. We can apply both
algorithms (if κ is known) on a PBES, but the order does matter. If ConstElm is applied first,
constant parameters are removed and the parameters in the predicate formula ϕ are replaced by
constant values. These constant values may lead to the removal of occurrences of parameters in
ϕ if the PBES is simplified using logic rules. To illustrate this we present an example.
Suppose we want to check property κ = X(0, true) for PBES:

44

4.2. Example using ConstElm 45

µX(n : N, b : B) = (n > 5 ∧ b) ∨X(n,¬b)

If the algorithm ParElm is used first, none of the parameters are removes because n and b both
occur in a data term. When the algorithm ConstElm is used first, n is marked as constant with
value 0. The resulting PBES is:

µX(b : B) = (0 > 5 ∧ b) ∨X(¬b)

This PBES can be simplified to:

µX(b : B) = X(¬b)

Now ParElm can remove the parameter b which results in the simple PBES:

µX = X

The reason that this works is because ConstElm may change the solution of a PBES as long as
the solution of κ does not change. The altered PBES sometimes can be simplified in such a way
that parameters in data terms are removed.

However, running ParElm after ConstElm only removed more parameters in specially con-
structed test cases. Running ConstElm after ParElm will never lead to the detection of more
constants by ConstElm, since ParElm produces an equal PBES (modulo typing).

45

46

Chapter 5

Conclusion

In this thesis we have presented techniques that can be used to simplify PBESs. These techniques
work on the syntax of a PBES, so they can be applied before the calculation of the solution of a
PBES. The presented techniques can be divided into two parts; techniques to identify superfluous
parameters and techniques to identify constant parameters in PBESs.

The first technique, presented in Chapter 3, transforms the problem of finding superfluous pa-
rameters to a reachability problem. A method called instantiation [DPWar], which can be used
to solve PBESs, can benefit when superfluous parameters are removed. This is tested with the
mCRL2 toolkit which has, among other useful tools, a tool that solves PBESs using instantia-
tion. This tool is called pbes2bool. Section 3.3 even presents a PBES which could not be solved
by instantiation before parameters are removed, but can be solved after superfluous parameters
are removed.

The second technique uses some extra information to detect constant values in a PBES. In the
case a PBES encodes a modal checking problem or an equivalence problem, this extra information
is provided by the initial state of the involved process. The technique called symbolic approxi-
mation [GW04] can benefit when constant values are detected. As no stable implementation of
a tool using symbolic approximation exists yet, we cannot tell how much can be gained when
parameters are replaced by constants. Instantiation can, indirectly, benefit from these techniques
too, as explained in Section 4.2.3.

From the techniques presented in this thesis, two tools have been constructed and added to the
mCRL2 toolkit. These tools are named pbesparelm and pbesconstelm. As the names suggest,
pbesparelm detects and removes superfluous parameters from PBESs and pbesconstem detects
if parameters are constant and replaces these parameters by its constant value.

Future work

In [GW05] a technique is proposed that detects patterns in a PBES, for which the solution is
known. Using these patterns could have a positive effect on the computation time needed to

47

solve a PBES. It may be fruitful to research this topic further.

The algorithm ConstElm detects constant values in a PBES. That a parameter is a constant
is an invariant. As stated in [OW08], the (automatic) detection of invariants can improve the
power of e.g. symbolic model checking. This makes detection of invariants an interesting topic
for further research.

As a final note, the mCRL2 toolkit would benefit from a working implementation of a PBES
solver that uses symbolic approximation. This because symbolic approximation can solve a wide
range of PBESs, which cannot be solved using instantiation.

48

Appendix A

Implementation of ParElm

Here we present the functions needed for the algorithm ParElm. The first two functions we
need are DPf and MakeEdges.

DPf(ϕ)

Input:
ϕ : A predicate formula

Output:
The set of influential data terms in predicate formula ϕ

if ϕ = ϕ1 ∧ ϕ2 → return DPf(ϕ1) ∪DPf(ϕ2)
[] ϕ = ϕ1 ∨ ϕ2 → return DPf(ϕ1) ∪DPf(ϕ2)
[] ϕ = ∀e:E .ϕ1 → return DPf(ϕ1)\{e}
[] ϕ = ∃e:E .ϕ1 → return DPf(ϕ1)\{e}
[] ϕ = b → return FV (b)
[] ϕ = Xj(−→e) → return ∅
fi

49

MakeEdges(ϕ,
−→
di)

Input:
ϕ : a predicate formula, initially ϕi of an equation Xi−→
di : The set of parameters of Xi

Output:
The set of edges for the dependency graph, obtained from ϕi and

−→
di

if ϕ = ϕ1 ∧ ϕ2 → return MakeEdges(ϕ1,
−→
di) ∪MakeEdges(ϕ2,

−→
di)

[] ϕ = ϕ1 ∨ ϕ2 → return MakeEdges(ϕ1,
−→
di) ∪MakeEdges(ϕ2,

−→
di)

[] ϕ = ∀e:E .ϕ1 → return MakeEdges(ϕ1,
−→
di)

[] ϕ = ∃e:E .ϕ1 → return MakeEdges(ϕ1,
−→
di)

[] ϕ = b → return ∅
[] ϕ = Xj(−→e) → return {((

−→
di)a, (

−→
dj)b)|(

−→
di)a ∈ FV ((−→e)b)}

fi

The algorithm DPf returns a set of influential parameters in data terms of predicate formula
ϕ (DPf (ϕ)), and MakeEdges returns edges of the dependency graph for an equation σXi(

−→
di :

−→
Di) = ϕi. Not the whole equation is the input of the function MakeEdges, only the necessary
parts, which are the predicate formula ϕi and the parameter list

−→
di . MakeEges searches the

predicate formula ϕi for predicate variables. If a predicate variable Xj(−→e) is encountered, edges
are added from (

−→
di)a to (

−→
dj)b if parameter (

−→
di)a ∈ FV ((−→e)b). Note the similarity of the

two functions DPf and MakeEdges. They can be calculated in one run by tupling the set of
influential parameters and the set of edges.

UsingMakeEdges that makes edges of one equation, we can now introduce the functionMakeGraph,
that makes the dependency graph of a whole PBES.

MakeGraph(E)

Input:
E : A PBES

Output:
The dependency graph G = (V,E) of PBES E

if E = ε → return (∅, ∅)
[] E = (σX(

−→
d :
−→
D) = ϕ)E ′ → return (

−→
d ,MakeEdges(ϕ,

−→
d))

⋃
MakeGraph(E ′)

fi

MakeGraph takes as argument a PBES. The result of this function is a graph (V,E), where
V are the vertices and E are the edges of the graph. We introduce a binary operator

⋃
which

50

works on tuples of sets and has the following property:
(V1, E1)

⋃
(V2, E2) = (V1 ∪ V2, E1 ∪ E2)

Using DPf , which returns a set of influential parameters in data terms of a predicate formula,
we introduce DPp.

DPp(E)

Input:
E : A PBES

Output:
The set of all influential data terms in all predicate formulas

if E = ε → return ∅
[] E = (σX(

−→
d :
−→
D) = ϕ)E ′ → return DPf(ϕ) ∪ DPp(E ′)

fi

DPp returns the set DPp(E) of all influential parameters that occur in data terms of a whole
PBES. The algorithms MakeGraph and DPp can be combined by tupling the return values.
When these two algorithms are combined it can work with the combined version of DPf and
MakeGraph.
With the functions declared above we can introduce the function ParElm, which marks all
influential parameters.

51

ParElm(E)

Input:
E : A PBES

Output:
The set of all influential parameters of a PBES

(V,E) = MakeGraph(E)
Infl := DPp(E);
S := Infl;
while S 6= ∅ do

n :=an element of S;
S := S\{n};
forall (n′, n) ∈ E do

if n′ /∈ Infl → S := S ∪ {n′} fi;
Infl := Infl ∪ {n′};

od
od return Infl

The function ParElm makes a graph using MakeGraph and does a reachability test. This is
done by marking all vertices that have a directed edge to an influential parameter as influential.
The result is a marking of all influential parameters I(E). All parameters that are not marked
are superfluous and can be removed.

52

Appendix B

Implementation of ConstElm

In this Section we present an implementation of the Algorithm ConstElm.

The functions TC and FC below uses the rules of Definition 4.1.6 to return a true-condition and
a false-condition of a node.

fun TC(ϕ)

Input: ϕ: A predicate formula
Output: The true-condition of the root of ϕ

if (ϕ = b) → return b
[] (ϕ = X) → return false
[] (ϕ = ϕ1 ∧ ϕ2) → return TC(ϕ1) ∧ TC(ϕ2)
[] (ϕ = ϕ1 ∨ ϕ2) → return TC(ϕ1) ∨ TC(ϕ2)
[] (ϕ = ∀d:D.ϕ1) → return ∀d:D.TC(ϕ1)
[] (ϕ = ∃d:D.ϕ1) → return ∃d:D.TC(ϕ1)
fi

53

fun FC(ϕ)

Input: ϕ: A predicate formula
Output: The false-condition of the root of ϕ

if (ϕ = b) → return ¬b
[] (ϕ = X) → return false
[] (ϕ = ϕ1 ∧ ϕ2) → return FC(ϕ1) ∨ FC(ϕ2)
[] (ϕ = ϕ1 ∨ ϕ2) → return FC(ϕ1) ∧ FC(ϕ2)
[] (ϕ = ∀d:D.ϕ1) → return ∃d:D.FC(ϕ1)
[] (ϕ = ∃d:D.ϕ1) → return ∀d:D.FC(ϕ1)
fi

Before we can apply the rules of Definition 4.1.10 we first introduce some help functions:

fun AddQ(Qd:D, cs)

Input:
Qd:D: A quantification
cs: A set of conditions

Output:
The quantifcation Qd:D applied to all elements of the set cs

return {Qd:D.c|c ∈ cs}

Definition 4.1.10 only collects true/false conditions for a single predicate variable, here we intro-
duce a functions that collects the conditions for all predicate variables of a predicate formula.
To do this we need a bag B of predicate variables, each predicate variable of the bag contains
a set of true-conditions and a set of false-conditions. We denote the set of true-conditions and
false-conditions for predicate variable X(−→e) as X(−→e)tcs

fcs. To add a true/false conditions to all
predicate variables of bag B we introduce the function AddC(B, tc, fc)

54

fun AddC(B,tc,fc)

Input:
B: A bag of predicate variables with a set of true conditions and a set of false conditions
tc: A true-condition that must be added to the set of true conditions of each predicate

variable of B
fc: A false-condition that must be added to the set of false conditions of each predicate

variable of B
Output:

The bag B with the true/false condition added to set of true/false conditions of predicate
variables of B

return {Xtcs∪tc
fcs∪fc|Xtcs

fcs ∈ B}

With the functions AddQ and AddC we can now make a bag of predicate variables, each with
a set of true-condition and a set of false-condition which are encountered on the path from root
to that variable.

fun MakeBag(ϕ)

Input:
ϕ: A predicate formula for which the bag is made

Output:
A bag B with contains predicate variables, each predicate variable X has a set of
true-conditions and a set of false-conditions which are on the path from the root to X.

if (ϕ = b) → return ∅
[] (ϕ = X) → return {Xfalse

false}
[] (ϕ = ϕ1 ⊕ ϕ2) → bg := MakeBag(ϕ1) ∪MakeBag(ϕ2);

bg := AddC(bg, TC(ϕ), FC(ϕ));
return bg

[] (ϕ = ∀d:D.ϕ1) → bg := MakeBag(ϕ1);
bg := {XAddQ(∀d:D,tcs)

AddQ(∃d:D,fcs)|X ∈ bg};
bg := AddC(bg, TC(ϕ), FC(ϕ));
return bg

[] (ϕ = ∃d:D.ϕ1) → bg := MakeBag(ϕ1);
bg := {XAddQ(∃d:D,tcs)

AddQ(∀d:D,fcs)|X ∈ bg};
bg := AddC(bg, TC(ϕ), FC(ϕ));
return bg

fi

Note that the functions TC, FC and MakeBag are all depth first algorithms that can be
combined to one algorithm which only needs to parse a predicate formula once. The function
MakeBag creates a bag of predicate variables with corresponding true-conditions and false-
conditions. Using this bag we can make a dependency graph. We first introduce a helper

55

function Neg which works as defined in Definition 4.1.11.

fun Neg(cs)

Input:
cs: A set of conditions

Output:
The conjunction of the negation of all elements of the set cs

return {
∧
¬c|c ∈ cs}

We now have all ingredients to construct a dependency graph with conditions on the edges.
fun MakeGraph(E)

Input:
E : A PBES

Output:
The dependency graph for E

V := ∅;
E := ∅;
forall σXi(

−→
di :
−→
Di) = ϕi do

V := V ∪Xi;
bg := MakeBag(ϕi);
forall Xj(−→e)tcs

fcs ∈ bg do

cond := Neg(tcs) ∧Neg(fcs);
E := E ∪ {Xi,

−→
dj := −→e , cond,Xj};

od
od
; return (V,E)

We can now give an algorithm for ConstElm that marks parameters that can be replaced by
constants.

56

fun ConstElm(E , κ)

(V,E) := MakeGraph(E);
A := assertions from κ
S := initial equations from κ;
do S 6= ∅ →

v :=an element of (S);
S := S\{v};
forall edges (v,

−→
dj := −→e , cond,Xj) do

if cond does not reduce to false→
forall 1 ≤ i ≤ len(−→e) do

r := reduce (−→e)i;
if r = NaC ∧ {(

−→
dj)i = NaC} /∈ A ∧ {(

−→
dj)i = c1} /∈ A → A := A ∪ {(

−→
dj)i = NaC};

S := S ∪Xj

[] r = NaC ∧ {(
−→
dj)i = c1} ∈ A → A := A \ {(

−→
dj)i = c1};

A := A ∪ {(
−→
dj)i = NaC};

S := S ∪Xj

[] r = c1 ∧ {(
−→
dj)i = c2} ∈ A ∧ c1 6= c2 → A := A \ {(

−→
dj)i = c1};

A := A ∪ {(
−→
dj)i = NaC};

S := S ∪Xj

[] r = c1 ∧ {(
−→
dj)i = c2} /∈ A ∧ {(

−→
dj)i = NaC} /∈ A → A := A ∪ {(

−→
dj)i = c1};

S := S ∪Xj

[] otherwise → skip
fi

od
fi

od
od

This algorithm takes as argument a PBES E and a predicate κ. First the initial state is created
by adding assertions to the set of assertions A, and by adding vertices to the set of vertices S.
This information is gathered from the predicate κ. The algorithm than takes a vertex v from S
and removes it from the set, afterward all outgoing edges, ine. starting from v, are examined.
If the condition on the edge can be reduced to false, the edge is skipped. The method used to
reduce the condition is left to the implementor, note however that the condition is a predicate
and the value of some variables may not be known. Because of this the condition cannot always
be reduced to true or false. If the condition does not reduce to false, the edge is examined;
for each parameter the value is calculated and put in variable r. Here again, how the value is
calculated is left to the implementor. Now a case distinction is made, which follow the algorithm
described in Section 4.1.

57

58

Appendix C

mCRL2 specification of the alternating bit protocol

sort
D = Nat;
Error = struct e;

act
r1,s4: D;
s2,r2,c2: D # Bool;
s3,r3,c3: D # Bool;
s3,r3,c3: Error;
s5,r5,c5: Bool;
s6,r6,c6: Bool;
s6,r6,c6: Error;
i;

proc
S(b:Bool) = sum d:D. r1(d).T(d,b);
T(d:D,b:Bool) = s2(d,b).(r6(b).S(!b)+(r6(!b)+r6(e)).T(d,b));

R(b:Bool) = sum d:D. r3(d,b).s4(d).s5(b).R(!b)+
(sum d:D.r3(d,!b)+r3(e)).s5(!b).R(b);

K = sum d:D,b:Bool. r2(d,b).(i.s3(d,b)+i.s3(e)).K;

L = sum b:Bool. r5(b).(i.s6(b)+i.s6(e)).L;
init
allow({r1,s4,c2,c3,c5,c6,i},
comm({r2|s2->c2, r3|s3->c3, r5|s5->c5, r6|s6->c6},

S(true) || K || L || R(true)
)

);

59

60

Bibliography

[CLRS01] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms,
Second Edition. The MIT Press, 2001.

[DPWar] A. van Dam, B. Ploeger, and T.A.C. Willemse. Instantiation for parameterised
boolean equation systems. CS-Report 08-11, Eindhoven University of Technology,
Eindhoven University of Technology, Department of Computer Science, 2008, to
appear.

[GL02] J.F. Groote and B. Lisser. Computer assisted manipulation of algebraic process
specifications. SIGPLAN Not., 37(12):98–107, 2002.

[GMR+07] J.F. Groote, A. Mathijssen, M.A. Reniers, Y. Usenko, and M. van Weerden-
burg. The formal specification language mCRL2. In E. Brinksma, D. Harel, A.H.
Mader, P. Stevens, and R. Wieringa, editors, Methods for Modelling Software Sys-
tems (MMOSS), number 06351 in Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Ger-
many, 2007.

[GR01] J.F. Groote and M.A. Reniers. Algebraic process verification. In Handbook of Process
Algebra, chapter 17, pages 1151–1208, 2001.

[GW04] J.F. Groote and T.A.C. Willemse. A checker for modal formulae for processes with
data. FMCO 2003, pages 223 – 239, 2004.

[GW05] J.F. Groote and T.A.C. Willemse. Parameterised boolean equation systems. Theo-
retical Computer Science, pages 332–369, 2005.

[Mad97] A.H. Mader. Verification of modal properties using boolean equation systems. 1997.

[OW08] S.M. Orzan and T.A.C. Willemse. Invariants for parameterised boolean equation
systems. CONCUR’08, 2008.

[SW89] C. Stirling and D. Walker. Local Model Checking in the Modal Mu-Calculus. Springer
Berlin / Heidelberg, 1989.

61

