Solving Boolean Equation Systems using Small Progress
Measures

Jeroen Keiren
j.j.a.keiren@student.tue.nl

12th January 2009

Abstract

We investigate a parity game interpretation of boolean equation systems. Given this
interpretation, we present a version of the algorithm for solving parity games based on
small progress measures [3]. The algorithm is applied directly on the boolean equation
system (BES), eliminating the intermediate transformation step of BES to parity game.
The resulting algorithm runs in O(ad(€)E xex|rhs(X)] - (%)Lad(s)/%) time, which
is an improvement on the currently known bounds for solving boolean equation systems.

1 Introduction

An approach for verifying correctness of concurrent systems is model checking. A desired
property is expressed as a logical formula and it is checked whether a model satisfies this
formula. Various logics (CTL, LTL) are much used in this area. In this paper we will
consider modal p-calculus, which subsumes the other logics.

Generally, model checking procedures for modal p-calculus can be split into two categories.
Local and global procedures. Local procedures are used to show that a certain state in the
system satisfies a requirement, whereas global procedures compute for all states whether they
satisfy a requirement. In this paper we will restrict ourselves to the global approach. For the
global model checking problem several approaches have been presented in the literature. For
the full fragment of modal p-calculus efficient algorithms are not known, and the problem
is known to be in NP N co — NP as well as in UP N co — UP. It is still expected that a
polynomial algorithm can be found. Known methods for solving the model checking problem
for modal p-calculus include BDD based methods using iteration for fixpoint computation
[1], translation to the problem of finding a winning strategy in a parity game [6] as well as
translating the problem to finding solutions for a boolean equation system [4]. We combine
the latter two approaches, and present a way to apply the algorithms known for parity games
to boolean equation systems.

In Section [2] we introduce boolean equation systems and parity games. Section [3] reca-
pitulates the algorithm for finding winning strategies of parity games by Jurdziniski [3]. We
present an interpretation of a BES as a parity game in Section [d] This interpretation is used
to transform the algorithm such that it can be applied directly to boolean equation systems
in Section [5

2 Preliminaries

2.1 Boolean equation systems

Boolean equation systems (BESses) [4] are a class of equation system that can be employed
to perform model checking of model u-calculus formulae. It has been shown [4] that solving a
BES is equivalent to model-checking. Boolean equation systems are also used for this purpose
in mCRL2 [2], a language for specifying concurrent systems and protocols in an algebraic style.

Definition 2.1 [Boolean Equation System] We assume a set X of boolean variables, with
typical elements X, Xi, Xo, ... and a type B with elements true, false representing the
booleans. Furthermore we have fixed-point symbols p for least fixed-point and v for greatest
fixed-point.

A boolean equation system is a system of fixpoint equations, inductively defined as follows:

e ¢ is the empty BES

e if £ is a BES, then (60X = ¢)€ is also a BES, with o € {u, v} a fixpoint symbol and ¢
a negation free formula over X.

Negation free formulae ¢ are defined as follows:
¢ :=false |true | X | o AP | DV &

where X € X is a proposition variable of type B.

Finding a solution of a BES amounts to finding an assignment of true or false to each
variable X; such that all equations are satisfied. Furthermore if o; = u, then the assignment
to X; is as strong as possible, and if o; = v it is as weak as possible.

We now define the solution of a BES formally. An environment 7:X — {true, false} is a
function that assigns a boolean value to each variable X € X.

Definition 2.2 [Solution of a BES] The solution [.[:BES — (X — {true,false}) — X —
{true, false} of a BES £ in an environment 7 is defined inductively as follows:

[e]n
[(nX = f)Eln = [€]nlX = F([€]n[X = false])]
[(vX = f)E]n = [EI[X = f([€]n[X = true])]
We also write [€]n(X) to denote the solution of X for BES £ in environment 7.

In the rest of this paper we assume that the constants true and false do not occur in the
right hand sides of the equations. We may do this as we can replace each occurrence of true
by a reference to Xir,e and each occurrence of false by a reference to Xfjse. Where Xipye and
Xpase are defined as follows:

VXtrue = Xtrue
pXfase = Xtalse

Assuming that false < true we define an ordering on boolean equation systems as follows:

Definition 2.3 [Ordering < on BES (Definition 3.15 in [4]] Given boolean equation systems
E= (X1 = fi)...(on X = fn) and & = (01 X1 = g1) ... (60 Xy, = gn), then €& < & iff
fi < gi

Definition 2.4 [Conjunctive/Disjunctive form] A BES £ is in conjunctive/disjunctive form
if every ¢; is of the form X;, Ay_, Xj, or \/i_y Xj,, where n > 1.

That is, a BES is in conjunctive/disjunctive form if every right hand side is either a single
variable, or it is a conjunction or a disjunction over propositional variables. Conjunctions
and disjunctions may not appear mixed in a single right hand side. Note that every BES can
be transformed into conjunctive/disjunctive form in polynomial time in a way that preserves
the solution of variables occurring in both BESses.

Definition 2.5 [Conjunctive form] A BES £ is in conjunctive form if every ¢; is of the form
/\Z:(] X, with n > 0.

That is, a BES in conjunctive form only contains conjuncts or single variables (or trueor false)
as right hand sides. It has been shown [4] that given a BES £ and an environment 7 there is
a BES &' in conjunctive form such that & < & and [E']n = [E]n.

In the rest of this paper we restrict ourselves to BESses of the following form:

E = (01X1 = le) cee (Uan = ¢n)

for some n € N. Moreover £ is in conjunctive/disjunctive form and true and false do not occur
in £.

A block in a BES is a set of consecutive equations of the BES with the same fixpoint
operator.

Definition 2.6 [Block nesting depth] The block nesting depth (bnd(&)) of a BES £ is the
number of blocks of £.

Intuitively, the alternation depth (ad(€)) of a BES & is the longest sequence of mutu-
ally dependent boolean equations in £ with alternating fixpoint symbol. For a more formal
definition we refer to [4].

For BES €& its dependency graph Gg¢ consists of vertices and edges according to the following
simple rules. If 0X; = f is an equation of &, then X; is a vertex of Gg¢, and for all X; € f,
(X, X;) are edges in Gg.

2.2 Parity games

A parity game is a graph game played by two players, Fven and Odd on a game graph in
which each vertex is assigned an integer priority. Player Even wins an infinite play if the
lowest infinitely often occurring parity in a game is Fwven, otherwise player Odd wins the
play. We use definitions similar to the ones given by Jurdzinski [3]. Furthermore we use the
generic Player to denote either Fven or Odd in case definitions are defined analogously for
both players.

A game graph is a directed graph G = (V, E,p:V — N), in which V is a set of vertices,
FE is a total edge relation and p is a priority function, assigning an integer priority to each
vertex.

Definition 2.7 [Parity Game] Given game graph G = (V,E,p:V — N), and partition
(VEven, Voad) of V., I' = (V, E,p, (VEven, Voaa)) is a parity game.

A parity game is played by the two players by placing a token on an initial vertex. Then
moves are taken indefinitely according to the following simple rule: if the token is on a vertex
v € Vpiayer then player Player moves the token along an outgoing edge of v. The result is an
infinite path (also referred to as play) m = (v1,v2,vs,...) in the game graph.

Let Inf () denote the set of priorities occurring infinitely often in play 7. Play 7 is winning
for player Fven if and only if min(Inf(7)) is even, 7 is winning for player Odd otherwise.

For finding winning strategies it suffices to look at history free strategies. These are
strategies that, independently of the path by which a vertex is reached, always the same
successor is chosen. We define such a strategy for a player, fixing an outgoing edge for each
vertex in the set corresponding to that player.

Definition 2.8 [Strategy| A function ¢ pjgyer:Vpiayer — V' is a strategy for player Player if
(v,9(v)) € E for all v € Vpigyer-

A play ™ = (vi,v2,v3,...) is consistent with a strategy 1 piayer for player Player if and
only if every vertex u € 7 is such that u € Vpjgyer is immediately followed by ¢ (u)

Definition 2.9 [Winning strategy| Strategy 1 piayer is @ winning strategy for player Player
from set W C V if every play starting from a vertex in W, consistent with 1 pjgye, is winning
for player Player.

Theorem 2.10 [Memoryless determinacy] For every parity game, there is a unique partition
(Wgven, Woda) of V' such that there is a winning strategy ¥ pgye, for player Even from his
winning set Wgye, and a winning strategy 1 pgqq for player Odd from her winning set Wogq4.

Definition 2.11 [i-cyle] We call a cycle in a parity game an i-cycle iff the lowest infinitely
often occurring priority on the cycle is i.

We refer to an i-cycle with even ¢ as an even cycle, similarly an i-cycle with odd 7 is referred
to as an odd cycle.

3 Game parity progress measures

A technique for solving parity games, based on the notion of progress measures has been
proposed by Jurdzinski [3]. A parallel implementation of this algorithm has been presented
by van de Pol and Weber [5]. In this section we will recapitulate the theoretic foundations,
and shed more light on the proofs given in [3].

The algorithm attaches to each vertex a tuple with as length the maximal priority oc-
curring in the parity game. Initially this is the tuple 0 with 0 in all positions. Further-
more, all even positions always remain 0, and odd positions ¢ are limited to the num-
ber of vertices with priority . On these tuples a lexicographic ordering is defined such
that (ng,n1,...ng) =i (mo,m1,...my) if and only if (ng, n1,...n;) = (mo, m1,...,m;) with
=€ {<,<,=,>,>}. Note that a tuple suffixed with zeros preserves these relations.

Example 3.1 (0,1,0,1) =0 (0,2,0,1) is equivalent to (0) = (0) and hence is true. (0,1,0,1) <y
(0,2,0,1) is equivalent to (0,1) < (0,2) and hence is also true, whereas (0,1,0,1) >3 (0,2,0,1)
is (0,1,0,1) > (0,2,0,1) is false.

Definition 3.2 A function p:V — N¢, with d the maximal priority in the game, is a parity
progress measure for parity graph G = (V, E,p:V — N) if for all (v, w) € E we have

{e(v) >, 0(w) if p(v) is even
0(v) >p o(w) if p(v) is odd

Consider game graph G = (V, E,p:V — N). For every i € N we denote with V; C V the
set of vertices in G with priority i. Furthermore we let n; = |V;|, the number of vertices with
priority i. We define the finite subset Mg of N, such that it is the finite set of d-tuples with
zeros on even positions (counting from 0), and non-negative integers bounded by n; on odd
positions ¢ as follows:

Mo — [1] % [n1 + 1] X [1] X [n3 + 1] x -+ x [1] X [ng—1 + 1] if d is even
9 [1] x [n1 + 1] X [1] X [ng + 1] x -+ X [1] X [ng—2 + 1] x [1] if d is odd

In the sequel we use notation G [V' to denote the graph G from which all vertices not in
V have been removed, along with the dangling edges that result.

Theorem 3.3 [Small parity progress measure| There is a parity progress measure g:V — Mg
for parity graph G if and only if all cycles in G are even.

Proof =) It is straightforward to see that if there is a parity progress measure for G, then
all cycles are even. For a proof see [3].

<) We prove that if all cycles in a parity graph G are even, then there is a parity progress
measure 0:V — Mg for G by induction on the number of vertices in G. We additionally show
that if p(v) is odd, then o(v) >, 0. This proof is mostly similar to the one by Jurdziriski
(Theorem 5 in [3]). The proof as given there omits some low-level details that have proven
to be essential for a thorough understanding, which is why we repeat the proof here and fill
in those details. The proof is constructive, and in itself provides a recursive algorithm for
computing a progress measure. An example of this is included in Appendix [A]

If G has only one vertex v, the theorem holds trivially, as there are no edges. We satisfy
our additional claim by assigning o(v) = 0 if p(v) is even, or assigning g(v) the tuple with 1
on position p(v) and 0 on all other positions in case p(v) is odd.

If VoUV; = 0 we reduce all priorities by a multiple of two, hence we assume that VoUV; # (.
Note that if the priorities have been reduced, we need to shift the computed progress measure
to the right by the same multiple of two to get a progress measure for the original problem.

Suppose that Vj # 0. By induction hypothesis a parity progress measure o:(V'\ Vy) — Mg
exists for subgraph G | (V'\ V). Now consider ¢ in which we set o(v) = 0 for all v € Vj. This
is a progress measure for G, as for all v € Vj and for all (v, w) € E it holds that o(v) >¢ o(w),
as all even positions in the progress measures are zero.

Suppose that Vo = () and V7 # (). There is a partition (W7, Ws) of V' such that Wy # ()
and Wy # (), and there is no edge from W; to W5 in G. This partition can be constructed as
follows. Pick an arbitrary u € V7. We define U C V to be the set of vertices in G reachable
from wu in at least one step. If U = () we choose partition (W1, Wa) = ({u}, V \{u}). fU # 0
we choose partition (Wy, Wa) = (U, V \ U), note that Wy = V' \ U # (), because if u would be
reachable from itself in at least one step, this means that u is on a cycle; as Vp = (), 1 (the
priority of u) would be the lowest priority on the cycle, thus the cycle is odd, leading to a
contradiction.

Consider subgraphs G; = G [Wy and Go = G | Wy of G. There are parity progress
measures 91:W; — Mg, (02:W2 — Mg,) for G1 (G2) by induction hypothesis. Let n! =
|[W1 NV, for i € N. Now function p:V — Mg is a parity progress measure for G, where p is
defined as follows:

(v) = 01(v) it ve W
¢ 02(v) + (0,n},0,ni,...) ifve W

Because there are no edges from Wj to Ws, it is straightforward to see that this is a progress
measure for vertices in Wj. There may be edges from vertices in Wy to Wi. Let (v,w) be
such an edge. We need to verify that o(v) >,u) e(w) if p(v) is odd, and o(v) >, if p(v)
is even. Observe that oi(w) at position i can be at most n}, hence (0,n},0,ni,...) is the
maximal progress measure that can be obtained in ¢;. Furthermore from our additional claim
it follows that if p(v) is odd g2(v) >, 0 and if p(v) is even ga(v) Zp) 0. From this we
conclude that o is indeed a parity progress measure for G. O

The parity progress measure is still too restrictive to be used for computing a winning
strategy, hence we add a largest element T to Mg, such that]\/[gT = Mg U{T}. Given
oV — MJ and (v,w) € E then Prog(o,v,w) is the least m € Mg such that

m Zp() o(w) if p(v) is even
m >, o(w), or m = o(w) =T if p(v) is odd

A function g:V — MgT is a game parity progress measure if and only if for all v € V:
e if v € Viyen then 3, w)epo(v) Zpw) Prog(o, v, w)
e if v € Vouq then V(, yepo(v) Zpw) Prog(e, v, w)

We define strategy ¥ myen:Veven — V for player Even such that for all v ¥ gyen(v) = u,
with o(u) = min{p(w) | v — w}. In words, ¥ gye, is the successor u of v which minimizes
o(u). The winning set ||g|| is the set {v | v € V and o(v) # T}.

It was proven by Jurdzinski [3] that strategy ¥ gyen, computed from game parity progress
measure g is a winning strategy for player Even from ||g||. Furthermore it was shown that
there is a game parity progress measure o:V — Mg such that ||g|| is the winning set of player
FEven.

3.1 Algorithm

In this section we repeat the algorithm for solving parity games based on small progress
measures as presented by Jurdzinski [3]. We define an ordering C on the set of functions
V — Mg Given functions p, o:V — Mg, w C o if and only iff pu(v) < p(v) for all v € V.
As we are dealing with finite graphs, V' — MgT is finite. Furthermore there are greatest and
least elements, hence C defines a complete lattice. We use C if 4 C g and p # o.

The algorithm uses a family of Lift(_,v) operators on V — MQT for all v € V. Lift(o,v),
for v € V, is defined as follows:

o(u) if uv
Liﬁ(ga 'U)(U) = min(vyw)eE P?"Og(g, v, U)) fu=0ve¢€ VEven
ma‘x(v,’w)EE P?"Og(g, v, ’LU) ifu=wve VOdd

Observe that for every v € V, Lift(_,v) is C-monotonous, i.e. for o1 T g9, Lift(o1,v) C
(02,v). Furthermore, a game parity progress measure can be computed by determining the
simultaneous fixed point of all Lift(_,v) operators. This leads to the following algorithm in
[3]:

Algorithm 3.4 [ProgressMeasureLifting]
p o= Avevo
while p C Lift(pn,v) for some v € V do p:= Lift(pu,v)

Given parity game I' = (V, E,p:V — N, (Vgyen, Vodd)), and maximal priority d in the
game. ProgressMeasurelLifting computes winning sets for both players and a winning
strategy for player Fven from his winning set in O(d|E|- (a7)L4/2]) time and O(d|V'|) space.

4 Equivalence of Boolean Equation Systems and parity games

Given a boolean equation system & in conjunctive/disjunctive form, we can find a parity
game I'¢ such that £(X) is true for some variable X if and only if player Even has a winning
strategy on I'¢ from vertex X.

We translate a BES to a parity game as follows. As game graph we take the dependency
graph of the BES. Furthermore vertices get assigned priority according to the block nesting
depth in the BES. The first block gets assigned priority 0 if the fixpoint symbol of the block
is v, and 1 if the fixpoint symbol of the block is p. FEach next block is assigned the priority
of the preceding block, incremented by 1. Observe that it is invariant under this translation
that vertices corresponding to p-equations get odd priority, and vertices for v-equations get
even priority. We also assign all X; such that 0 X; = Aj_, Xj, to Vogq and the other X; to
VE’uen-

Analogously, we translate a parity game to a BES as follows. For each vertex v € V,
with edges (v,w1),...(v,wy,), we create the following equation. If v in Vpgq, we create
X, = /\?:“0 X, for vertices v in Vgyen, equation o X, = \/?:“0 X; is introduced. In both bases
o = if p(v) is odd, and ¢ = v otherwise.

Theorem 4.1 [Equivalence of BES and parity game|(Theorem 8.7 in [4]) Player Even has a
winning strategy for Gg¢ from vertex X; if and only if ([E]n)(X;) = true.

Proof <) Assume ([€]n)(X;) = true. There exists a BES £’ in conjunctive form, where
&' < & and [E']|n = [€]n, such that all conjunctions in £ are contained in &', and from each
disjunction in & only one variable is contained in £’. A winning strategy for player Fven on
Ge is obtained by choosing in each vertex in Vg gyen this successor which is also contained in
Ger.

We show by contraposition that player Fven has a winning strategy for Ge/. Assume that
player Even does not have a winning strategy for G¢ from vertex X;. Hence there is an odd
cycle reachable from X; in Ger. We want to show that ([E]n)(X;) = false. There must be a
least vertex X, reachable from X;, with odd priority on such a cycle. This corresponds to
an equation pX; = f;.

Let us assume f; # false. Assume the cycle has the form vg, v1,...,v, with vg = v, = Xj.
This gives a substitution sequence as follows: substitute the equation corresponding to vy into

fj, leading to puX; = fjl. Do this for all vertices v1,...v,—1, leading in (n — 1) substitutions
to uX; = fjﬂ—l, As f;-“_l can only consist of a conjunction or a single variable (as £’ is in
conjunctive form), in both cases this reduces to uX; = false as X; must occur as a conjunct
in f;ﬁl. Therefore also ([E']n)(X;) = false.

There is a sequence from X; to the first occurrence of X;, which can be traversed backwards
applying substitution steps for constants we get that ([€']n)(X;) = [E]n = false.

For the case where f; = false only the substitution argument needs to be applied to derive
the same contradiction.

=) Dual to the previous case. O

5 BES parity progress measures

Using the equivalence given in the previous section, we provide a definition of the algorithm
from Section [3] directly on boolean equation systems.

Define function rhs giving the variables occurring in the right hand side of a boolean
equation 0;X; = f; as follows:

rhs(X;) ={X; | X; € fi}

Instead of translating all boolean variables to vertices, we keep the original set of variables
X. Additionally we use the sets computed using rhs instead of explicitly adding edges.
Depending on the fixpoint symbol of the first block, the block nesting depth bnd of each
equation gives the priority of and equation. If the fixpoint symbol of the first block is u, then
the block nesting depth is incremented by one.

Now that we have obtains suitable notation we can define the theory underlying progress
measures from Section [3] in terms of BESses. This theory immediately gives us the imple-
mentation of the algorithm in terms of boolean equation systems. We omit the proofs in this
section, as they follow immediately from the correspondence between BES and parity game,
and the corresponding proof in Section

The algorithm we present attaches to each equation a tuple with as length the maximal
priority occurring in the BES. Initially this is the tuple 0. Furthermore all even positions
always remain 0, and odd positions ¢ are limited to the number of equations in the block with
priority i. We use the same lexicographic ordering as in Section

Definition 5.1 A function gg:X — N¢, with d = bnd(&), is a parity progress measure for
BES € if for all X € & and X; € rhs(X) we have

0e(X) Zp(X) o(X;) if p(X) is even
0e(X) >pxy o(Xi) if p(X) is odd

Consider a BES £. For every ¢ € N we denote with X; the set of equations in £ with
priority i. We let n; = |&;|, the number of equations with priority i. We define finite subset
Mg of N¢, such that it is the finite subset of d-tuples with zeros on even positions, and
non-negative integers bounded by n; on odd positions ¢ as follows:

M — [1] x [n1 + 1] x [1] x [ng + 1] x -+ X [1] X [ng—1 + 1] if d is even
¢ 1] x [n1 + 1] x [1] X [n3 4+ 1] X -+ x [1] X [ng_o + 1] x [1] if d is odd

Theorem 5.2 There is a parity progress measure for BES £ if and only if all cycles in the
dependency graph of £ are even.

As before we extend the parity progress measure by adding largest element T to Mg, such
that MJ = Mg U{T}. Given gg:X — MJ, X € X and X; € rhs(X), then Prog(og, X, X;) is
the least m € M, g such that

m Zpx) 0g(Xq) if p(X) is even
m >px) 0s(Xi), or m = 0g(X;) =T if p(X) is odd

A function gg:X — M, g is a BES parity progress measure if and only if for all X € &
o if X € Xpyen then E!Yev"hs(X)Qc‘J(‘X) >p(X) PTOQ(QSva Y)
o if X € Xpyen then vYerhs(X)Qc‘)(*XP) >p(X) Prog(gg, X, Y)

We now define strategy ¥ gyen:Xgven, — X for player Even such that for all X ¢ pyen(X) =
Y, with o(Y) = min{o(Z) | Z € rhs(X)}. In other words, ¥ gye,(X) is the variable Y in the
right hand side of X which minimizes o(Y"). The set of variables ||g¢|| having solution true is
the set {X|X € X and pg(X) # T}.

Corollary 5.3 Strategy ¥ gyen computed from BES parity progress measure gg is a winning
strategy for player Even from ||ogl|.

Corollary 5.4 There is a BES parity progress measure gg:X —]\45T such that ||ggl| is the
set of variables that are true.

5.1 Algorithm

We have seen the theoretic foundations needed for the parity lifting algorithm. We define an
ordering C on the set of functions X — MST . Given functions ug, 0g:X — M ST , e T og if
and only if pe(X) < pg(X) for all X € X. Also we are dealing with finite boolean equation
systems, hence X — M. ST is finite. Additionally there are greatest and least elements, hence
C defines a complete lattice.

The algorithm uses a family of Lift(_, X) operators on X — Mg— forall X € X. Lift(og, X),
for X € X is defined as follows:

s (1) it X £ Y
Lift(QEaX)(Y) = minYErhs(X) PT‘Og(Qg,X, Y) if X =Y € Xpyen
maxy ¢ppe(x) Prog(oe, X,Y) if X =Y € Xoaq

As before, for every X € X, Lift(_, X) is C-monotonous. A BES parity progress measure can
be computed by determining the simultaneous fixed point of all Lift(_, X') operators. Hence,
we get the following algorithm:

Algorithm 5.5 [BESProgressMeasureLifting]
pe = AX e X.0
while pg C Lift(pug, X) for some X € X do g := Lift(ue, X)

Given the algorithm for parity games and the similarity between BES and parity games we

find that ProgressMeasureLifting computes the set of variables that is true in O(dX xex|rhs(

d/2
(%L / J) time, given that d is the maximal block nesting depth.

We can further improve this result by using the alternation depth instead of the block
nesting depth in the computation of the Frlorltles When we do this we derive an algorithm
that runs in O(ad (€)X xex|rhs(X Lad(&)/zj)Lad(€)/2]

6 Conclusions

In this paper we have seen a known algorithm from the literature for finding a winning strategy
in a parity game. We have used a translation from boolean equation systems to parity games
that was also known from the literature. Given this translation we have obtained a way
to interpret a BES as parity game. This gives rise to an implementation of the parity game
algorithm directly on boolean equation systems, thus constituting a new algorithm for solving
boolean equation systems.

In the literature various algorithms are known for the full fragment of boolean equa-
tion systems. Approximation based algorithms are known that run in O(|€]%*®)) as well

s O(ad(&)?|E|LedE)/2+1) " Gauss elimination and tableaux based methods run in O(2/€).
Hence we see that the algorithm we have presented improves the best known bound for solving
the general class of boolean equation systems.

As it was observed by Jurdziniski, the lifting strategy is important for practical performance
of the algorithm. Hence an interesting open question is whether we can find a lifting strategy
that works well on boolean equation systems in practice. Now that we have a means of
translating parity game algorithms to BES, it could be investigated how well different parity
game algorithms perform on boolean equation systems. Additionally, it might be useful in
practice to combine various strategies for solving boolean equation systems. Also an extension
of the algorithm to on the fly solving is worth investigating. Last but not least, the question
whether the algorithm we have given can be generalized to BESses with arbitrary right hand
sides (eliminating the preprocessing step) deserves an answer.

References

[1] E.A. Emerson and C.L Lei. Efficient model checking in fragments of the propositional
mu-calculus. In Proceedings of LICS 1986, pages 267-278. IEEE Computer Society, 1986.

[2] J.F. Groote, A. Mathijssen, M.v. Weerdenburg, and Y. Usenko. The formal specification
language mcrl2. In Proceedings of Methods for Modelling Software Systems, volume 06351
of Dagstuhl Seminar Proceedings, 2007.

[3] M. Jurdzinski. Small progress measures for solving parity games. In H. Reichel and S.
Tison, editors, Proceedings of STACS 2000, pages 290-301. Springer, 2000.

[4] A. Mader. Verification of Modal Properties Using Boolean Equation Systems. PhD thesis,
Technische Universitdt Miinchen, 1997.

[5] J.v.d. Pol and M. Weber. A multi-core solver for parity games. In I. Cerna and G. Liittgen,
editors, Proceedings of PDMC' 2008, volume 220, pages 19-34. Elsevier Science Publishers
B. V., 2008.

10

X)I-

[6] C. Stirling. Model checking and other games. Notes for Mathfit Workshop on Finite
Model Theory, University of Wales Swansea, 1996.

A Constructive small progress measures

In Section [3| we have given a proof for the existence of a parity progress measure for a graph
G if and only if all cycles in G are even. In order to get a better intuition for this result we
provide an example in this section.

A.1 Computing a progress measure

Figure 1: Parity game I

Consider parity game I' = (V, E, p:V — N, (Viyen, Voad)) as shown in Figure [1} Note that
by convention we draw vertices in Vg,., as squares and vertices in Vpg4g as diamonds. We
observe that all cycles are even and Vo UV # (). We compute a parity progress measure
0:V — Mg according to the construction of the proof of Theorem

In the first step we find that Vy = {v1}, Vi = {v2,v4}. By the induction hypothesis
there is a progress measure o:(V \ Vy) — Mg for the subgraph G = G | (V \ Vo). Setting
o(v1) = (0,0) is then a progress measure for G.

’1)3:2

2N
& [@

Figure 2: Parity game I'!

Let us compute o:(V '\ Vp) — Mg for the subgraph shown in Figure [2l Denote this graph
with G1. We observe that V10 = (), V1! = {45, v4}. Hence we compute partition Wil W2,
Pick vo € V1! then U = {vw3,v4,v5} C V!, and we choose Wh! = U and Wh? = V1 \ UL
Let gbt = G' | Wt GY2? = @' | W2, By induction hypothesis there are parity progress
measures ol W1 — Mg for Ghl and o2 Wh2 — Mg..» for GY2. Note that we remember
that n%’l =1,n3 =1

11

Figure 3: Parity game I''»?

As subgraph G2 as shown in Figure [3| consists of a single vertex (vp) with odd priority
(1), we choose o"%:W12? — Mgi» such that o»?(vs) = (0,1).

TN
= O

Figure 4: Parity game I'l!

Compute obt:Whlt — Mg for the subgraph from Figure Observe that Vol’1 = 0,
Vll’1 = {vy}. We compute partition WhHH1 W12 Pick vy € V1. There are no states
reachable by a non-trivial path starting in vy, hence UM = (. We find Whbl = {u,},
Wht2 = fys v5}. Let GVUL = Ggbt bbbl ghb2 = gLl 1 Wwh12| By induction hypothesis
there are parity progress measures obb: W/ hbLL Mgi11 for gLl and ohb2: 112

for G112, Note that we remember that ni’l’l =1, n§’1’1 =0.

— Mg1,1,2

’U4:1

Figure 5: Parity game I'b11

Subgraph Gb!! as shown in Figure consists of a single vertex (v4) with odd priority (1),
hence we choose oL Wbl — Mgia1 such that obb(vg) = (0,1).

>

Figure 6: Parity game I'"12

Compute o2 Wht2 Mgi12. Observe that Vbl’l’? = ‘/'11’1’2 = (), hence we reduce all
priorities by 2, leading to the game in Figure [7}

Now compute o'»V2W12 — Menae. Observe that 1/6/1’1’2 = {v3} £ 0, V{"1? = {us}.
By induction hypothesis there is a progress measure o2 (V/L1:2\ V0/1,1,2) — Mgn,z2 for the
subgraph G121 = GrLL2 (L2 V0/1,1,2)' Setting o2 (v3) = (0,0) gives a progress
measure for G112

12

v3:0

Figure 7: Parity game

Figure 8: Parity game I'!

/11,2

717271

Subgraph G'V121 as shown in Figure [§] consists of a single vertex (vs) with odd priority

(1), hence we choose o121 W2 — Monazq such that o121 (vs) = (0,1).

Combining these last two results we obtain o'bb2: W12 — Mo with o112(v3) = (0,0)
and ¢''12(vs) = (0,1). However, remember that we had decreased the priorities by 2. We
compensate for this by right-shifting all progress measures by 2. This leads to o2 W12 —
Mgz with o'12(v3) = (0,0,0,0) and o"12(vs) = (0,0,0, 1).

We continue combining these results until we find a parity progress measure. We combine
obb1 and p"1? into o', We know that o"' = obb U (o812 4 (0,17, 0, nzl,,’l’l)) olb U
(0%124(0,1,0,0)). Hence o"'(v3) = (0,1,0,0), 91’1(4) = (0,1,0,0) and 911(05) (0,1,0,1).

To this we add ! to obtain o'. We know that o' = o' U ("2 + (0, ”1 Lo, né 1)) = o
(0%? +(0,1,0,1)). As such we find o(v3) = (0,1,0,0), o(vs) = (0,1,0,0), o(vs) = (0,1,0,1)
and po(v2) = (0,2,0,1). To this we still need to add that o(v1) = (0,0,0,0). Now p is a parity
progress measure for G.

A.2 Verifying progress measure

Now that we have computed a progress measure, let us check if it adheres to Definition
We check the inequalities along all edges and we find that ¢ is indeed a progress measure. An
overview of the relevant inequalities is shown in Table

’ Abstract ‘ Concrete ‘ Truth
Q(Ul) 20 Q(UQ) (O’O’O O) (0 2,0, 1) T
Q(UQ) >1 Q(vl) (07270 1) (0 070’0) T
o(v2) >1 o(vs3) | (0,2,0,1) >; (0,1,0,0) T
Q(Uii) =9 Q(U4) (07 170 0) =2 (07 1>O’0) T
Q(’U4) > Q(Ul) (0, 1,0, 0) >1 (O 0,0,0) T
Q(’U3) 22 Q(’U5) (0, 1,0 0) 22 (0, 1,0, 1) T
o(vs) >3 o(vs) | (0,1,0,1) >3 (0,1,0,0) T
Q(US) >3 Q(Ul) (07 1,0, 1) >3 (0 07070) T

Table 1: Inequalities for progress measure

13

	Introduction
	Preliminaries
	Boolean equation systems
	Parity games

	Game parity progress measures
	Algorithm

	Equivalence of Boolean Equation Systems and parity games
	BES parity progress measures
	Algorithm

	Conclusions
	Constructive small progress measures
	Computing a progress measure
	Verifying progress measure

