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Abstract

This paper presents two techniques to solve conjunctive and disjunc-
tive boolean equation systems. The first technique is transforming the
well known Gaufl elimination method to a simpler form, that is still able
to solve conjunctive/disjunctive BES. This technique has the time com-
plexity O(n?), where n is the number of equations. The second technique
is using the algorithm discussed in [1], with time complexity O(elogd).
Here e are the number of edges from the dependency graph, and d is the
alternation depth. Both algorithms will be compared by looking at there
implementation and there running time.

1 Introduction

BESs provide a useful framework for verification. It is mostly used for verifying
properties of a transition system, for example a u calculus formula stating that
a transition system is deadlock free. Such a p calculus formula together with
the transition system can be translated to a BES. Some BESs have a certain
form, in this paper we discus BESs which are in conjunctive/disjunctive form.

Before we start with algorithms for conjunctive and disjunctive boolean equation
systems we start by explaining what a BES is. The syntax and semantics of
a BES is given in Section 2.1 and three general algorithms for solving a BES
are given in Sections 2.2 through 2.4. Section 3 will discuss two algorithms
for solving conjunctive and disjunctive BES. A gaul based method is given in
section 3.1 and a method using the dependency graph is given in Section 3.2.
The algorithms are compared and the results are shown in Section 3.3. Finally
we draw a conclusion and list topics for further research in Section 4 and Section
5 respectively.



2 Boolean Equation Systems

A boolean equation system is a system which contains a series of boolean equa-
tions with a minimal () or maximal (v) fixedpoint. One use of a BES is deriving
it from a modal p-calculus formula and a transition system. A modal p-calculus
formula states a property of a transition system. Whether this property holds
or not can be checked directly, or a BES can be derived to check it. Deriving a
BES can be done in a straightforward method. A BES is a simple representa-
tion and contains all information it needs to check the property. We will discuss
three general methods to solve a BES, but first we describe the formal syntax
of a BES and its semantics.

2.1 Syntax and semantics

The syntax of a boolean equation system is as follows:

S = (E)S|é

E:=0X;,=0Q

Q = X;|Q ANQ|Q V Q| false|true
o= uly

Here S is a BES containing a set of equations, ending with a §. We do not
end a BES with a ¢ in this paper. E is an equation which starts with a fixed-
point operator. The operator can be a minimum fixedpoint operator (u) or a
maximum fixedpoint operator (v). After the operator comes the name of the
equation, here X; for natural i. The righthand side of an equation is a term Q,
which can contain equation names, conjunctions, disjunctions and the constants
true and false. An equation name, true and false are called literals. A simple
example of a BES is (uX; = Xo)(v X2 = X7)

If we do not look at the fixedpoint operators, the outcome of this system is
X1 = X5 = false or X1 = X5 = true. An equation of a BES only has one solu-
tion, which one is determined by the fixedpoints. A p-fixedpoint leads to false
and a v-fixedpoint leads to true. In this example both fixedpoints occur. In that
case the first fixedpoint has priority. So here X; = X, = false, so the order
of the equations are important! The formal semantics of a BES, taken from [1] is:

e [E[ri=MIN (25, 04, €, 0)] if o = p
[(oi2; = ;) E]v = { (Tl MAX (koo 0] ifor = 1

Here € is the solution of a BES relative to a valuation v. MIN defines a
minimum fixedpoint and MAX a maximum fixedpoint.



Open and closed systems
A BES is closed if all equation names on the righthand side of an equation
are defined in the BES. A BES is open if there exists an equation, where the
righthand side contains an undeclared equation name. For example: the BES
(1X1 = X2V X3)(vX2 = X1) is open because X3 is not declared. Removing
X3 from equation X results in an closed system

Alternation depth

The number of p/v and v/p switches encountered in a BES is called the alterna-
tion depth. The dependent alternation depth does not count switches between
1 or v blocks, if the lower block does not contain equation names of the higher
block.

2.2 Approximation

In [2] and [4] algorithms are described for using a approximation method on a
p calculus formula. This method is translated to work with BESs. The idea
of approximation is to set every p equation to false and every v equation to
true. This usually is not a valid solution, but a first approximation. Now we
update the approximation by setting the last equation to the right value accord-
ing to the rest of the system. After that we set the one before that to the right
value. This is repeated until all equations have the right value. After updating
equation i, all equations higher than ¢ have to be recalculated again, because
there value may change due to this update. Because this algorithm calculates
the value for all equations it is called a global algorithm. Later we will see the
tableau method, which is a local algorithm. To illustrate how the approximation
method works we give an example:

Z/X1 = XQ

vXs = false
uXs3 = X1V X3
puXy = Xo

The table below shows the approximation steps. The first approximation is
setting the values according to the fixedpoint operators. In the second step X4
is updated. According to the BES Xy should equal to X5, which is the value
true. In the fourth step X5 is updated to false, here we see that X, also must be
updated. So an update can trigger a recalculation of other equations, but if an
other equation is changed it triggers an update again. Because of this behavior
the algorithm has as worst exponential time complexity.

vX, | T|T|T|T|F
vXo [ T|T|T|F|F
uX; |F|F|T|T|F
pX, |F|T|T|F|F



2.3 Tableau

Solving a BES with the tableau method can be seen as making a proof tree that
proofs that an equation is true, see [2]. If such a proof tree does not exist the
equation is false. Since we only look at one equation at a time the algorithm
is called local. Creating the proof tree, or tableau only has four rules, see 2.3.1.
The construction rules consider three cases: An equation is a conjunction, in
that case you have to proof the items of the conjunction. The case where an
equation is equal to an other equation, in which case only the other equation
has to be proved. And a last case where an equation is a disjunction. Here a
choice has to be made which on to proof.

Constructing the tableau continues until an equation name (X;) occurs twice
within the path from the root to the last equation. The last equation is called
a leaf. Now let X; be the equation, with the lowest value of j, located between
(and including) the two occurrences of X;. If X; has a minimum fixedpoint the
leaf is called false, if X; has a maximum fixedpoint, the leaf is true.

If all leafs of a tableau are true, the starting equation is true. If a leaf is false,
it can be so because of a bad choice made with a disjunction. So the algorithm
backtracks to tries out all combinations with disjunctive equations. If all com-
binations still result to a false leaf, the starting equation is false.

Figure 2.3.1: Four rules for constructing a tree

(M x5 LS X=X A X

[A:] % if X, = X,

[Vi] % if X, = X,V X,
i

[V-] % X = X,V Xe

Figure 2.3.2 shows the tableau for proving the first equation of the BES:
(v X1 =Y11AY12) (X2 = Ya1 AYa2) (nX3 = Y31 AY32) (nY11 = Xa) (uY12 = X3)
(uYe; = X3) (uYao = X3) (uYs1 = X3) (uY32 = X1). The names are chosen
different here to better show the structure of the BES. All leafs have as smallest
equation X;. Because the fixedpoint of X7 is v, all leafs are true. This exam-
ple also shows what can go wrong, a lot of expressions have to be calculated
multiple times. This can be avoided by sharing subtrees. Subtree sharing for a
o calculus formula is explained in [3]. Subtree sharing cannot always be done
because a branch stops at a leaf. Whether something is a leaf depends on the
whole path from the root to the leaf. Thus sharing can only be done when two



branches also have the same leaf. This cannot be seen beforehand, so everything
has to be calculated. This causes a exponential time complexity.

Figure 2.3.2: A tableau for equation X1

X
Y11 Yi2
X, X,
Yo, Yoo Yoy Yo
X3 X3 X3 X3
Y 3y Y2 Y3 Y32 Y3 Y32 Ysi Yo
Xy X X, X, X, X, X4 X,

2.4 Gaull

In a Gaufl method step, the BES is transformed to a shorter equalivant BES.
This is done by taking the last equation (¢X,, = @), where Q is a term, and
substituting all occurrences of X,, on the right hand side of the other equations
by Q. So if (¢6X,,—1 = P A X,,) it is transformed to (6 X,,—1 = P A Q). After a
substitution step we forget the last equation (not delete it, later we have to use
it again). After every substitution step we simplify the BES by using the rules
below:

Table 2.4

X Atrue = X

X V true = true

X A false = false

XV false = X

XV (XAY) = X
XAN(XVY = X
(XAY)V(XANZ) = XANYV2Z
(XVY)AN(XVZ) = XV(IYAZ)

We also use an other property of BES, namely that if literal X; occurs on
the right hand side of equation X;, the literal may be replaced by:

true if the fixedpoint of X; is v

false if the fixedpoint of X; is p

For a BES with n equations we do all these steps n-1 times. Then we remember
all forgotten equations. For all X; where the right hand side of X is either true
or false, we substitute that value in all occurrences of X; in the right hand side
of all other equations. The order in which this happens does not matter. This
is done until the only literals are true and false.



Because all equations have a value true or false, this is a global algorithm. It
takes n-1 steps but a step can be exponential in time. This is because the right
hand side can grow exponential. Therefor the algorithm takes exponential time.

3 Conjunctive and Disjunctive BES

A conjunctive BES is an equation system that does not contains disjunctions.
Therefor every right hand side of an equation is a literal or a conjunction of
literals. A Disjunctive BES is a BES with no conjunctions. This extra restriction
leads to algorithms with polynomial time complexity. Later we will discuss a
algorithm with time complexity O(n?) and an algorithm with time complexity
O(elogd). Here n are the number of equations in the BES, e the number of
edges in the dependency graph and d the alternation depth. Conjunctive and
disjunctive BES are limited, they cannot express all things a normal BES can.
There are still some useful cases though. This is because a BES can sometimes
be split into conjunctive/disjunctive parts. This can be done by finding the
strongly connected components of a BES. If a BES can be split in a set of
conjunctive components and a set of disjunctive components, the algorithms
presented here can solve each component. If component A is dependent on an
equation of component B, then component B has to be calculated first and the
results must be inserted in component A. Note that if component A depends
on B, component B does not depend on component A. This is true because
else the two components would be one strongly connected component. One
set of formulas satisfying this property is CTL. A CTL formula on a transition
system can be written as strongly connected components, where each component
is either conjunctive or disjunctive.

We will now present two algorithms for solving Conjunctive BES. Algorithms
for disjunctive BES are similar.

3.1 Gaull method

With the extra restriction that we only work with a conjunctive BES we can
derive a faster algorithm for solving this BES. We start by using the gaufl elim-
ination method. First we note that the righthand side of an equation cannot
have more literals then the number of equations, that is if we remove all du-
plicates and simplify the literals true and false. The original gaufl algorithm
had an exponential running time because the right hand side could get expo-
nentially large. Now the righthand side is linear, a faster algorithm exists using
the gaufl method. Table 2.4 presented eight simplification rules, most of these
rules contain disjunctions. Removing these rules will lead to Table 3.1:

Table 3.1
X Atrue = X
X A false = false




Since all right hand sides of an equation is a conjunction, the second rule is
very strong; When the literal false is encountered the whole equation is false.
As explained before this algorithm works on a strongly connected BES. This
means that if one equation is false, it is eventually substituted in the right hand
side of all other equations. This means all equations are false. Therefor the
strategy of this algorithm is finding a false. If it is not initially present, the only
way to obtain false is if there is a X;, for which uX; = ... X, ... holds. In this
case the literal X; is replaced by false, which results in the whole conjunctive
BES to be false. This is the first step of the algorithm, where only the p equa-
tions are looked at, because only they can "make” a false:

i:=0
doi<n
if Sign(Xi) == mu
checkFalse(i,i)
fi
i = i+l
od

A p equation X; is only false if the right hand side contains the literal X;.
The literal X; can be there initially, but it can also be inserted by a substitution
step of a higher equation. For example ... (uX5 = XaAX12) ... @ X12 = X5) .. ..
Here X5 is a  equation and contains literal X75. When doing substitution steps,
by the time X5 is reached X5 is already substituted by the literal X5. Therefor
the literal X5 is part of the right hand side of the equation X5 and the BES
is false. The function checkFalse checks if it is possible to obtain literal X;
for equation X; by looking at the literals that are substituted. This means
the algorithm checks all literals higher than X;. The function checkFalse has
two arguments. The first argument of checkFalse is the literal to be found, the
second argument is where we are looking to find it. Initially we try to find X;
in equation X; before any substitution steps are done. Here is the pseudo code
of the algorithm.

fun checkFalse(i, j)
if "false is found"
break recursion
else
S := "all literals of Xj not yet investigated and higher than i"
if "i is in S"
return "false found"
else
checkFalse(i,s) forall s in S
fi
fi
nuf



The algorithm looks at all literals that can be reached from X;. If X; itself is
found, the whole BES is false. If none of the y equations is false the BES is true.
The first part of the algorithm checks all i equations and calls checkFalse, so it
has time complexity O(n*checkFalse). CheckFalse looks at all unique literals,
which is at most the number of equations, which is O(n). The time complexity
of the whole algorithm is O(n?).

3.2 Dependency graph method

This method only works on a conjunctive BES. The disjunctive algorithm is
similar and is described in detail in [1]. Here we give a short description how
the algorithm works. Furthermore we look more to the implementation side.
This method works with the dependency graph of a BES. A dependency graph
is obtained by making a node for every equation, and creating a directed edge
from A to B if B is on the righthand side of A. The fixedpoint of an equation
is saved in the node name, also called the label name. More general, for a BES
with equations o X7 ...0X,, we make n nodes named X ...0X,. Afterwards
for every equation 0 X; = X1 ... Xj,, we add the edges (X;, Xj1) ... (Xi, Xjm).
The result is a dependency graph G = <V, E, 1> where V are the nodes, E
are the edges and | are the labels. The rest of the algorithm does not need the
original BES, it only works with the graph.

Just like the last algorithm we try to find a loop starting at a u equation X; and
only following literals X; where j > i. Here we do not do this for one equation
at a time but for a whole p block. Here we present pseudo-code to illustrate
how to check if a p block contains a self loop:

G = <V,E,1>

fun muBlock(Xi)
E’ = {(Xk, X1)| k>=i && 1>=i && (Xk,X1) in E}
G’ = <V,E’,1>
SCC = "Non trivial strongly connected components of G’ "
forall Xj in SCC do
inSCC[j] := true
od
forall Xj in mu-block do
if inSCC[j]
return FALSE FOUND
fi
od
nuf

The first step of the function muBlock is removing all edges from and to
equations X; where j < i. After removing these edges the algorithm cannot



make a loop using equations which are lower then X;. In line three we find
all strongly connected components (SCC) of the graph with the removed edges.
There exist several algorithms to do this in O(E) time. One of such algorithms
is Tarjans SCC algorithm. This is a depth first algorithm that makes a list of all
SCCs. Making G’ with the removed edges can be ommited if we use a slightly
altered version of Tarjans SCC algorithm, where we skip nodes with a lower
index then i. The next lines of code check if there is a node of the u block in a
SCC. If this is the case it can make a loop using only higher equations and thus
makes the equation false (and the whole conjunctive BES). This is true because
all equations with a index lower then i were removed.

The function muBlock is used in the main algorithm. The main algorithm
checks if there is a false equation between equation k1 and k2, where initially
k1 is the first p equation and k2 is the last equation. The middle mu block,
starting with equation k3, is checked with muBlock(k3), if false is not found the
graph is split into two smaller graphs. Note that k1 < k3 < k2. Finally the
main function is called twice, once for the lower half and once for the higher
half, both with adjusted ranges k1..k2:

fun graphMethod(G, k1, k2)
k3 := middle mu block starting point
if muBlock(k3)
return FALSE FOUND

else
G’ := lowerG
G’’ := higherG
graphMethod(G’, k1, k3-2)
k4 := first mu equation after middle mu block
graphMethod(G’, k4, k2)

fi

nuf



The ranges for G’ and G” are simple, since k3 is a first p equation k3-1is a v
equation. for G’ k2 can therefor safely be set to k3-2 because it does not skip a
w equation. For G” we set k1 to the next unchecked u equation. G’ and G” hold
only the information needed to check the lower and higher half respectively. G’
and G” are defined by:

G' = (V',E' I")andG" = (V' E" 1)

= {C(1) |1EVandEU(zj)EEandC #C(j '}
:{C‘ (7)) e V' xV"| (i,j) € E, C(i) # C(j)} and
1f C(i) trivial,
{ otherwise.

V” ={i e V| C(i) is not trivial} and

{
{(i.7) € V” x V" | (i,5) € E and C(i) = C(j)}.

Here ' N E” = (, and the range is split in two halves. One iteration
of graphMethod has time complexity O(FE). Every iteration one mu block is
checked, and the recursion halves the number of i blocks. Because the number
of u blocks are O(alternationdepth) the total time complexity for this algorithm
is O(elogd), where e is then number of edges and d the alternation depth.

3.3 Results

Looking purely at the worst case running time we suspect that the second al-
gorithm is a lot faster. This is tested by implementing both algorithms in C#.
There is still room for small optimizations, but both implementations have the
right time complexities. One thing that becomes clear immediately is that the
gaufl based algorithm is much simpler then the dependency graph algorithm.
This is clear when we look at the lines of code (LOC). The implementation of
the gaufl based algorithm only takes 25 LOC, while the implementation of the
dependency graph takes over 400 LOC.

To test if this extra work is worth it we measure the running time of both al-
gorithms on a lot of generated conjunctive BES. The tests vary the number of
literals on the right hand side of the equations, but all tests show the same
results. The graph below shows the running time in ms for equations with an
average right hand side of ten literals. The x-axis shows the number of thou-
sands of equations. The dots indicate the value and the line is a trend line.
The pink line illustrates the running time for the gaufl based algorithm and the
blue line the dependency graph algorithm. The gauf3 based method is faster for
1000 equations, but both algorithms finish within a few milliseconds. For big
systems we can clearly see that the dependency graph algorithm is a lot faster.
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A test on a real world application can be done for example by making mod-
els with the mcrl2 toolset. These models can be translated to a linear process,
which can be translated, together with a /mu calculus formula, to a parame-
terized BES, which in turn can be translated to a normal BES. Unfortunately
it can take hours to make a BES if the statespace is large. Four tests have been
done on models that come with the toolset. They are checked to see if they
are deadlock free. The results are shown below. Here creation time is the time
spend on transforming a mcrl2 specification to a BES.

Model Creation Time | Time Gaufl | Time Graph
Alternating bit protocol | 50 ms 0 ms 0 ms

Trains (merl example) 20 ms 0 ms 0 ms
Solitaire >8 hours n/a n/a

Hex (game) >8 hours n/a n/a

Here we immediately see a problem. The time to transform a PBES to a
BES takes a lot of time so two models have been aborted. This makes using
plain BESs with the mcrl2 toolset very cumbersome for models with a big state
space. For now we cannot give a decent comparison of the two algorithms in
real world applications. This is now open for later investigation.

4 Conclusion

For the general case there does not yet exists an algorithm with polynomial time
complexity. Putting extra constraints on a BES can lead to polynomial time al-
gorithms. For conjunctive and disjunctive BES, we loose a lot of power, but we
still can express a lot of things. This is because we can split some systems into
parts which are in conjunctive or disjunctive form. This way we can calculate
for example CTL formulas.

Comparing the gaufl based algorithm and the dependency graph algorithm we
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see a great difference in running time. The running time of the gaufl based
algorithm increases very fast for large inputs, while the dependency graph algo-
rithm is sub-quadratic. This makes the extra work to implement this method
worthwhile.

5 Further research

There are linear time algorithms for solving alternation free BESs. Alterna-
tion free means that if equation X depends on Y and Y depends on X, both
X and Y should have the same fixedpoint operator. According to [1] many
equivalence/preorder checking problems result in an alternation free BES in
conjunctive/disjunctive form. Both the alternation free and dependency graph
algorithms can be used here. It would be interesting to test these two algorithms
for running time and memory usage.

The two algorithms for solving conjunctive/disjunctive BESs that are presented
in this paper are not yet tested against large real world applications. This is
still open, but looking at the results, the dependency graph method is likely to
have a much better running time.
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