
A Symbolic Approach to PBES
Instantiation

Tom Boshoven, BSc

March 13, 2013

Master’s Thesis
Computer Science and Engineering

Supervisor:
T.A.C. Willemse, PhD

Eindhoven University of Technology
Department of Mathematics and Computer Science

Abstract

We give a complete approach for instantiation of parametrized boolean equation systems (PBESs)
and the subsequent solving of the resulting boolean equation systems. The given approach makes
use of techniques used in symbolic state-space explorations. In this approach, we first transform
the PBES into a special form named clustered PBES, and subsequently instantiate this clustered
PBES into a BES, represented by a structure graph, using symbolic techniques. We present
algorithms for solving this BES, making use of symbolic data structures.

TU/e A Symbolic Approach to PBES Instantiation

Contents

1 Introduction 3

1.1 Overview . 4

2 Background 5

2.1 Boolean Equation Systems . 5

2.1.1 Structure Graphs . 7

2.2 Parametrized Boolean Equation Systems . 12

2.2.1 Explicit Instantiation . 14

3 Symbolic Instantiation 15

3.1 Motivation . 15

3.2 Approach . 15

3.3 State-space . 16

3.4 Clusters . 17

3.5 Guarded Normal Form . 19

3.5.1 Strongly Guarded Form . 20

3.5.2 Transformation . 22

3.5.3 Correctness of the Transformation . 24

3.6 Clustered GNF . 32

4 Exploration 35

4.1 Next-state function . 35

4.2 Explicit Exploration . 36

4.3 Symbolic Exploration . 36

4.3.1 Partitioned Transition Relation . 36

4.4 Event Locality . 38

4.4.1 Dependency . 38

4.4.2 Local transition relation . 40

4.5 Merging Groups . 41

4.6 Linked Decision Diagrams . 42

4.6.1 Basic Operations . 44

4.6.2 States and Transitions . 47

4.7 Algorithm . 49

4.7.1 Usage . 51

4.8 BESsyness . 52

4.9 Optimizations . 53

4.9.1 True/false-elimination . 53

5 Solving 58

5.1 Parity Games . 58

5.1.1 Simple Recursive Form . 58

5.2 Transformation to Parity Games . 59

5.3 Directly . 60

5.3.1 Recursive Algorithm . 60

Tom Boshoven 1

TU/e A Symbolic Approach to PBES Instantiation

5.3.2 Gauß Elimination . 61

6 Conclusion 65

7 Future Work 66

A Coq 69

A.1 PBES Framework . 69

A.2 Strongly Guarded Form . 71

Tom Boshoven 2

TU/e A Symbolic Approach to PBES Instantiation

1 Introduction

Formal verification of safety-critical systems is often desired because of the severe consequences of
failure in such systems. Model checking is a technique for performing validation of requirements
on systems. It is successfully used to find flaws in various algorithms and systems ([30, 17]).

The model checking problem is the problem of checking whether a model of a system conforms to
the requirements given to that system. This model is usually an abstracted software or hardware
system, and the requirements are generally temporal. In [25], it is shown that a given model check-
ing problem can be translated into a system of boolean fixed-point equations, or Boolean Equation
System (BES). Solving such a system corresponds to finding the solution to the represented model
checking problem.

Because experience showed that BESs are not sufficiently versatile in settings in which data
plays a role, the BES formalism was extended with data in [15], resulting in parametrized boolean
equation systems (PBESs).

In addition to the model checking problem, PBESs are useful for equivalence checking using
various bisimulations ([9]) and for static analysis of code ([13]).

A general approach for solving a PBES first eliminates the parameters using a process called
explicit instantiation. This process results in a boolean equation system, which can be solved
algorithmically. This approach is sketched in Figure 1.

PBES BES Solution
Instantiation Solving

Figure 1: A common approach to PBES instantiation.

Instantiation of a PBES can be seen as a type of state-space exploration. In [20], Gijs Kant and
Jaco van de Pol present an approach for instantiation of PBESs into parity games, a formalism
which specializes BESs. This approach uses existing state-space exploration techniques in order
to perform the instantiation.

We present a generalized approach to this type of instantiation of PBESs, in which the result
of the instantiation is a BES. This approach uses symbolic state-space exploration techniques for
the instantiation. Furthermore, optimizations of the resulting BES are discussed and algorithms
for solving this BES are presented. The objective of this work is providing a starting point for
integration of a symbolic PBES instantiation technique into the mCRL2 toolset1.

It was shown in [20] that in some cases, using symbolic methods in the instantiation of PBESs
vastly reduces the time and memory cost of the process. This makes it possible to solve model-
checking problems that can not be solved using an approach based on explicit instantiation in
reasonable time. Because of this, it is very useful to have a tool which performs instantiation
using symbolic exploration methods. The approach used in [20] has some problems and limitations,
which we identify and overcome.

One of the identified problems occurs in a preprocessing step, which transforms equations in a
type of conjunctive normal form. In some cases, performing this step exponentially blows up a
system, or even results into a system which can no longer be instantiated. An example of such a
system, along with a more detailed explanation, is given in Section 3.1. This problem is solved
by weakening the required form, and defining a new transformation to this form, which does not
suffer from this behavior.

Furthermore, the current approach for symbolic instantiation of PBESs instantiates into a parity
game. Parity games are a formalism which corresponds to a strict subset of BESs. We generalize
the approach by instantiating a PBESs into BESs. This reduces the difference in structure between

1http://mcrl2.org/

Tom Boshoven 3

http://mcrl2.org/

TU/e A Symbolic Approach to PBES Instantiation

the original PBES and the instantiated system, which may help improve tracing of verification
results.

1.1 Overview

First, the background concepts are explained and used definitions are given in Section 2. Over
the following three sections, we present a complete approach for finding the solution to a given
PBES. This approach is sketched in Figure 2.

PBES
PBES

(GNF)

Clustered

PBES

Symbolic

Structure
Graph

BES
Solution

Transformation Identification

Cluster Symbolic

Exploration Solving

Figure 2: A symbolic approach to PBES instantiation.

The approach consists of three general steps. Section 3 describes the requirements for the
symbolic exploration approach. In addition, it provides the necessary transformations for PBESs
in order to fulfill these requirements. This is done by means of a special form (Strongly Guarded
Form or SGF) and identification of subformulas called clusters. Following this, Section 4 details
the process of symbolic exploration of a PBES. This results in a symbolic representation of a
state-space corresponding to the resulting boolean equation system. Lastly, Section 5 contains
algorithms for solving this symbolic BES.

Tom Boshoven 4

TU/e A Symbolic Approach to PBES Instantiation

2 Background

2.1 Boolean Equation Systems

A model-checking problem can be represented as a boolean equation system (BES) by combining
a model with its desired properties into a single system ([31]). Finding the solution to a BES
corresponds to answering the represented model-checking problem.

Definition 2.1 (BES) A boolean equation system is a system of boolean fixed-point equations,
characterized by the following grammar:

BES ::= ε

| (σX = Φ) BES

Φ ::= X | (Φ ∧ Φ) | (Φ ∨ Φ) | true | false

Here, ε is the empty system, σ is either µ or ν and X represents any variable. The right-hand
sides of the equations in a BES (denoted by Φ) are called proposition formulas.

For a BES E, we define occ(E) (occurring variables) as the set of recursion variables occurring
in the right-hand side of at least one equation in E and we define bnd(E) (bound variables) as the
set of recursion variables occurring in the left-hand side of an equation.

Note that we do not allow negations to occur in the equations. All equations in the system are
preceded by a ν (greatest) or µ (least) fixed-point symbol. In a BES, the ordering of the equations
is of importance for the solution to the system.

We assume closed BESs. This means that all variables occurring in a right-hand side of an
equation (Φ) must be in the left-hand side of exactly one equation (occ(E) ⊆ bnd(E)).

In the remainder of this document, we often use an alternative syntax in which equations are
placed on separate lines and excess brackets are removed. This notation can be seen in Example 1.

Example 1 (BES) We model a simple process P, described by the following labeled transition
system:

s0 s1

s

t

a

i

Process P may perform internal actions i, or send a message using action s. After sending a
message, it either receives an acknowledgment (action a) or encounters a timeout (action t).

We can describe the property that there exists a path through P in which an s action is done
infinitely often, but an a action can be done only finitely often (a message is sent infinitely often,
but can be acknowledged only finitely often). Intuitively, this property is false when starting from
either state of P, because after each s step, an a step can always be done.

A possible way to represent this property in the modal µ calculus ([28]) is the following formula
f :

f = µX.(νY.(µZ.(〈s〉Y ∨ 〈s ∨ a〉Z) ∧ [a]X))

The verification of f on process P is a model checking problem. By combining f with P, a boolean

Tom Boshoven 5

TU/e A Symbolic Approach to PBES Instantiation

equation system corresponding to this problem can be created:

µX0 = Y0

µX1 = Y1

νY0 = Z0

νY1 = Z1

µZ0 = (Y1 ∨ Z0) ∧ true
µZ1 = (false ∨ Z0) ∧X0

We have P, sj |= f (f holds in state sj of P, with j ∈ {0, 1}) if and only if Xj has the solution
true in this BES.

The semantics for BESs are derived from the semantics of fixed-point equation systems (of which
BESs are a specialization) which are defined in [25]. In [21], BES semantics are defined as follows:

Definition 2.2 (BES semantics) Let η : X→B be an environment mapping recursion variables
X ∈ X to a boolean value. The interpretation JfKη maps a proposition formula f to true or false:

JtrueKη =true

JfalseKη =false

JX Kη =η(X)

JΦ1 ∨ Φ2Kη =JΦ1Kη ∨ JΦ2Kη
JΦ1 ∧ Φ2Kη =JΦ1Kη ∧ JΦ2Kη

The solution of a BES given environment η is inductively defined as follows:

JεKη =η

J(µX = Φ)EKη =JEKη[X := JΦK(JEKη[X := false])]

J(νX = Φ)EKη =JEKη[X := JΦK(JEKη[X := true])]

Here, the expression η[X := b] assigns value b to η(X).

Solving a BES E for recursion variable X ∈ X means finding the solution of (JEKη)(X) for some
environment η.

Example 2 (BES solution) Let E be the BES from Example 1.

Calculating JEKη for some environment η yields some environment η′, such that:

η′(X0) =false

η′(X1) =false

η′(Y0) =false

η′(Y1) =false

η′(Z0) =false

η′(Z1) =false

We omit the calculation resulting in η′, because of the length of the intermediate expressions.

By observing that in this environment, X0 and X1 are both false, we can conclude that property
f from Example 1 does indeed not hold from s0 or s1.

Various algorithms exist to solve BESs efficiently. Some of these algorithms, such as the recursive
algorithm by Zielonka ([32]), the small progress measures algorithm by Jurdzińsky ([19]), and the
model checking algorithm by Stevens and Stirling ([27]) require transformation of the system to a
normal form in order to solve them. Other algorithms, such as Gauß elimination ([24]) can solve
BESs directly.

Tom Boshoven 6

TU/e A Symbolic Approach to PBES Instantiation

2.1.1 Structure Graphs

In Section 3.3, we show that in order to efficiently use a symbolic data structure for representing
a boolean equation system, it is desirable to represent such a system as a graph. One of the ways
to do this is by means of a structure graph for boolean equation systems, introduced by Jeroen
Keiren, Michel Reniers and Tim Willemse in [22].

Definition 2.3 (Structure graph) We define a structure graph G as a 5-tuple 〈S, s0,→, d, r〉
where:

• S is a finite set of nodes

• s0 is the initial node

• → ⊆ S × S is a dependency relation

• d : S 7→ {∧,∨,>,⊥} is a node decoration mapping

• r : S 7→ N is a node ranking mapping

Here, d and r are partial functions.

In our definition, we diverge from [22], where a mapping ↗ is included. This mapping assigns
free variables to nodes. Because we only consider BESs in which there are no free variables in the
scope of this document, we disregard this element, implicitly giving it a value of ∅.

In a structure graph constructed from a BES, each node corresponds to a subformula of this
BES. The dependency relation→ describes occurrence of a subformula in a formula, or occurrence
of a recursion variable in a formula. For example, the formula νX = Y ∨ (X ∧Z) corresponds to a
node describing X. This node has an outgoing edge to the node describing Y and another one to
the node corresponding to (X ∧Z). This last node has an outgoing edge to the node describing Z
and an outgoing edge back to the node describing X. A complete example is given in Example 4.

The node decoration mapping d describes whether the subformula described by the node is a
constant (true or false) or a conjunction or disjunction at the highest level of their parse tree.
The nodes corresponding to true get decoration > and the nodes corresponding to false get
decoration ⊥. Conjunctions are decorated with the ∧ symbol and disjunctions have decoration ∨.
For instance, a node describing X ∨ Y is decorated with the ∨ symbol. For a node s with a single
dependency Z, the value of d(s) may be left undefined.

The ranking mapping r attaches a natural number, named rank, to the nodes corresponding to
fixed-point equations (in contrast to subformulas of these equations). The rank of such a node
defines whether the equation to which it corresponds has a greatest or least fixed-point, and also
determines the ordering of equations. If a node s does not correspond to an equation, the value
of r(s) is undefined.

Definition 2.4 (Rank) Assume a boolean equation system E, consisting of N equations of the
form (σiXi = Φi) (with 1 6 i 6 N), where σi is a fixed-point symbol. The rank rankE(Xi) of a
single recursion variable Xi in the context of system E is determined as follows.

rankE(Xi) =


0 if i = N ∧ σi = ν

1 if i = N ∧ σi = µ

rankE(Xi+1) if i < N ∧ σi = σi+1

rankE(Xi+1) + 1 if i < N ∧ σi 6= σi+1

(1)

Tom Boshoven 7

TU/e A Symbolic Approach to PBES Instantiation

Example 3 (Rank) Assume the BES E from Example 1:

µX0 = Y0

µX1 = Y1

νY0 = Z0

νY1 = Z1

µZ0 = (Y1 ∨ Z0) ∧ true
µZ1 = (false ∨ Z0) ∧X0

The rank of the variables occurring in the BES can be determined as follows:

rankE(Z1) = 1
rankE(Z0) = rankE(Z1) = 1
rankE(Y1) = rankE(Z0) + 1 = 2
rankE(Y0) = rankE(Y1) = 2
rankE(X1) = rankE(Y0) + 1 = 3
rankE(X0) = rankE(X1) = 3

Example 4 (Structure graph) Assume the BES from Examples 1 and 3.

A structure graph representation of this BES is given below:

X0 Y0 Z0

r = 3 r = 2
r = 1
d = ∧

d = ∨s0

Y1

r = 2

Z1

r = 1
d = ∧

d = ∨
s1

true

d = >

X1

r = 3

falsed = ⊥

Here, the nodes corresponding to recursion variables are labeled with the name of this variable.
The nodes corresponding to constants true and false are labeled as such. The node labeled s0
corresponds to the subformula (Y1 ∨ Z0) and the node labeled s1 corresponds to the subformula
(false ∨ Z0). The states are annotated with their corresponding values of r and d, where defined.
The initial node is X0, as we want to solve E for X0.

Note that nodes have a rank if and only if they correspond to a recursion variable and a decoration
if their number of outgoing edges is unequal to 1.

In [22], structured operational semantics for deriving structure graphs from BES are presented.
We restrict these semantics to structure graphs corresponding to closed BESs (occ(E) ⊆ bnd(E)
for equation system E).

Using these SOS rules, it is possible to construct a structure graph corresponding to a given
boolean equation system, as done manually in Example 4.

Definition 2.5 (Structured operational semantics for structure graphs) The following SOS-
rules describe the relation between a structure graph and a formula f in the context of an equation
system E, denoted as 〈f, E〉.

Tom Boshoven 8

TU/e A Symbolic Approach to PBES Instantiation

X ∈ occ(E)

r(〈X , E〉) = rankE(X)
(1)

d(〈true, E〉) = > (2)
d(〈false, E〉) = ⊥ (3)

d(〈f ∧ g, E〉) = ∧ (4)
d(〈f ∨ g, E〉) = ∨ (5)

d(〈f, E〉) = ∧ 〈f, E〉 6∈ dom(r) 〈f, E〉→〈h, E〉
〈f ∧ g, E〉→〈h, E〉 (6)

d(〈g, E〉) = ∧ 〈g, E〉 6∈ dom(r) 〈g, E〉→〈h, E〉
〈f ∧ g, E〉→〈h, E〉 (7)

d(〈f, E〉) = ∨ 〈f, E〉 6∈ dom(r) 〈f, E〉→〈h, E〉
〈f ∨ g, E〉→〈h, E〉 (8)

d(〈g, E〉) = ∨ 〈g, E〉 6∈ dom(r) 〈g, E〉→〈h, E〉
〈f ∨ g, E〉→〈h, E〉 (9)

d(〈f, E〉) 6= ∧
〈f ∧ g, E〉→〈f, E〉 (10)

d(〈g, E〉) 6= ∧
〈f ∧ g, E〉→〈g, E〉 (11)

d(〈f, E〉) 6= ∨
〈f ∨ g, E〉→〈f, E〉 (12)

d(〈g, E〉) 6= ∨
〈f ∨ g, E〉→〈g, E〉 (13)

〈f, E〉 ∈ dom(r)

〈f ∧ g, E〉→〈f, E〉 (14)
〈f, E〉 ∈ dom(r)

〈f ∧ g, E〉→〈g, E〉 (15)

〈g, E〉 ∈ dom(r)

〈f ∨ g, E〉→〈f, E〉 (16)
〈g, E〉 ∈ dom(r)

〈f ∨ g, E〉→〈g, E〉 (17)

(σX = f) ∈ E d(〈f, E〉) = ∧ 〈f, E〉 6∈ dom(r)

d(〈X , E〉) = ∧ (18)

(σX = f) ∈ E d(〈f, E〉) = ∨ 〈f, E〉 6∈ dom(r)

d(〈X , E〉) = ∨ (19)

(σX = f) ∈ E 〈f, E〉→〈g, E〉 d(〈f, E〉) = ∧ 〈f, E〉 6∈ dom(r)

〈X , E〉→〈g, E〉 (20)

(σX = f) ∈ E 〈f, E〉→〈g, E〉 d(〈f, E〉) = ∨ 〈f, E〉 6∈ dom(r)

〈X , E〉→〈g, E〉 (21)

(σX = f) ∈ E d(〈f, E〉) 6∈ {∨,∧}
〈X , E〉→〈f, E〉 (22)

(σX = f) ∈ E 〈f, E〉 ∈ dom(r)

〈X , E〉→〈f, E〉 (23)

Rule (1) describes the fact that all nodes corresponding to recursion variables are ranked. Rules
(2) to (5) describe the value of the decoration d. Rules (6) to (9) flatten the nesting hierarchy for un-
ranked nodes with the same decoration. They can be used to deduce that 〈X ∧ (Y ∧ Z), E〉→〈Y, E〉.
This flattening is only allowed within the representation of a single equation. Rules (10) to

Tom Boshoven 9

TU/e A Symbolic Approach to PBES Instantiation

(13) handle the cases that flattening is not possible, due to switches in decoration. These rules
can be used to deduce that 〈X ∧ (Y ∨ Z), E〉→〈Y ∨ Z, E〉, but do not allow the deduction that
〈X ∧ (Y ∧ Z), E〉 → 〈Y ∧ Z, E〉, forcing the structure to be flattened to a single node. Rules (14)
to (17) define the other case where flattening as in rules (6) to (1) is not allowed, namely when the
inner node is ranked. This can be used to deduce that 〈X ∧ Y, E〉→〈Y, E〉 if d(Y) = ∧ and Y is a
recursion variable. Rules (18) to (23) describe how the structure is derived for a recursion variable.
Rules (18) to (21) describe the case where the right-hand side of the equation is a conjunction
or disjunction. Rules (20) and (21) describe the cases where the right-hand side is a constant or
variable.

A structure graph can be constructed from any boolean equation system, using the rules in
Definition 2.5. However, not every structure graph represents a sane BES. Therefore, when con-
structing a BES from a structure graph, we require mild restrictions on the structure graph. These
restrictions are collected in the BESsyness property ([22]).

Definition 2.6 (BESsyness) A structure graph G = 〈S, s0,→, d, r〉 is BESsy if and only if it
satisfies the following constraints:

• Nodes s ∈ S such that d(s) ∈ {>,⊥} have no successor with respect to →.

• For all nodes s ∈ S it holds that d(s) ∈ {∧,∨} or r(s) is defined if and only if s has a
successor with respect to →.

• For all nodes s ∈ S that have multiple successors with respect to →, it holds that d(s) ∈
{∧,∨}.

• All cycles with respect to → contain at least one ranked node.

Note that all structure graphs that are constructed from a BES using the rules in Definition 2.5
are BESsy. For all BESsy structure graphs G it holds that a boolean equation system can be
constructed from G.

Definition 2.7 (BES construction) Let G = 〈S, s0,→, d, r〉 be a BESsy structure graph. Then
a BES E corresponding to this structure graph can be constructed as follows.

To each ranked node s ∈ S, we associate an equation of the following form:

σXs = rhssg(s)

Here, σ is µ if r(s) is odd, and ν otherwise. Variable Xs is newly introduced. Function rhssg is
defined as follows:

rhssg(s) =


∧ {φsg(s′) | s→s′} if d(u) = ∧∨ {φsg(s′) | s→s′} if d(u) = ∨
φsg(s′) otherwise, with s→s′

The function φsg is defined as follows:

φsg(s) =



∧ {φsg(s′) | s→s′} if d(u) = ∧ and s 6∈ dom(r)∨ {φsg(s′) | s→s′} if d(u) = ∨ and s 6∈ dom(r)

true if d(s) = >
false if d(s) = ⊥
Xs otherwise

The constructed set of equations must be ordered such that for all pairs of equations (σX1 =
f1), (σX2 = f2) such that r(X1) > r(X2), it holds that (σX1 = f1) occurs in the ordering before
(σX2 = f2).

Tom Boshoven 10

TU/e A Symbolic Approach to PBES Instantiation

We diverge slightly from the definition from [22], which states that nodes s with a single edge
to a node s′ and a decoration d(s) = ∧ have rhssg(s) = φsg(s′) ∧ φsg(s′) and if s 6∈ dom(r),
φsg(s) = φsg(s′) ∧ φsg(s′). The same is stated for the case in which d(s) = ∨. Because of the
semantic equivalence of φsg(s′) to φsg(s′) ∧ φsg(s′) however, and the semantic nature of the used
properties of structure graphs, we use the translation as given in Definition 2.7.

In [22], it is proved that a BES has an equivalent solution to the BES generated from its structure
graph.

Example 5 (BES construction from structure graph) Assume the structure graph from Ex-
ample 4. We relabel the nodes for clarity:

s0 s1 s2

r = 3 r = 2
r = 1
d = ∧

d = ∨s5

s8

r = 2

s7

r = 1
d = ∧

d = ∨
s6

s3

d = >

s9

r = 3

s4d = ⊥

It can be observed that this structure graph is BESsy.

In order to transform this structure graph to a BES, we introduce one equation per ranked node.
For example, the node s2 yields the following equation:

µXs2 =rhssg(s2)

=φsg(s3) ∧ φsg(s5)

=true ∧ (φsg(s2) ∨ φsg(s8))

=true ∧ (Xs2 ∨ Xs8)

Repeating this process for all ranked nodes results in the following BES after ordering the equations
by rank:

µXs0 =Xs1

µXs9 =Xs8

νXs1 =Xs2

νXs8 =Xs7

µXs2 =true ∧ (Xs2 ∨ Xs8)

µXs7 =Xs0 ∧ (false ∨ Xs2)

This BES is equivalent (up to naming) to the original BES, given in Example 1.

Although it was not demonstrated in this example, it is possible to preserve the names of the
recursion variables on ranked nodes through this process by choosing the names of the introduced
recursion variables appropriately.

Since all BESs E can be transformed into structure graphs, and all structure graphs constructed
this way can be transformed back into BESs that are solution equivalent to E (modulo renaming of
recursion variables), no expressive power is lost by evaluating structure graphs instead of equation
systems. This property is used in the remainder of this document.

Tom Boshoven 11

TU/e A Symbolic Approach to PBES Instantiation

2.2 Parametrized Boolean Equation Systems

Section 2.1 introduced boolean equation systems as a representation of a model checking problem.
Parametrized boolean equation systems (PBESs), introduced in [16], are extensions of BESs with
data. They are used in various model-checking problems in which data plays a role.

Definition 2.8 (PBES) Parametrized boolean equation systems are systems of predicate fixed-
point equations of the following form:

PBES ::= ε

| (σX (d1 : D1, d2 : D2, ..., dn : Dn) = φ) PBES

Here, σ is µ or ν, sets D1 to Dn are data domains and φ is a predicate formula (see Definition 2.9).

In the remainder of this document, we often abstract from the number of data variables, by
writing the data parameters as a single vector (so (d1 : D1, d2 : D2, ..., dn : Dn) is written as

(~d : D)). Indexing is done using subscript (d1) and if ~d ∈ D, the type of di is called Di.

Definition 2.9 (PBES predicate formula) Predicate formulas are defined to be expressions
built from the following grammar:

φ ::= b | X (e) | φ ∧ φ | φ ∨ φ | ∀~v : D.φ | ∃~v : D.φ

Here, b is a simple boolean expression, X is a predicate variable, ~v of type D is a vector of data
variables and e is a data term.

A simple boolean expression is considered to be an expression resulting in a boolean value and
containing no predicate variables. Other elements, such as quantifiers, are allowed. Constants
true and false are considered special cases of this simple boolean expression b. We may write
b⇒ φ instead of ¬b ∨ φ for clarity. Note that this is only allowed if the left-hand side is a simple
boolean expression, because we allow no negated occurrences of recursion variables.

We also extend the definitions of occ and bnd from Definition 2.1 to PBESs. In these definitions,
we ignore data. Thus occ(νX(n : N) = Y (n)) = {Y }.

Example 6 (PBES) We extend the description of process P from Example 1 with data. We
assume in every send and acknowledge action, a single bit (represented by a boolean) is trans-
ferred. An acknowledge action acknowledges receiving a message by sending a copy of the bit. The
following labeled transition system describes the extended system:

s0 s1(false)

s(false)

t

a(false)

i

s1(true)

s(true)

t

a(true)

We evaluate the property that after any number of steps in the system, after a bit b is sent, b must
be acknowledged after any path with a finite number of i and t steps. Intuitively, this property is
false, because it is possible for the system to reach s0 in one step, without acknowledging b. From
s0 the system can enter an infinite loop of actions s(¬b) and a(¬b), so it is possible to never
perform a(b).

The property can be described by the following formula in modal µ calculus (extended with data,
[15]):

νX.[true]X ∧ (∀b : B.[s(b)](µY.(νZ.([i ∨ t]Y ∧ [i ∨ t]Z) ∨ [a(b)]false)))

Tom Boshoven 12

TU/e A Symbolic Approach to PBES Instantiation

By combining a symbolic representation of the model with the formula, the following PBES can
be constructed:

νX0 =X0 ∧ (∀b : B.X1(b)) ∧ (∀b : B.Y1(b))

νX1(b : B) =X1(b)

µY0 =Z0

µY1(b : B) =Z1(b)

νZ0 =Y0 ∧ (∀b : B.Z1(b))

νZ1(b : B) =(Y0 ∧ Z0) ∨ (∀b′ : B.b 6= b′ ⇒ false)

The state of the system (s0 or s1), which is usually transformed into a parameter, is encoded
into the variable names for clarity. The parameter to state s1 remains a parameter for the PBES.
Variable X0 corresponds to the fixed-point of X in state s0 of the system. The other variables are
named similarly.

In a similar way as with BESs, we solve a PBES in order to find the solution to the represented
problem.

Definition 2.10 (PBES semantics) In order to describe the semantics of PBESs, we first give
the semantics of predicate formulas. Assume a predicate formula φ. Let ε be a data environment
assigning a value to each data variable occurring in φ and let η : X→D→B be a predicate en-
vironment, where X is the set of recursion variables and D the parameter space. We define the
interpretation of φ in these environments, denoted as JφKηε, inductively as follows:

JbKηε =JbKε
JX (e)Kηε =η(X)(JeKε)

Jφ1 ∧ φ2Kηε =Jφ1Kηε ∧ Jφ2Kηε
Jφ1 ∨ φ2Kηε =Jφ1Kηε ∨ Jφ2Kηε

J∀~v : D′.φ1Kηε =∀~w : D′.Jφ1Kη(ε[~v := ~w])

J∃~v : D′.φ1Kηε =∃~w : D′.Jφ1Kη(ε[~v := ~w])

Here, JbKε represents the value of the boolean expression b under assumption of the data environ-
ment ε. Notation ε[d := v] replaces the value of d in environment ε with v.

The solution of a PBES E in the context of a predicate environment η and data environment ε
is inductively defined in [16] and [29] as follows:

JεKηε =η

J(σX (~d : D) = φ)EKηε =JEK(η[X := σX (~d : D).φ(JEKηε)])

Here, σX (~d : D).φ(JEKηε) is a fixed-point expression, defined as follows:

µX (~d : D).φ(JEKηε) =
∧{

f : D→B | λ~v : D.JφK(JEK(η[X := f])ε)(ε[~d := ~v]) v f
}

νX (~d : D).φ(JEKηε) =
∨{

f : D→B | f v λ~v : D.JfK(JEK(η[X := f])ε)(ε[~d := ~v])
}

Here, f v g (with f, g : D→B) is defined as (∀~v : D.f(~v)⇒ g(~v)).

In practice, these semantics are not used directly to solve PBESs, because they lead to a rather
inefficient algorithm. Multiple algorithms exist for solving PBESs, but the method that is widely
used consists of the process of instantiation, which transforms the system into a BES. After that,
the BES can be solved using algorithms designed for BESs.

When solving a PBES, we are generally interested in the solution of a certain predicate variable
instance of the system (combination of recursion variable and parameters), or in the solution for
all reachable instances. We call such an instance the initial state of the system.

Tom Boshoven 13

TU/e A Symbolic Approach to PBES Instantiation

2.2.1 Explicit Instantiation

Explicit instantiation of a PBES to a BES, which is described in detail in [29], is done by replacing

all parametrized references X (~d) (for some parameter vector ~d) by new, parameterless recursion
variables X~d and creating new defining equations for these variables. We only perform instantiation
with reachable data elements, rather than the complete parameter space. This process is repeated
until all parametrized references are instantiated. Then the resulting formulas are reordered so
that the defining recursion variables for a BES equation are in the same order as their PBES
counterparts. The order of the introduced equations per instantiated PBES variable can be chosen
arbitrarily.

Example 7 (Explicit PBES instantiation) Assume the PBES from Example 6:

νX0 =X0 ∧ (∀b : B.X1(b)) ∧ (∀b : B.Y1(b))

νX1(b : B) =X1(b)

µY0 =Z0

µY1(b : B) =Z1(b)

νZ0 =Y0 ∧ (∀b : B.Z1(b))

νZ1(b : B) =(Y0 ∧ Z0) ∨ (∀b′ : B.b 6= b′ ⇒ false)

We can instantiate the equation for X0 by using a function Inst, performing the described actions
recursively on the structure of the equation:

Inst(νX0 = X0 ∧ (∀b : B.X1(b)) ∧ (∀b : B.Y1(b)))

= νX0 = Inst(X0 ∧ (∀b : B.X1(b)) ∧ (∀b : B.Y1(b)))

= νX0 = Inst(X0) ∧ Inst(∀b : B.X1(b)) ∧ Inst(∀b : B.Y1(b)))

= νX0 = X0 ∧ Inst(X1(false)) ∧ Inst(X1(true)) ∧ Inst(Y1(false)) ∧ Inst(Y1(true))

= νX0 = X0 ∧X1,false ∧X1,true ∧ Y1,false ∧ Y1,true

Repeating this process on all occurrences of instantiated recursion variables yields the following
BES:

νX0 = X0 ∧X1,false ∧X1,true ∧ Y1,false ∧ Y1,true
νX1,false = X0

νX1,true = X0

µY0 = Z0

µY1,false = Z1,false

µY1,true = Z1,true

νZ0 = Y0 ∧ Z1,false ∧ Z1,true

νZ1,false = Y0 ∧ Z0

νZ1,true = Y0 ∧ Z0

After solving this BES (for instance by applying Gauß elimination), we observe that indeed
X0 = false.

Tom Boshoven 14

TU/e A Symbolic Approach to PBES Instantiation

3 Symbolic Instantiation

3.1 Motivation

Explicit instantiation of the complete reachable parameter space of a PBES may cause a lot of
overhead in terms of both memory and processing. The reason for this is the fact that per PBES
equation, many very similar BES equations may be generated. As a simple example, we can
evaluate the instantiation of the equation (νX(d : N) = ∀n : N.n < 1000 ⇒ X(n)) with initial
state X(0). This will produce a BES with 1000 equations, each of which is a conjunction of all
1000 generated recursion variables.

We try to improve the efficiency of the instantiation process and possibly the subsequent solving
of the generated BESs by making use of list decision diagrams in the instantiation. List decision
diagrams (LDDs), introduced in [2] are data structures which can be used for storing and manip-
ulating sets of similar strings. An instantiation of a PBES recursion variable may be represented
by a string, treating each parameter value as a single symbol. An instantiation X (1) may be
represented by the string [′X ′,′ 1′]. This way, the set of instantiated variables can be represented
as a set of similar strings, which can be stored relatively efficiently in an LDD. The structure of an
LDD and the operations that can be used to manipulate it are described in detail in Section 4.6.
In Section 3.2, we introduce an approach for storing a complete instantiated BES using an LDD.
In further sections, this approach is elaborated.

By storing the resulting BES in an LDD, a lot of memory may be saved for systems with many
similar equations. Furthermore, LDDs support various set operations. By using these, it may be
possible to improve the running time of BES solving algorithms by evaluating sets of equations
instead of each equation separately.

3.2 Approach

Storing an arbitrary BES in an LDD efficiently is not directly possible without losing structure.
The right-hand sides of a BES are formulas which may contain conjunctions and disjunctions
nested arbitrarily. This nested structure cannot easily and efficiently be mapped to a set of
strings. A graph, however, fits the required structure to make use of LDDs. Each node in the
graph can be represented by a string, and the edge relation can be represented by a set of pairs of
strings. Thus, in order to store BESs in LDDs, we can make use of a graph-based representation
of these BESs.

In [20], an approach for symbolic instantiation is given. There, the chosen graph-based BES
representation is a parity game ([14]). Parity games are graph-based games which have a one-to-
one correspondence with BESs in simple recursive form (SRF, a normal form for BESs in which
the right-hand sides of equations are fully conjunctive or fully disjunctive). Various algorithms
exist to solve parity games.

In order to instantiate a PBES to a parity game, the approach starts by rewriting the PBES
into parametrized parity game (PPG) form. PBESs in this normal form instantiate directly into
BESs in SRF. This PPG is then interpreted as a symbolic description of a state space, where the
state space itself corresponds to a parity game. Therefore, exploring the state space described by
a PPG yields a parity game. The states correspond to an instantiated variable and the outgoing
edges correspond to the variables that occur in the right-hand side of the equation describing the
variable. Shapes (owners) and priorities of the states are determined before instantiation, and are
equal for all instantiated nodes corresponding to the same PBES variable. The exploration of the
state space formed by a PPG corresponds to the instantiation of the PPG.

This technique has been shown effective, vastly increasing performance of the instantiation of
various systems ([20]). There are, however, disadvantages to this existing technique:

• The transformation of a PBES into PPG, as described in [20], requires a transformation of all
formulas into a normal form called Bounded Quantifier Normal Form (BQNF). This normal

Tom Boshoven 15

TU/e A Symbolic Approach to PBES Instantiation

form consists of a sequence of bounded quantifiers, followed by a formula in a Conjunctive
Normal Form (CNF) with bounded quantifiers. While all PBESs can be rewritten into
BQNF ([20]), the inner CNF may cause an exponential blow-up of the formula. Consider,
for instance, the two following PBES equations:

νX(~d : D) =(X1(~d) ∧ Y1(~d)) ∨ (X2(~d) ∧ Y2(~d)) ∨ ... ∨ (Xn(~d) ∧ Yn(~d)) (1)

νXBQNF (~d : D) =(X1(~d) ∨X2(~d) ∨ ... ∨Xn(~d)) ∧ (Y1(~d) ∨X2(~d) ∨ ... ∨Xn(~d)) ∧ ...
∧(Y1(~d) ∨ Y2(~d) ∨ ... ∨ Yn(~d)) (2)

These equations are equivalent, but the latter one is rewritten to BQNF. It can be seen
that (2) contains disjuncts of all possible combinations of Xi and Yi such that for all i with
1 6 i 6 n, either Xi or Yi is present. As a result, there are 2n such disjuncts of length n,
while (1) contains only n conjuncts of length 2. In [26], this problem is stated in the context
of the Predicate Formula Normal Form, of which BQNF is a generalization.

In addition to this explosion, another problem exists when translating the BQNF to PPG.
Assume the following formula, which can be instantiated in a finite amount of time:

νX(n : N) = ((n = 1) ∧X(n+ 1)) ∨ ((n > 1) ∧X(n))

Translating this to BQNF may yield the following:

νX(n : N) = (n > 1) ∧ ((n 6= 1)⇒ X(n)) ∧ ((n 6 1)⇒ X(n+ 1)) ∧ (X(n) ∨X(n+ 1))

Observe that when instantiating X for some n > 1, X must be instantiated for all n′ > n,
due to the last conjunct. Thus, by transforming a PBES to BQNF using the described
method, (explicit) instantiation may no longer be possible.

• A possible solution would be to define a direct translation of a model checking problem into a
PPG. While this circumvents the previous issue, such a transformation has the disadvantage
that some PBES manipulations, such as parelm and constelm ([18]) become less effective.
Furthermore, alternative decision problems that are encoded into PBESs, such as equivalence
checking of infinite systems using branching bisimulation ([9]), do not benefit from this
transformation.

• Parity games correspond syntactically to a strict subset of all BESs. There are use cases
in which the desired output is not a parity game, but a BES. Although there is a direct
correspondence between BESs in SRF and parity games, SRF imposes an unnecessary re-
striction. It is not the case that a single instantiation of a PBES equation corresponds to
a single BES equation, and this change in structure may make it harder to trace problems
and verification results.

In this section, we describe a generalization of the approach in [20] which aims to solve these
problems by not doing the transformation to PPG form, but working on a more general type of
PBES.

3.3 State-space

In order to treat instantiation of a PBES as a state-space exploration problem, we need to define
the state-space itself. Whereas in the PPG method, the explored state-space is a parity game,
in our generalized approach, we want to allow the resulting state-space to represent any boolean
equation system.

For this, we use structure graphs (see Section 2.1.1) as the BES representation. Each ranked
node in this structure graph represents an instance of a PBES equation and all edges pointing

Tom Boshoven 16

TU/e A Symbolic Approach to PBES Instantiation

towards these ranked nodes represent dependencies. The unranked nodes represent subformulas.
The edges pointing to unranked nodes determine of which formulas they are subformulas. A
single instantiation of a PBES formula may consist of multiple nodes in the explored structure
graph. Unlike in the parity game approach, however, a single instantiation of a PBES equation
corresponds to a single BES equation.

3.4 Clusters

In order to instantiate a PBES formula directly to a set of nodes and edges in the structure
graph, we first identify subformulas of the PBES. We choose these subformulas in such a way that
each instantiated subformula corresponds to a single node and its outgoing edges in the structure
graph. We call these subformulas clusters. This means that clusters have the requirement that
when instantiated they must be either true or false, or conjunctions or disjunctions of subformulas
(represented by other clusters) and recursion variables. We want a cluster to define a subformula
that is as large as possible while conforming to this requirement. This corresponds to the flattening
seen in Definition 2.5.

Clusters represent subformulas. Therefore, they may refer to each other, but not in a cyclic way.

Example 8 (Cluster) Assume the following PBES:

νX(n : N) =Y (n) ∨ (Z(n) ∧W (n))

νY (n : N) =Y (n)

νZ(n : N) =Z(n)

νW (n : N) =W (n)

Observe that instantiation of X with n = 1 yields the following BES:

νX1 =Y1 ∨ (Z1 ∧W1)

νY1 =Y1

νZ1 =Z1

νW1 =W1

This is described by a structure graph similar to the following:

X1

Y1

Z1

W1

d = ∨
r = 0 d = ∧ r = 0

r = 0 r = 0

The bold elements of the image describe the part of the graph corresponding to X1.

We can identify clusters in X as follows:

νX(n : N) =Y (n) ∨ c1(n)

c1(n) =Z(n) ∧W (n)

The structure graph is still the same, but now each instantiated equation corresponds to a single
node:

Tom Boshoven 17

TU/e A Symbolic Approach to PBES Instantiation

X1

Y1

Z1

W1

c1,1

d = ∨
r = 0 d = ∧ r = 0

r = 0 r = 0

Definition 3.1 (Cluster) We define a cluster as a predicate (sub-)formula that instantiates to
a conjunction or disjunction of a (possibly empty) set of recursion variables. We characterize a
cluster as follows:

CLUSTER ::= c∧(~d : D) = CLUSTER∧

| c∨(~d : D) = CLUSTER∨

CLUSTER∧ ::= X (e) | c∨(e)

| b⇒ CLUSTER∧
| b⇒ (b′ ∧ CLUSTER∧)

| ∀~v : D′.CLUSTER∧
| CLUSTER∧ ∧ CLUSTER∧

CLUSTER∨ ::= X (e) | c∧(e)

| b ∧ CLUSTER∨
| b ∧ (b′ ⇒ CLUSTER∨)

| ∃~v : D′.CLUSTER∨
| CLUSTER∨ ∨ CLUSTER∨

Here, c∧ is the name of some conjunctive cluster and c∨ is the name of some disjunctive cluster,
~d is a list of data parameters of type D, b and b′ are simple boolean expressions and e is a data
expression.

Interesting to note is that a conjunctive cluster (following the CLUSTER∧ grammar) never con-
tains a reference to another conjunctive cluster, and that all clusters contain at least one reference
to a cluster or recursion variable.

Definition 3.2 (Clustered PBES) We characterize a clustered equation as follows:

CLUSTERED EQ ::= σX(~d : D) = CRHS

CRHS ::= CLUSTER∧ | CLUSTER∨
| b | b ∧ CRHS | b⇒ CRHS

Here, σ is a fixed-point symbol (µ or ν), X is a recursion variable, ~d is a parameter vector and b
is a simple boolean expression (containing no recursion variables).

A clustered PBES is a sequence of parametrized boolean fixed-point equations of the form
CLUSTERED EQ combined with a set of clusters of the form CLUSTER. Clusters may be cyclicly
dependent, as long as each cycle contains a fixed-point equation.

Note that this last property is similar to the fourth constraint in the definition of BESsyness
(Definition 2.6).

There may be multiple clustered PBESs corresponding to an arbitrary PBES. We try to identify
clusters in a way such that the number of identified clusters is minimal. A naive approach to this
may pose the problem of infinitely large instantiations, as shown in Example 9.

Tom Boshoven 18

TU/e A Symbolic Approach to PBES Instantiation

Example 9 (Infinite instantiations due to clustering) Assume the following PBES equa-
tion:

νX(n : N,m : N) =∀i : N.∃j : N.(i > 10) ∨ ((j < 10) ∧X(i, j))

Observe that the instantiation of X (with arbitrary parameters) will yield a finite BES.

A naive approach to identifying clusters might result in the following clustered PBES:

νX(n : N,m : N) =∀i : N.c0(n,m, i)

c0(n : N,m : N, i : N) =∃j : N.(i > 10) ∨ ((j < 10) ∧X(i, j))

For such a cluster, instantiation of equation X (with arbitrary parameters) does not terminate,
because the result is a single equation that is a conjunction of c0(n,m, i) for all i ∈ N.

This problem, however, does not occur when the equations are slightly modified:

νX(n : N,m : N) =∀i : N.(i 6 10)⇒ c0(n,m, i)

c0(n : N,m : N, i : N) =∃j : N.(j < 10) ∧X(i, j)

It can be seen that the first cluster is now always a finite conjunction, because the allowed values
for i are bounded by 0 and 10. This raises the question whether it is in general possible to rewrite a
PBES with a finite instantiation such that instantiation of its clustered counterpart remains finite.

A solution to this class of problems is given in Sections 3.5 and 3.6.

3.5 Guarded Normal Form

In order to make the transition from arbitrary PBESs to clustered PBESs, we introduce a normal
form for PBESs named Guarded Normal Form (GNF). This form looks similar to the clustered
form from Section 3.4 and acts as a characterization which helps in the identification of these
clusters in PBES equations.

Definition 3.3 (GNF) The Guarded Normal Form is a normal form for PBESs. An equation
in GNF is of the following form:

GNF ::=σX (~d : D) = RHS

RHS ::=RHS∧ | RHS∨ | b
RHS∧ ::=X (e)

| b⇒ RHS∨
| ∀~v : D′.b⇒ RHS∨
| RHS∧ ∧RHS∧

RHS∨ ::=X (e)

| b ∧RHS∧
| ∃~v : D′.b ∧RHS∧
| RHS∨ ∨RHS∨

Here, σ is one of µ (least fixed point) and ν (greatest fixed point), b is a simple boolean expression,
X is a recursion variable and e is a data term. Recall that a simple boolean expression is an
arbitrary boolean expression containing no recursion variables.

The simple boolean expressions which occur in GNF predicate formulas are used as guards for
subexpressions, meaning that in order to find a solution to the system, it is only necessary to eval-
uate the guarded subexpression if its guards evaluate to true. Having these guards simplifies the

Tom Boshoven 19

TU/e A Symbolic Approach to PBES Instantiation

identification of certain dependencies within an equation, as done in Section 4.4.1. Furthermore,
the guards are positioned in such a way that they help in identifying clusters in the formula.

Note that GNF puts only mild restrictions on PBESs. The main restriction is that guards must
be present at symbol switches, and all subformulas that are guarded by simple boolean expressions
contain at least one recursion variable.

3.5.1 Strongly Guarded Form

Solving the problem of unnecessary infinite instantiations, demonstrated in Example 9, is done
by enforcing an additional property on PBESs in GNF. PBESs in GNF having this property can
easily be clustered such that infinite instantiations occur only if they occur in the instantiation of
the original PBES. In order to achieve this, we require the guards in the GNF, which determine
whether a subexpression needs to be evaluated, to be as strong as possible.

In order to define this property, we first define helper functions guard∧ and guard∨.

Definition 3.4 (guard∧ and guard∨) Functions guard∨ and guard∧ are transformations of PBES
predicate formulas, defined as follows:

guard∧(b) =b guard∨(b) =b

guard∧(X (e)) =true guard∨(X (e)) =false

guard∧(φ ∧ ψ) =guard∧(φ) ∧ guard∧(ψ) guard∨(φ ∧ ψ) =guard∨(φ) ∧ guard∨(ψ)

guard∧(φ ∨ ψ) =guard∧(φ) ∨ guard∧(ψ) guard∨(φ ∨ ψ) =guard∨(φ) ∨ guard∨(ψ)

guard∧(∀~v : D.φ) =∀~v : D.guard∧(φ) guard∨(∀~v : D.φ) =∀~v : D.guard∨(φ)

guard∧(∃~v : D.φ) =∃~v : D.guard∧(φ) guard∨(∃~v : D.φ) =∃~v : D.guard∨(φ)

These functions describe the transformation which replaces all occurrences of recursion variables
with true or false respectively.

Function guard∧ and guard∨ are defined in such a way that guard∧(φ) is the strongest expression
φ′ such that for all predicate environments η, η′ and data environments ε, it holds that JφKηε ⇒
Jφ′Kη′ε. Similarly, guard∨(φ) is defined in such a way that it the weakest expression φ′ such
that for all predicate environments η, η′ and data environments ε, it holds that Jφ′Kηε ⇒ JφKη′ε.
Lemmas 3.5 and 3.6 show that these properties indeed hold.

Lemma 3.5 Assume a predicate formula φ, predicate environments η and η′ and data environ-
ment ε.

It holds that JφKηε⇒ Jguard∧(φ)Kη′ε and Jguard∨(φ)Kηε⇒ JφKη′ε.

Proof. We only prove that JφKηε ⇒ Jguard∧(φ)Kη′ε. The second statement can be proved by
following the same approach.

By monotonicity of PBESs ([16], Lemma 5), it holds that JφKηε⇒ Jguard∧(φ)Kηε. We use this
to reduce the claim to Jguard∧(φ)Kηε ⇔ Jguard∧(φ)Kη′ε for all η, η′ and ε. This is trivially the
case, because in the result of guard∧, no recursion variables are present, and thus the predicate
environment is not relevant in the evaluation of the semantics (see Definition 2.10).

�

In Lemma 3.6, we show that all alternatives to guard∧ generate formulas that are at most as
strong, and all alternatives to guard∨ generate formulas that are at most as weak.

Lemma 3.6 Assume a predicate formula φ.

For any predicate formula φ′ such that for all predicate environments η, η′ and data environments
ε it holds that JφKηε⇒ Jφ′Kη′ε, it also holds for all η and ε that Jguard∧(φ)Kηε⇒ Jφ′Kηε.

Tom Boshoven 20

TU/e A Symbolic Approach to PBES Instantiation

Symmetrically, for any predicate formula φ′ such that for all predicate environments η, η′ and
data environments ε it holds that Jφ′Kηε ⇒ JφKη′ε, it also holds for all η and ε that Jφ′Kηε ⇒
Jguard∨(φ)Kηε.

Proof. We only prove the first statement, as the second statement can be proved using the same
strategy.

Assume a predicate environment η> = (λX : X.(λd : D.true)).

Assume a φ′ such that JφKηε ⇒ Jφ′Kη′ε for all η, η′ and ε. Then it also holds that JφKη>ε ⇒
Jφ′Kη′ε.

We first prove that for all predicate environments η and data environments ε, it holds that
Jguard∧(φ)Kηε⇔ JφKη>ε. This is a proof by structural induction on φ. The induction hypothesis
is Jguard∧(ψ)Kηε⇔ JψKη>ε for ψ smaller than φ.

• Case b:

Jguard∧(b)Kηε
⇔JbKηε
⇔JbKε

⇔JbKη>ε

• Case X (e):

Jguard∧(X (e))Kηε
⇔JtrueKηε
⇔true
⇔η>(X)(JeKε)

⇔JX (e)Kη>ε

• Case ψ1 ∧ ψ2:

Jguard∧(ψ1 ∧ ψ2)Kηε
⇔Jguard∧(ψ1)Kηε ∧ Jguard∧(ψ2)Kηε
⇔{IH}

Jψ1Kη>ε ∧ Jψ2Kη>ε

⇔Jψ1 ∧ ψ2Kη>ε

• Case ψ1 ∨ ψ2:

Jguard∧(ψ1 ∨ ψ2)Kηε
⇔Jguard∧(ψ1)Kηε ∨ Jguard∧(ψ2)Kηε
⇔{IH}

Jψ1Kη>ε ∨ Jψ2Kη>ε

⇔Jψ1 ∨ ψ2Kη>ε

• Case ∀~v : D.ψ:

Jguard∧(∀~v : D.ψ)Kηε
⇔∀~w : D.Jguard∧(ψ)Kη(ε[~v := ~w])

⇔{IH}
∀~w : D.JψKη>(ε[~v := ~w])

⇔J∀~v : D.ψKη>ε

Tom Boshoven 21

TU/e A Symbolic Approach to PBES Instantiation

• Case ∃~v : D.ψ:

Jguard∧(∃~v : D.ψ)Kηε
⇔∃~w : D.Jguard∧(ψ)Kη(ε[~v := ~w])

⇔{IH}
∃~w : D.JψKη>(ε[~v := ~w])

⇔J∃~v : D.ψKη>ε

Since JφKη>ε⇒ Jφ′Kη′ε and Jguard∧(φ)Kηε⇒ JφKη>ε, it holds that Jguard∧(φ)Kη>ε⇒ Jφ′Kη>ε,
proving the claim.

�

Using the functions guard∧ and guard∨, we define the property strongly guarded.

Definition 3.7 (Strongly Guarded Form) An equation (σX (~d : D) = φ) of form GNF is
strongly guarded if and only if for all simple boolean expressions b used in a conjunction (b ∧ φ∧)
it holds that for all predicate environments η and data environments ε, JbKηε⇔ Jb∧guard∧(φ∧)Kηε
and for all such expressions b′ in an implication (b′ ⇒ φ∨) it holds that Jb′Kηε⇔ Jb′∧¬guard∨(φ∨)Kηε.

A PBES equation is in Strongly Guarded Form (SGF), if it is in GNF and is strongly guarded.
A PBES is in SGF if all of its equations are in SGF.

Section 3.6 illustrates that SGF equations do not suffer from the problem of unnecessary infinite
instantiations, that was shown in Example 9.

3.5.2 Transformation

As a preprocessing step to the instantiation process of a PBES, we transform the PBES into SGF.

This transformation is possible for all PBESs. We prove this by defining a transformation
function F and prove that the result of the transformation is in SGF. In this transformation
function, simple boolean expressions are strengthened and rewritten to act as guards.

Definition 3.8 presents transformation function F and helper functions F∧ and F∨. Function F∧
effectively removes the existing simple boolean expressions, replacing them by true. In addition
to this, it adds these formulas back as guards, using the guard∧ function to strengthen them by
using information from subexpressions. The result of F∧(φ) for some data expression φ is always
of the form RHS∧ with additional constants true. These constants are removed as a second step.
Functions F∧ and F∨ work in a symmetric way. Finally, we define a function F which decides
whether F∧ or F∨ should be applied.

Definition 3.8 (F) Transformation function F is defined as follows:

F ((σX (~d) = φ) E) =

{
(σX (~d) = guard∧(φ) ∧ F∧(φ)) F (E) if φ ∈ {b,X (e), ψ ∧ υ,∀~v : D.ψ}
(σX (~d) = guard∨(φ) ∨ F∨(φ)) F (E) otherwise

F (ε) =ε

Here, functions F∧ and F∨ are defined as:

• If occ(φ) = ∅:

F∧(φ) =true F∨(φ) =false

Tom Boshoven 22

TU/e A Symbolic Approach to PBES Instantiation

• Otherwise:

F∧(X (e)) =X (e) F∨(X (e)) =X (e)

F∧(ψ1 ∧ ψ2) =



F∧(ψ1) ∧ F∧(ψ2)

if occ(ψ1) 6= ∅ ∧ occ(ψ2) 6= ∅
F∧(ψ1)

if occ(ψ1) 6= ∅ ∧ occ(ψ2) = ∅
F∧(ψ2)

if occ(ψ1) = ∅ ∧ occ(ψ2) 6= ∅

F∨(ψ1 ∨ ψ2) =



F∨(ψ1) ∨ F∨(ψ2)

if occ(ψ1) 6= ∅ ∧ occ(ψ2) 6= ∅
F∨(ψ1)

if occ(ψ1) 6= ∅ ∧ occ(ψ2) = ∅
F∨(ψ2)

if occ(ψ1) = ∅ ∧ occ(ψ2) 6= ∅

F∧(ψ1 ∨ ψ2) =¬guard∨(ψ1 ∨ ψ2)⇒ F∨(ψ1 ∨ ψ2) F∨(ψ1 ∧ ψ2) =guard∧(ψ1 ∧ ψ2) ∧ F∧(ψ1 ∧ ψ2)

F∧(∀~v : D.ψ) =∀~v : D.¬guard∨(ψ)⇒ F∨(ψ) F∨(∃~v : D.ψ) =∃~v : D.guard∧(ψ) ∧ F∧(ψ)
F∧(∃~v : D.ψ) =¬guard∨(∃~v : D.ψ)⇒ F∨(∃~v : D.ψ) F∨(∀~v : D.ψ) =guard∧(∀~v : D.ψ) ∧ F∧(∀~v : D.ψ)

Note that the functions from Definition 3.8 are clearly well-defined, based on the decreasing
size of the input. The non-trivial case F∧(ψ1 ∨ ψ2) expands to ¬(guard∨(ψ1) ∨ guard∨(ψ2)) ⇒
(F∨(ψ1) ∨ F∨(ψ2)).

Simplifications may be done on the simple boolean expressions occurring in the equations. The
proposed optimization at this point is the removal of subexpressions that can be evaluated inde-
pendently from the environments that they are in. For example, the usage of guard∧ or guard∨
on a term such as (∀~v : D.X (e)) or (∃~v : D.X (e)) may introduce terms such as (∀n : N.true) or
(∃n : N.false), which are independent from all data variables and predicate variables and trivially
evaluate to true or false.

Example 10 (Transformation to SGF) We demonstrate the transformation function F de-
scribed in Definition 3.8.

Recall the PBES formula from Example 9:

νX(n : N,m : N) =∀i : N.∃j : N.(i > 10) ∨ ((j < 10) ∧X(i, j))

To transform this equation into SGF, we perform the following computation.

F (νX(n : N,m : N) = ∀i : N.∃j : N.(i > 10) ∨ ((j < 10) ∧X(i, j)))

=νX(n : N,m : N) = guard∧(∀i : N.∃j : N.(i > 10) ∨ ((j < 10) ∧X(i, j)))

∧ F∧(∀i : N.∃j : N.(i > 10) ∨ ((j < 10) ∧X(i, j)))

=νX(n : N,m : N) = (∀i : N.∃j : N.(i > 10) ∨ ((j < 10) ∧ true))
∧ (∀i : N.¬guard∨(∃j : N.(i > 10) ∨ ((j < 10) ∧X(i, j)))

⇒ F∨(∃j : N.(i > 10) ∨ ((j < 10) ∧X(i, j))))

=νX(n : N,m : N) = (∀i : N.∃j : N.(i > 10) ∨ ((j < 10) ∧ true))
∧ (∀i : N.¬(∃j : N.(i > 10) ∨ ((j < 10) ∧ false))
⇒ ∃j : N.guard∧((i > 10) ∨ ((j < 10) ∧X(i, j))) ∧ F∧((i > 10) ∨ ((j < 10) ∧X(i, j))))

=νX(n : N,m : N) = (∀i : N.∃j : N.(i > 10) ∨ ((j < 10) ∧ true))
∧ (∀i : N.¬(∃j : N.(i > 10) ∨ ((j < 10) ∧ false))
⇒ ∃j : N.((i > 10) ∨ ((j < 10) ∧ true)) ∧ (¬guard∨((i > 10) ∨ ((j < 10) ∧X(i, j)))

⇒ F∨((i > 10) ∨ ((j < 10) ∧X(i, j)))))

=νX(n : N,m : N) = (∀i : N.∃j : N.(i > 10) ∨ ((j < 10) ∧ true))
∧ (∀i : N.¬(∃j : N.(i > 10) ∨ ((j < 10) ∧ false))
⇒ ∃j : N.((i > 10) ∨ ((j < 10) ∧ true)) ∧ (¬((i > 10) ∨ ((j < 10) ∧ false))
⇒ F∨((j < 10) ∧X(i, j))))

=νX(n : N,m : N) = (∀i : N.∃j : N.(i > 10) ∨ ((j < 10) ∧ true))

Tom Boshoven 23

TU/e A Symbolic Approach to PBES Instantiation

∧ (∀i : N.¬(∃j : N.(i > 10) ∨ ((j < 10) ∧ false))
⇒ ∃j : N.((i > 10) ∨ ((j < 10) ∧ true)) ∧ (¬((i > 10) ∨ ((j < 10) ∧ false))
⇒ (guard∧((j < 10) ∧X(i, j)) ∧ F∧((j < 10) ∧X(i, j)))))

=νX(n : N,m : N) = (∀i : N.∃j : N.(i > 10) ∨ ((j < 10) ∧ true))
∧ (∀i : N.¬(∃j : N.(i > 10) ∨ ((j < 10) ∧ false))
⇒ ∃j : N.((i > 10) ∨ ((j < 10) ∧ true)) ∧ (¬((i > 10) ∨ ((j < 10) ∧ false))
⇒ (((j < 10) ∧ true) ∧ F∧(X(i, j)))))

=νX(n : N,m : N) = (∀i : N.∃j : N.(i > 10) ∨ ((j < 10) ∧ true))
∧ (∀i : N.¬(∃j : N.(i > 10) ∨ ((j < 10) ∧ false))
⇒ ∃j : N.((i > 10) ∨ ((j < 10) ∧ true)) ∧ (¬((i > 10) ∨ ((j < 10) ∧ false))
⇒ (((j < 10) ∧ true) ∧X(i, j))))

= {Boolean simplification}
νX(n : N,m : N) = (∀i : N.∃j : N.(i > 10) ∨ (j < 10)

∧ (∀i : N.¬(∃j : N.(i > 10))⇒ ∃j : N.((i > 10) ∨ (j < 10)) ∧ (¬(i > 10))

⇒ ((j < 10) ∧X(i, j))))

= {Simplification of constants}
νX(n : N,m : N) = (∀i : N.(i 6 10)⇒ ∃j : N.((i > 10) ∨ (j < 10)) ∧ (i 6 10)

⇒ ((j < 10) ∧X(i, j)))

In the result, it can be seen that the guard to the universal quantifier is effectively strengthened
by the expression i 6 10. Using the same naive approach to identifying clusters as in Example 9,
instantiation will no longer be infinite.

3.5.3 Correctness of the Transformation

In order to prove the given transformation correct, we prove that the transformation is sound
(the transformation’s result is semantically equivalent to its input, Theorem 3.11) and that the
transformation yields terms that are strictly in SGF (Theorem 3.13).

In addition to the proof given below, the proof is also done using the proof assistant software
Coq2 using a formalization of the PBES framework in Coq, developed by Carst Tankink3. Because
these proof are also performed in a proof assistant, we have more certainty of the validity of
the proved lemmas and theorems. In addition to this, proving properties on PBESs using this
framework results in useful feedback for further development of the PBES formalization in Coq.
See Appendix A for detailed information regarding the proofs in Coq.

In order to prove that transformation F is sound, we first prove a few properties of the F and
guard functions.

While Definition 3.8 introduces a case distinction in the conjunctive case for F∧ and the dis-
junctive case for F∨, the difference is merely syntactic. Lemma 3.9 proves this.

Lemma 3.9 Assume predicate formulas φ1 and φ2, a predicate environment η and a data envi-
ronment ε.

The following holds:

JF∧(φ1) ∧ F∧(φ2)Kηε = JF∧(φ1 ∧ φ2)Kηε
JF∨(φ1) ∨ F∨(φ2)Kηε = JF∨(φ1 ∨ φ2)Kηε

Proof. Because of symmetry, only the first claim is proved.

2Coq Proof Assistant (http://coq.inria.fr/), version 8.4rc1, running on a 64 bits GNU/Linux machine.
3PBES Specification in Coq (http://www.cs.ru.nl/~carst/)

Tom Boshoven 24

http://coq.inria.fr/
http://www.cs.ru.nl/~carst/

TU/e A Symbolic Approach to PBES Instantiation

We make a case distinction on whether φ1 and φ2 contain recursion variables, mirroring Defini-
tion 3.8.

• Case occ(φ1) = ∅ ∧ occ(φ2) = ∅:

JF∧(φ1) ∧ F∧(φ2)Kηε
⇔JF∧(φ1)Kηε ∧ JF∧(φ2)Kηε
⇔JtrueKηε ∧ JtrueKηε
⇔true
⇔JtrueKηε
⇔JF∧(φ1 ∧ φ2)Kηε

• Case occ(φ1) = ∅ ∧ occ(φ2) 6= ∅:

JF∧(φ1) ∧ F∧(φ2)Kηε
⇔JF∧(φ1)Kηε ∧ JF∧(φ2)Kηε
⇔JtrueKηε ∧ JF∧(φ2)Kηε
⇔true ∧ JF∧(φ2)Kηε
⇔JF∧(φ1 ∧ φ2)Kηε

• Case occ(φ1) 6= ∅ ∧ occ(φ2) = ∅:
Symmetric with previous case.

• Case occ(φ1) 6= ∅ ∧ occ(φ2) 6= ∅:
Follows directly from Definition 3.8.

�

In order to be able to prove soundness of F , it is necessary to prove that combining the guard
and F functions results in a function of which the results are semantically equivalent to the input.

Lemma 3.10 Assume a predicate formula φ. For all predicate environments η and data environ-
ments ε, it holds that JφKηε⇔ Jguard∧(φ)∧F∧(φ)Kηε and symmetrically, JφKηε⇔ J¬guard∨(φ)⇒
F∨(φ)Kηε.

Proof. To prove this lemma, we use structural induction on φ. As induction hypothesis, we
assume the following:

For all predicate environments η and data environments ε it holds that for all ψ, smaller than
φ:

JψKηε⇔Jguard∧(ψ) ∧ F∧(ψ)Kηε (IH1)

JψKηε⇔J¬guard∨(ψ)⇒ F∨(ψ)Kηε (IH2)

In this proof, we extensively and implicitly use the fact that Jψ1 ∧ψ2Kηε = Jψ1Kηε∧ Jψ2Kηε and
Jψ1 ∨ ψ2Kηε = Jψ1Kηε ∨ Jψ2Kηε for all environments η and ε, which is stated in Definition 2.10.

The proofs for JφKηε ⇔ J¬guard∨(φ) ⇒ F∨(φ)Kηε are omitted, because of symmetry with the
given proof.

Tom Boshoven 25

TU/e A Symbolic Approach to PBES Instantiation

• If occ(φ) = ∅:

JφKηε
⇔{occ(φ) = ∅}

Jguard∧(φ)Kηε
⇔Jguard∧(φ)Kηε ∧ true
⇔{occ(φ) = ∅}

Jguard∧(φ)Kηε ∧ JF∧(φ)Kηε

• Case φ = X (e):

JX (e)Kηε
⇔JtrueKηε ∧ JX (e)Kηε
⇔Jguard∧(X (e))Kηε ∧ JF∧(X (e))Kηε
⇔Jguard∧(X (e)) ∧ F∧(X (e))Kηε

• Case φ = ψ1 ∧ ψ2:

Jψ1 ∧ ψ2Kηε
⇔Jψ1Kηε ∧ Jψ2Kηε
⇔{IH1}

J(guard∧(ψ1) ∧ F∧(ψ1))Kηε ∧ J(guard∧(ψ2) ∧ F∧(ψ2))Kηε
⇔J(guard∧(ψ1) ∧ F∧(ψ1)) ∧ (guard∧(ψ2) ∧ F∧(ψ2))Kηε
⇔J(guard∧(ψ1) ∧ guard∧(ψ2)) ∧ (F∧(ψ1) ∧ F∧(ψ2))Kηε
⇔{Lemma 3.9}

Jguard∧(ψ1 ∧ ψ2) ∧ F∧(ψ1 ∧ ψ2)Kηε

• Case φ = ψ1 ∨ ψ2:

Jψ1 ∨ ψ2Kηε
⇔{Lemma 3.5}

Jψ1 ∨ (guard∧(ψ1) ∧ ψ2) ∨ (guard∧(ψ2) ∧ ψ1) ∨ ψ2Kηε
⇔{IH1}

J(guard∧(ψ1) ∧ F∧(ψ1)) ∨ (guard∧(ψ1) ∧ ψ2)

∨ (guard∧(ψ2) ∧ ψ1) ∨ (guard∧(ψ2) ∧ F∧(ψ2))Kηε
⇔J(guard∧(ψ1) ∧ guard∧(ψ1) ∧ F∧(ψ1)) ∨ (guard∧(ψ1) ∧ ψ2) ∨ (guard∧(ψ2) ∧ ψ1)

∨ (guard∧(ψ2) ∧ guard∧(ψ2) ∧ F∧(ψ2))Kηε
⇔{IH1}

J(guard∧(ψ1) ∧ ψ1) ∨ (guard∧(ψ1) ∧ ψ2) ∨ (guard∧(ψ2) ∧ ψ1) ∨ (guard∧(ψ2) ∧ ψ2)Kηε
⇔J(guard∧(ψ1) ∨ guard∧(ψ2)) ∧ (ψ1 ∨ ψ2)Kηε
⇔{IH2}

J(guard∧(ψ1) ∨ guard∧(ψ2)) ∧ (guard∨(ψ1) ∨ guard∨(ψ2) ∨ F∨(ψ1) ∨ F∨(ψ2))Kηε
⇔{Lemma 3.9}

J(guard∧(ψ1) ∨ guard∧(ψ2)) ∧ (guard∨(ψ1 ∨ ψ2) ∨ F∨(ψ1 ∨ ψ2))Kηε
⇔Jguard∧(ψ1 ∨ ψ2) ∧ F∧(ψ1 ∨ ψ2)Kηε

Tom Boshoven 26

TU/e A Symbolic Approach to PBES Instantiation

• Case φ = ∀~v : D.ψ:

J∀~v : D.ψKηε
⇔∀~w : D.JψKη(ε[~v := ~w])

⇔{IH1}
∀~w : D.Jguard∧(ψ) ∧ F∧(ψ)Kη(ε[~v := ~w])

⇔∀~w : D.Jguard∧(ψ) ∧ guard∧(ψ) ∧ F∧(ψ)Kη(ε[~v := ~w])

⇔{IH1}
∀~w : D.Jguard∧(ψ) ∧ ψKη(ε[~v := ~w])

⇔{IH2}
∀~w : D.Jguard∧(ψ) ∧ (guard∨(ψ) ∨ F∨(ψ))Kη(ε[~v := ~w])

⇔∀~w : D.Jguard∧(ψ)Kη(ε[~v := ~w]) ∧ ∀~w : D.J(guard∨(ψ) ∨ F∨(ψ))Kη(ε[~v := ~w])

⇔Jguard∧(∀~v : D.ψ) ∧ F∧(∀~v : D.ψ)Kηε

• Case φ = ∃~v : D.ψ:

J∃~v : D.ψKηε
⇔∃~w : D.JψKη(ε[~v := ~w])

⇔{IH1}
∃~w : D.Jguard∧(ψ) ∧ F∧(ψ)Kη(ε[~v := ~w])

⇔∃~w : D.Jguard∧(ψ)Kη(ε[~v := ~w]) ∧ ∃~w : D.Jguard∧(ψ) ∧ F∧(ψ)Kη(ε[~v := ~w])

⇔∃~w : D.Jguard∧(ψ)Kη(ε[~v := ~w]) ∧ ∃~w : D.JψKη(ε[~v := ~w])

⇔{IH2}
∃~w : D.Jguard∧(ψ)Kη(ε[~v := ~w]) ∧ ∃~w : D.J¬guard∨(ψ)⇒ F∨(ψ)Kη(ε[~v := ~w])

⇔J∃~v : D.guard∧(ψ)Kηε ∧ J∃~v : D.¬guard∨(ψ)⇒ F∨(ψ)Kηε
⇔Jguard∧(∃~v : D.ψ)Kηε ∧ JF∧(∃~v : D.ψ)Kηε
⇔Jguard∧(∃~v : D.ψ) ∧ F∧(∃~v : D.ψ)Kηε

�

Theorem 3.11 Assume a PBES E. It holds that JEKηε = JF (E)Kηε for all predicate environments
η and data environments ε.

Proof.

We first use structural induction on E . If E = ε, the claim trivially holds.

We use the fact that if for all η and ε it holds that JφKηε = Jφ′Kηε, it holds for all η and ε that

J(σX (~d : D) = φ)EKηε = J(σX (~d : D) = φ′)EKηε, which follows directly from Corollary 29 of [16].

If E = (σX (~d) = φ)E ′, the claim holds by induction if and only if JφKηε = Jguard∧(φ)∧F∧(φ)Kηε
for conjunctive φ and JφKηε = Jguard∧(φ) ∨ F∨(φ)Kηε for disjunctive φ. Lemma 3.10 shows that
this holds.

Thus, transformation function F is sound. �

In order to prove that the results of function F are of the form SGF, we first prove a lemma,
which is used for showing that the results of F are strongly guarded.

Lemma 3.12 For all predicate formulas φ, predicate environments η and data environments ε, it
holds that Jguard∧(φ)Kηε ⇔ Jguard∧(φ) ∧ guard∧(F∧(φ))Kηε and Jguard∨(φ)Kηε ⇔ Jguard∨(φ) ∨
guard∨(F∨(φ))Kηε.

Tom Boshoven 27

TU/e A Symbolic Approach to PBES Instantiation

Proof. We prove only the first statement by induction on φ. The proof for the second statement
is symmetric. We use the following induction hypothesis:

For all ψ smaller than φ, predicate environments η and data environments ε,
it holds that Jguard∧(ψ)Kηε⇒ Jguard∧(F∧(ψ))Kηε. (IH1)

As a first step, we define prove that under assumption of (IH1), the following holds:

Jguard∧(ψ)Kηε⇒ Jguard∧(guard∨(ψ) ∨ F∨(ψ))Kηε. (H2)
Note that ψ is smaller than φ.

To prove (H2), we use a nested induction with the following hypothesis:

For all predicate formulas υ smaller than ψ, predicate environments η and data
environments ε, it holds that Jguard∧(υ)Kηε⇒ Jguard∧(guard∨(υ)∨F∨(υ))Kηε. (IH2)

We use a case distinction on ψ.

• Case b:

Jguard∧(b)Kηε
⇒JbKηε ∨ JtrueKηε
⇔Jguard∧(guard∨(b))Kηε ∨ Jguard∧(F∨(b))Kηε
⇔Jguard∧(guard∨(b) ∨ F∨(b))Kηε

• Case X (e):

Jguard∧(X (e))Kηε
⇔JfalseKηε ∨ JtrueKηε
⇔Jguard∧(guard∨(X (e)))Kηε ∨ Jguard∧(F∨(true))Kηε
⇔Jguard∧(guard∨(X (e)))Kηε ∨ Jguard∧(F∨(X (e)))Kηε
⇔Jguard∧(guard∨(X (e)) ∨ F∨(X (e)))Kηε

• Case υ1 ∧ υ2:

Jguard∧(υ1 ∧ υ2)Kηε
⇒{(IH1)}

Jguard∧(υ1 ∧ υ2) ∧ guard∧(F∧(υ1 ∧ υ2))Kηε
⇒{Lemma 3.5}

Jguard∧(guard∧(υ1 ∧ υ2)) ∧ guard∧(F∧(υ1 ∧ υ2))Kηε
⇔Jguard∧(guard∧(υ1 ∧ υ2) ∧ F∧(υ1 ∧ υ2))Kηε
⇔Jguard∧(F∨(υ1 ∧ υ2))Kηε
⇒Jguard∧(guard∨(υ1 ∧ υ2))Kηε ∨ Jguard∧(F∨(υ1 ∧ υ2))Kηε
⇔Jguard∧(guard∨(υ1 ∧ υ2) ∨ F∨(υ1 ∧ υ2))Kηε

• Case υ1 ∨ υ2:

Jguard∧(υ1 ∨ υ2)Kηε
⇒{(IH1)}

Jguard∧(F∧(υ1 ∨ υ2))Kηε
⇔{Definition 3.8}

Jguard∧(guard∨(υ1 ∨ υ2) ∨ F∨(υ1 ∨ υ2))Kηε

Tom Boshoven 28

TU/e A Symbolic Approach to PBES Instantiation

• Case ∀~v : D.υ:

Jguard∧(∀~v : D.υ)Kηε

⇔∀~d : D.Jguard∧(υ)Kη(ε[~v := ~d])

⇔{(IH2)}
(∀~d : D.Jguard∧(υ)Kη(ε[~v := ~d])) ∧ (∀~d : D.Jguard∧(guard∨(υ) ∨ F∨(υ))Kη(ε[~v := ~d]))

⇔(∀~d : D.Jguard∧(υ)Kη(ε[~v := ~d])) ∧ (∀~d : D.Jguard∧(F∧(υ))Kη(ε[~v := ~d]))

⇒{Lemma 3.5}
(∀~d : D.Jguard∧(guard∧(υ))Kη(ε[~v := ~d])) ∧ (∀~d : D.Jguard∧(F∧(υ))Kη(ε[~v := ~d]))

⇔J∀~v : D.guard∧(guard∧(υ))Kηε ∧ J∀~v : D.guard∧(F∧(υ))Kηε
⇔Jguard∧(∀~v : D.guard∧(υ)) ∧ guard∧(∀~v : D.F∧(υ))Kηε
⇔Jguard∧(F∨(∀~v : D.υ))Kηε
⇒Jguard∧(guard∨(∀~v : D.υ))Kηε ∨ JF∨(∀~v : D.υ))Kηε
⇔Jguard∧(guard∨(∀~v : D.υ) ∨ F∨(∀~v : D.υ))Kηε

• Case φ = ∃~v : D.υ:

Jguard∧(∃~v : D.υ)Kηε
⇒{(IH1)}

Jguard∧(F∧(∃~v : D.υ))Kηε
⇔{Definition 3.8}

Jguard∧(guard∨(∃~v : D.υ) ∨ F∨(∃~v : D.υ))Kηε

Having proved (H2), we can use it in the remainder of the proof.

• Case b:

Jguard∧(b)Kηε
⇔JtrueKηε
⇔Jguard∧(true)Kηε
⇔{F∧(b) = true}

Jguard∧(F∧(b))Kηε

• Case X (e):

Jguard∧(X (e))Kηε
⇔{F∧(X (e)) = X (e)}

Jguard∧(F∧(X (e)))Kηε

• Case ψ1 ∧ ψ2:

Jguard∧(ψ1 ∧ ψ2)Kηε
⇔Jguard∧(ψ1)Kηε ∧ Jguard∧(ψ2)Kηε
⇒{(IH1)}
⇔Jguard∧(F∧(ψ1))Kηε ∧ Jguard∧(F∧(ψ2))Kηε
⇔Jguard∧(F∧(ψ1) ∧ F∧(ψ2))Kηε

Tom Boshoven 29

TU/e A Symbolic Approach to PBES Instantiation

There are three cases. Either occ(ψ1) 6= ∅ or occ(ψ2) 6= ∅ or both. Using an argument
similar to the proof for Lemma 3.9, we find that in all three cases, Jguard∧(F∧(ψ1)) ∧
guard∧(F∧(ψ2))Kηε = Jguard∧(F∧(ψ1 ∧ ψ2))Kηε. Thus:

Jguard∧(F∧(ψ1) ∧ F∧(ψ2))Kηε
⇔Jguard∧(F∧(ψ1 ∧ ψ2))Kηε

• Case ψ1 ∨ ψ2:

Jguard∧(ψ1 ∨ ψ2)Kηε
⇔Jguard∧(ψ1)Kηε ∨ Jguard∧(ψ2)Kηε
⇒{(H2)}

Jguard∧(guard∨(ψ1) ∨ F∨(ψ1))Kηε ∨ Jguard∧(guard∨(ψ2) ∨ F∨(ψ2))Kηε
⇔Jguard∧(guard∨(ψ1 ∨ ψ2) ∨ F∨(ψ1 ∨ ψ2))Kηε
⇔Jguard∧(F∧(ψ1 ∨ ψ2))Kηε

• Case ∀~v : D.ψ:

Jguard∧(∀~v : D.ψ)Kηε
⇔∀~w : D.Jguard∧(ψ)Kη(ε[~v := ~w])

⇒{(IH1)}
∀~w : D.Jguard∧(F∧(ψ))Kη(ε[~v := ~w])

⇔J∀~v : D.guard∧(F∧(ψ))Kηε

• Case ∃~v : D.ψ:

Jguard∧(∃~v : D.ψ)Kηε
⇔J∃~v : D.guard∧(ψ)Kηε
⇔∃~w : D.Jguard∧(ψ)Kη(ε[~v := ~w])

⇒{(H2)}
∃~w : D.Jguard∧(guard∨(ψ) ∨ F∨(ψ))Kη(ε[~v := ~w])

⇔J∃~v : D.guard∧(guard∨(ψ) ∨ F∨(ψ))Kηε
⇔Jguard∧(guard∨(∃~v : D.ψ) ∨ F∨(∃~v : D.ψ))Kηε
⇔Jguard∧(F∧(∃~v : D.ψ))Kηε

The proof for the lemma follows directly from (IH1). �

Theorem 3.13 The result of transformation function F on any PBES is of the form SGF.

Proof. We prove that F (σX (~d) = φ) for PBES equation (σX (~d) = φ) yields an equation (σX (~d) =
φ′) which is of the form GNF. Furthermore we prove that φ′ is strongly guarded.

First, we observe that the results of the transformations guard∧ and guard∨ do not include any
recursion variables, and can thus be interpreted as simple boolean expressions (b).

If φ is a simple boolean expression, then F (σX (~d) = φ) is trivially of the correct form. If it is
not, we make a case distinction.

If φ is conjunctive:

F (φ) = F∧(φ) = (σX(~d) = guard∧(φ) ∧ F∧(φ))

Tom Boshoven 30

TU/e A Symbolic Approach to PBES Instantiation

Because guard∧(φ) is of the form b, F (σX (~d) = φ) is of the form SGF if and only if F∧(φ) is of
the form RHS and guard∧(φ)⇔ guard∧(φ) ∧ guard∧(F∧(φ)), which is true by Lemma 3.12.

The case in which φ is disjunctive is symmetric.

In order to show that F∧(φ) and F∨(φ) are of the form RHS, it is proved that for all φ that
are not simple boolean expressions (b, occ(φ) = ∅), the results of F∧(φ) and F∨(φ) are of the form
RHS∧ and RHS∨ respectively.

We only prove that for all PBESs φ it holds that F∧(φ) is of the form RHS∧, as the proof for
F∨ is symmetric.

We use induction on the structure of φ. The induction hypotheses are:

F∧(ψ) is of the form RHS∧ for ψ < φ if occ(ψ) 6= ∅ (IH1)

F∨(ψ) is of the form RHS∨ for ψ < φ if occ(ψ) 6= ∅ (IH2)

• Case φ = X (e):

F∧(X (e))

=X (e)

This is trivially of the form RHS∧.

• Case φ = ψ1 ∧ ψ2:

F∧(ψ1 ∧ ψ2)

=


F∧(ψ1) if occ(ψ2) = ∅
F∧(ψ2) if occ(ψ1) = ∅
F∧(ψ1) ∧ F∧(ψ2) otherwise

If occ(ψ1) = ∅, the result is F∧(ψ2). Because occ(ψ1∧ψ2) 6= ∅, It must hold that occ(ψ2) 6= ∅,
and the induction hypothesis can be used.

The case in which occ(ψ2) = ∅ is symmetrical.

If occ(ψ1) 6= ∅ and occ(ψ2) 6= ∅, the result is a conjunction of two terms of the form RHS∧
(by the induction hypothesis), which is also in RHS∧.

• Case φ = ψ1 ∨ ψ2:

F∧(ψ1 ∨ ψ2)

=¬guard∨(ψ1 ∨ ψ2)⇒ F∨(ψ1 ∨ ψ2)

Using a similar argument to the one in the previous case, we find that F∨(ψ1 ∨ψ2) is of the
form RHS∨.

Because guard∨(ψ1∨ψ2) is a simple boolean expression, the result is an implication between
a simple boolean expression and a subformula of the form RHS∨, which is a legal conjunct
in RHS∧.

Furthermore, by Lemma 3.12, the requirement that guard∨(ψ1 ∨ ψ2) ⇔ guard∨(ψ1 ∨ ψ2) ∨
guard∨(F∨(ψ1 ∨ ψ2)) is satisfied, so the expression is strongly guarded.

• Case φ = ∀~v : D.ψ:

F∧(∀~v : D.ψ)

=∀~v : D.¬guard∨(ψ)⇒ F∨(ψ)

Because guard∨(ψ) is a simple boolean expression, so is ¬guard∨(ψ).

Tom Boshoven 31

TU/e A Symbolic Approach to PBES Instantiation

Since occ(∀~v : D.ψ) 6= ∅, it holds that occ(ψ) 6= ∅. By (IH2), F∨(ψ) is of the form RHS∨,
and thus the whole expression is of the form RHS∧.

Furthermore, by Lemma 3.12, the requirement that guard∨(ψ)⇔ guard∨(ψ)∨guard∨(F∨(ψ))
is satisfied, so the expression is strongly guarded.

• Case φ = ∃~v : D.ψ:

F∧(∃~v : D.ψ)

=¬guard∨(∃~v : D.ψ)⇒ F∨(∃~v : D.ψ)

=(¬∃~v : D.guard∨(ψ))⇒ (∃~v : D.guard∧(ψ) ∧ F∧(ψ))

Since occ(∃~v : D.ψ) 6= ∅, it holds that occ(ψ) 6= ∅.
Because guard∧(ψ) results in a simple boolean expression and by (IH1), F∧(ψ) is of the
form RHS∧, it holds that (∃~v : D.guard∧(ψ) ∧ F∧(ψ)) is of the form RHS∨.

Since guard∨(ψ) is a simple boolean expression, the expression (¬∃~v : D.guard∨(ψ)) is one
as well. Therefore, the whole expression is of the form RHS∨.

Furthermore, Lemma 3.12 satisfies the following additional requirements:

guard∧(ψ)⇔guard∧(ψ) ∧ guard∧(F∧(ψ1 ∨ ψ2))

guard∨(∃~d : D.guard∨(ψ))⇔guard∨(∃~d : D.guard∨(ψ)) ∨ guard∨(F∨(ψ))

As a consequence, the expression is strongly guarded.

�

3.6 Clustered GNF

After transforming a PBES into Guarded Normal Form, clusters can be identified through a
simple process. In this process, we split off a subformula from an equation in the form of a cluster
only if keeping it would cause the equation to not to be of the required form (see Section 3.4).
Furthermore, the strong guards from SGF are retained throughout the clustering, eliminating the
possibility of unnecessary infinite instantiations when clustering a PBES in SGF. This problem
was shown in Example 9.

Rewriting a system in GNF into a clustered representation can be done by applying a simple
transformation function to the system.

Definition 3.14 (Cluster identification function Cluster) Assume a PBES E in GNF. We
transform E into a clustered PBES by calculating Cluster(E), where Cluster is defined as follows:

Cluster(ε) =ε

Cluster((σX (~d : D) = φ)E) =(σX (~d : D) = Cluster(φ, ~d : D)) Cluster(E)

Cluster(b, ~d : D) =b

Cluster(X (e), ~d : D) =X (e)

Cluster(b ∧ ψ, ~d : D) =b ∧ Cluster(ψ, ~d : D)

Cluster(b⇒ ψ, ~d : D) =b⇒ Cluster(ψ, ~d : D)

Cluster(ψ1 ∧ ψ2, ~d : D) =Cluster∧(ψ1 ∧ ψ2, ~d : D) (occ(ψ1) 6= ∅)

Cluster(ψ1 ∨ ψ2, ~d : D) =Cluster∨(ψ1 ∨ ψ2, ~d : D) (occ(ψ1) 6= ∅)

Cluster(∀~v : D′.ψ, ~d : D) =Cluster∧(∀~v : D′.ψ, (~d++~v : D ×D′))

Cluster(∃~v : D′.ψ, ~d : D) =Cluster∨(∃~v : D′.ψ, (~d++~v : D ×D′))

Tom Boshoven 32

TU/e A Symbolic Approach to PBES Instantiation

Cluster∧(b, ~d : D) =b

Cluster∧(X (e), ~d : D) =X (e)

Cluster∧(b⇒ ψ, ~d : D) =b⇒ Cluster∧(ψ, ~d : D)

Cluster∧(ψ1 ∧ ψ2, ~d : D) =Cluster∧(ψ1, ~d : D) ∧ Cluster∧(ψ2, ~d : D)

Cluster∧(ψ1 ∨ ψ2, ~d : D) =c∗(~d)

where (c∗(~d : D) = Cluster∨(ψ1 ∨ ψ2, ~d : D)) is a fresh cluster

Cluster∧(∀~v : D′.ψ, ~d : D) =∀~v : D′.Cluster∧(ψ, (~d++~v : D ×D′))

Cluster∧(∃~v : D′.ψ, ~d : D) =c∗(~d)

where (c∗(~d : D) = Cluster∨(∃~v : D′.ψ)) is a fresh cluster

Cluster∨(b, ~d : D) =b

Cluster∨(X (e), ~d : D) =X (e)

Cluster∨(b ∧ ψ, ~d : D) =b ∧ Cluster∨(ψ, ~d : D)

Cluster∨(ψ1 ∧ ψ2, ~d : D) =c∗(~d)

where (c∗(~d : D) = Cluster∧(ψ1 ∧ ψ2, ~d : D)) is a fresh cluster

Cluster∨(ψ1 ∨ ψ2, ~d : D) =Cluster∨(ψ1, ~d : D) ∨ Cluster∨(ψ2, ~d : D)

Cluster∨(∀~v : D′.ψ, ~d : D) =c∗(~d)

where (c∗(~d : D) = Cluster∧(∀~v : D′.ψ)) is a fresh cluster

Cluster∨(∃~v : D′.ψ, ~d : D) =∃~v : D′.Cluster∨(ψ, (~d++~v : D ×D′))

The second parameter to the Cluster functions represents the (typed) parameter list. It is ac-
cumulated in order to describe the parameter lists of fresh clusters. Note that c∗ represent fresh
cluster names. By convention, we replace the ∗ by an unused natural number.

The fact that the Cluster functions on PBESs in GNF emit clustered PBESs complying with
Definition 3.2 is easily proved by showing that Cluster transforms a GNF equation into the form
CLUSTERED EQ and Cluster∧ and Cluster∨ produce new clusters of the form CLUSTER. Note
that apart from splitting of subformulas, the Cluster functions describe simple traversals of the
syntax tree of GNF , making it easy to see that the transformation is sound and well-defined.

Example 11 (Cluster identification) Assume the following PBES equation:

νX(b : B, c : B) = ¬(b ∧ c)⇒ (X(b ∨ c,¬c) ∨ (∃d : B.true ∧ (X(b ∧ c, d) ∧X(b ∧ d, c))))

Note that this equation is in GNF. This equation was constructed such that it contains a symbol
switch (from conjunctive to disjunctive), causing introduction of a cluster.

Clusters can be identified in this formula as follows:

Cluster(νX(b : B, c : B) = ¬(b ∧ c)⇒ (X(b ∨ c,¬c) ∨ (∃d : B.true ∧ (X(b ∧ c, d) ∧X(b ∧ d, c)))))
=νX(b : B, c : B) = Cluster(¬(b ∧ c)⇒ (X(b ∨ c,¬c) ∨ (∃d : B.true
∧ (X(b ∧ c, d) ∧X(b ∧ d, c)))), (b : B, c : B))

=νX(b : B, c : B) = ¬(b ∧ c)⇒ Cluster(X(b ∨ c,¬c) ∨ (∃d : B.true
∧ (X(b ∧ c, d) ∧X(b ∧ d, c))), (b : B, c : B))

=νX(b : B, c : B) = ¬(b ∧ c)⇒ Cluster∨(X(b ∨ c,¬c) ∨ (∃d : B.true
∧ (X(b ∧ c, d) ∧X(b ∧ d, c))), (b : B, c : B))

=νX(b : B, c : B) = ¬(b ∧ c)⇒ (Cluster∨(X(b ∨ c,¬c), (b : B, c : B)) ∨ Cluster∨(∃d : B.true

Tom Boshoven 33

TU/e A Symbolic Approach to PBES Instantiation

∧ (X(b ∧ c, d) ∧X(b ∧ d, c)), (b : B, c : B, d : B)))

=νX(b : B, c : B) = ¬(b ∧ c)⇒ (X(b ∨ c,¬c) ∨ ∃d : B.Cluster∨(true

∧ (X(b ∧ c, d) ∧X(b ∧ d, c)), (b : B, c : B, d : B)))

=νX(b : B, c : B) = ¬(b ∧ c)⇒ (X(b ∨ c,¬c) ∨ ∃d : B.true
∧ Cluster∨(X(b ∧ c, d) ∧X(b ∧ d, c), (b : B, c : B, d : B)))

=νX(b : B, c : B) = ¬(b ∧ c)⇒ (X(b ∨ c,¬c) ∨ ∃d : B.true ∧ c1(b, c, d))

c1(b : B, c : B, d : B) = Cluster∧(X(b ∧ c, d) ∧X(b ∧ d, c), (b : B, c : B, d : B))

=νX(b : B, c : B) = ¬(b ∧ c)⇒ (X(b ∨ c,¬c) ∨ ∃d : B.true ∧ c1(b, c, d))

c1(b : B, c : B, d : B) = Cluster∧(X(b ∧ c, d), (b : B, c : B, d : B))

∧ Cluster∧(X(b ∧ d, c), (b : B, c : B, d : B))

=νX(b : B, c : B) = ¬(b ∧ c)⇒ (X(b ∨ c,¬c) ∨ ∃d : B.true ∧ c1(b, c, d))

c1(b : B, c : B, d : B) = X(b ∧ c, d) ∧X(b ∧ d, c)

Because of the way the Cluster functions work, it is apparent that the strength of the guards
from the original PBES in GNF is retained. Because these guards are not placed in the top
level of a cluster, but rather as a guard for the references to the cluster, these guards directly
determine whether the cluster must be instantiated. Using strongly guarded GNF as input, we
find a clustered PBES in which all reachable instantiations of clusters contain at least one recursion
variable. If this was not the case, then at least one of the guards in the cluster evaluated to false,
while all the guards of the cluster itself evaluated to true. Because the guards of the cluster are
strengthened by the guards inside the cluster, this can never happen.

Example 12 (No unnecessary infinite instantiations) Recall the PBES from Example 9, which
is trivially translated to GNF by changing the disjunction into an implication. When using the
Cluster functions on it directly, we would obtain the results from this example, containing the
infinite instantiation. By first transforming the system to SGF , as done in Example 10, this is
no longer the case:

Cluster(νX(n : N,m : N) = (∀i : N.(i 6 10)⇒ ∃j : N.((i > 10) ∨ (j < 10)) ∧ (i 6 10)

⇒ ((j < 10) ∧X(i, j))))

=νX(n : N,m : N) = (∀i : N.(i 6 10)⇒ c1(n,m, i))

c1(n : N,m : N, i : N) = (∃j : N.((i > 10) ∨ (j < 10)) ∧ (i 6 10)⇒ ((j < 10) ∧X(i, j)))

Because c1 is guarded by the expression i 6 10, there are no more infinite instantiations.

Depending on the used method of instantiation, another type of unnecessary infinite instanti-
ations can occur. Assume equation νX = ∃n : N.(X ∧ (n 6= 0 ∨ Y (m))) where νY (n : N) = φ
is some equation. Instantiation results in the BES equation νX = (X ∧ Y0) ∨∨n∈NX, which is
trivially equal to νX = (X ∧ Y0) ∨ X. A smart instantiation procedure will recognize this and
instantiate to this last BES equation.

After clustering however, instantiation yields νX = c0 ∨ c1 ∨ ... where cn = X for all n ∈ N if
n > 0. Now the same optimization can not be used as easily, because it would require parameter
elimination in clusters. These situations can often be prevented by careful preprocessing (because
X is independent of m, it can be moved outside of the existential quantification).

Tom Boshoven 34

TU/e A Symbolic Approach to PBES Instantiation

4 Exploration

Instantiating a clustered PBES corresponds to generating a structure graph. Because the instanti-
ation of a cluster or PBES equation in a clustered PBES yields a purely conjunctive or disjunctive
BES equation, a single instantiation of a cluster or equation corresponds to a single node and its
outgoing edges in the structure graph. We denote a node corresponding to the instantiation of an

equation X with parameters ~d in the context of equation system E by
〈
X , ~d, E

〉
. For simplicity,

we define a function name such that name(
〈
X , ~d, E

〉
) = X .

We use state-space exploration to find all nodes and transitions of the structure graph that are
reachable from the initial state of the PBES. As a first step, we define the next-state function,
which is used to explore the structure graph over the edge relation. Based on this function, an
algorithm is presented to perform the instantiation explicitly. After this, symbolic exploration
techniques are described and applied on the exploration of structure graphs.

4.1 Next-state function

In general, exploration of a state-space is based on a next-state function, which determines for any
state its complete set of outgoing edges, exploring the transition relation. The next-state function
in the case of exploring a structure graph corresponds to the instantiation of an equation of a
clustered PBES.

We define function nextStateE as the next-state function for the exploration of the structure
graph corresponding to a system E . For all states s ∈ S in a structure graph G = 〈S, s0,→, d, r〉,
it holds that nextStateE(s) = {t | (s, t) ∈ →}.

Definition 4.1 (Function nextStateE) Assume a PBES E such that E contains an equation

(σX (~d) = φ) and assume a structure graph node s = 〈X , ~v, E〉.
Then nextStateE(s) is equal to nextStateF (φ)(ε[~d := ~v]) for some data environment ε, where

function nextStateF is inductively defined as follows:

nextStateF (b)ε =

{
{〈>, 〈〉 , E〉} if JbKε
{〈⊥, 〈〉 , E〉} otherwise

nextStateF (X (e))ε = {〈X , JeKε, E〉}
nextStateF (c(e))ε = {〈c, JeKε, E〉}

nextStateF (b⇒ ψ)ε =

{
nextStateF (ψ)ε if JbKε
{〈>, 〈〉 , E〉} otherwise

nextStateF (b ∧ ψ)ε =

{
nextStateF (ψ)ε if JbKε
{〈⊥, 〈〉 , E〉} otherwise

nextStateF (ψ1 ∧ ψ2)ε = nextStateF (ψ1)ε ∪ nextStateF (ψ2)ε

nextStateF (ψ1 ∨ ψ2)ε = nextStateF (ψ1)ε ∪ nextStateF (ψ2)ε

nextStateF (∃~v : D′.ψ)ε =
⋃

~w∈D′

nextStateF (ψ)(ε[~v := ~w])

nextStateF (∀~v : D′.ψ)ε =
⋃

~w∈D′

nextStateF (ψ)(ε[~v := ~w])

The same rules can be used on a node s′ = 〈c,~v, E〉 such that E contains a cluster c(~d) = φ. We
introduce nodes 〈>, 〈〉 , E〉 and 〈⊥, 〈〉 , E〉 as special, unranked nodes such that d(〈⊥, 〈〉 , E〉) = >
and d(〈⊥, 〈〉 , E〉) = ⊥. Furthermore nextStateE(〈⊥, 〈〉 , E〉) = nextStateE(〈>, 〈〉 , E〉) = ∅.

Tom Boshoven 35

TU/e A Symbolic Approach to PBES Instantiation

4.2 Explicit Exploration

The nextStateE function is used to explore the transition relation (→). When exploring structure
graphs however, this is not sufficient for finding a complete structure graph. The correct values
for the d and r mappings must also be found.

The ranking mapping r is simple to define. For all clusters (c(~d : D) = φ) with parameters
~v in the context of an equation system E , r(〈c,~v, E〉) is undefined. For all fixed-point equations

(σX (~d′ : D′) = φ′) with parameters ~v′, it holds that r(〈X , ~v′, E〉) = rankE(X). Note that the
value for r only depends on the name of the recursion variable, and can thus be computed using
only that name.

The decoration mapping d depends on the name of the recursion variable as well. It can be
seen that nextStateF always generates a non-empty set of states, and thus the case in which there
are no next states does not need to be evaluated. If the number of next states to s is 1, then
following the SOS rules from Definition 2.5, d(s) may be undefined. However, we always assign it
either ∧ or ∨, depending on the recursion variable or cluster the state corresponds to. This will
not invalidate the BESsyness property, described in Section 2.1.1. We assign d(s) the symbol ∧ if
s corresponds to a conjunctive equation or conjunctive cluster, and ∨ otherwise. Although it can
be determined whether an equation or cluster is conjunctive or disjunctive after its generation by
matching grammars, it is easier to do this during the clustering operation, by denoting whether
Cluster∧ or Cluster∨ was used in the cluster. Note that if both grammars match (and consequently,
neither transformation function was used), the number of next states to s can not exceed 1. If the
clustered PBES was built using the Cluster functions, this only occurs in equations (as opposed
to clusters) and the node to which the single transition refers is either a recursion variable or the
true- or false-node. In that case, both decoration ∧ and ∨ are allowed.

Algorithm 1 describes the process of explicitly instantiating the state-space of a clustered PBES.
In order to instantiate the structure graph of a system E with initial state X(~d) for some parameter

vector ~d, we can call Explore-PBES
(〈
X, ~d, E

〉)
.

This algorithm takes an initial state and generates the state space as a BES structure graph
using the nextStateE function to explore the transition relation. The complete structure graph is
returned.

4.3 Symbolic Exploration

The explicit exploration of a structure graph, described in Section 4.2, can be combined with
existing symbolic exploration techniques ([11, 12]) in order to improve both the performance of
the algorithm and yield a more compact representation of the algorithm’s results. In order to
efficiently use these symbolic techniques, we first define partitioned transition relations in the
scope of structure graph exploration.

4.3.1 Partitioned Transition Relation

The fact that the result of the instantiation of a cluster or equation in a clustered PBES yields
a fully conjunctive or disjunctive BES equation can be exploited by using partitioned transition
functions. Partitioned transition functions were introduced in [8], in the scope of symbolic model
checking. Instead of generating a single monolithic transition relation (nextStateE), it is possible
to generate several partial ones. The combination of these partial transition relations results in
the complete transition relation.

Definition 4.2 (nextStateEX) We define function nextStateEX (s) as follows:

nextStateEX (s) =
{
s′ ∈ S|s→s′ ∧ ∃~d.s =

〈
X , ~d, E

〉}

Tom Boshoven 36

TU/e A Symbolic Approach to PBES Instantiation

Algorithm 1 Explore-PBES

1: function Explore-PBES(s0)
2: Ss := {s0} . Unexplored state vectors
3: S := {〈>, 〈〉 , E〉 , 〈⊥, 〈〉 , E〉} . Explored state vectors
4: → := ∅ . Explored transition relation
5: d := ∅ . Explored decoration mapping
6: d[〈>, 〈〉 , E〉] := >
7: d[〈⊥, 〈〉 , E〉] := ⊥
8: r := ∅ . Explored ranking mapping
9: while Ss 6= ∅ do

10: s := some element of Ss
11: T := nextStateE(s) . Explore the transition relation
12: Ss := Ss ∪ {t | t ∈ T ∧ t 6∈ S}
13: → :=→∪ {〈s, t〉 | t ∈ T}
14: Ss := Ss− {s}
15: S := S ∪ {s}

16: d[s] :=

{
∧ if name(s) is a conjunctive cluster or equation

∨ otherwise

17: if name(s) is not the name of a cluster then . Find the rank
18: r[s] := rankE(X)
19: end if
20: end while
21: return 〈S, s0,→, d, r〉
22: end function

This function describes for any state s corresponding to cluster or recursion variable X in the
context of a system E the complete set of target states.

It trivially holds that nextStateE is the union of nextStateEX for all cluster names and recursion
variables X . It can also be seen that the functions nextStateEX can easily be found using function
nextStateF from Definition 4.1.

Example 13 (Partitioned transition relation) Assume the following (clustered) PBES E:

νX(n : N, b : B) =(n > 0)⇒ (X(n,¬b) ∨ Y (n, b))

νY (n : N, b : B) =X(n− 1, b)

The value of nextStateEX(s) for state s = 〈X, 〈n, b〉 , E〉 with n ∈ N and b ∈ B can be denoted
as {〈X, 〈n,¬b〉 , E〉 | n > 0} ∪ {〈Y, 〈n, b〉 , E〉 | n > 0} ∪ {〈>, 〈〉 , E〉 | ¬(n > 0)}, following the
structure of nextStateF . In this notation, the partial transition function nextStateEX is partitioned
even further. All possible targets for the transition are included, and the expressions guarding the
inclusion of the target in the PBES also guard the inclusion of the target here.

Assume s = 〈X, 〈n, b〉 , E〉. We denote the partitions as follows:

nextStateEX,1(s) ={〈X, 〈n,¬b〉 , E〉 | n > 0} ∪ {〈>, 〈〉 , E〉 | ¬(n > 0)}
nextStateEX,2(s) ={〈Y, 〈n, b〉 , E〉 | n > 0} ∪ {〈>, 〈〉 , E〉 | ¬(n > 0)}

nextStateEX(s) =nextStateEX,1(s) ∪ nextStateEX,2(s)

It is possible to calculate the nextStateEX,∗ functions separately and then combine them to find
nextStateEX , thereby exploring the transition relation for X.

We use transition groups in order to define the partitioned transition relation. We split an
equation or cluster by reference. For example, the equation νX(n : N, b : B) = (n > 0) ⇒

Tom Boshoven 37

TU/e A Symbolic Approach to PBES Instantiation

X(n,¬b) ∨ Y (n, b) has two references to equations. We split this equation in transition groups
by creating a group containing X(n,¬b) and its guard (n > 0), and another group containing
Y (n, b) and again (n > 0), which also guards this subexpression. In addition to simplifying the
exploration, the use of transition groups helps when using techniques exploiting event locality.
Event locality is presented in Section 4.4.

Instead of having a single reference per group, it is possible to have multiple by merging groups.
Doing this may reduce the amount of relations that need to be explored, possibly resulting in more
efficient algorithms. This merging is described in more detail in Section 4.5.

4.4 Event Locality

Event locality describes the fact that often in a transition system, events do not influence the whole
system but just a part of it. For example, the event in which a switch in a complex control system
is toggled may only change the value of a parameter, leaving the rest of the system untouched.
This event locality shows up in the data parameters of the processes in the process specification.

In the field of model checking, PBESs usually follow from the combination of a process specifi-
cation and a property expressed in modal logic, through a process described in [15]. This trans-
formation retains the event locality as expressed by data parameters in the process specification.
For this reason, PBESs generated this way generally have the same property.

The following system demonstrates event locality in a PBES:

νX(n : N, b : B) =X(n,¬b) ∨ Y (n, b)

νY (n : N, b : B) =X(n+ 1, b)

It can be seen that X refers to itself and Y , twice with an unchanged parameter n, while Y refers
only to X with an unchanged parameter b. The fact that not all parameters change in these
references corresponds with the locality of events.

In [3], it is shown that event locality can be exploited in order to reduce the number of com-
putations that have to be done in a state space exploration. In [20] this is used for efficient
instantiation of PBESs to parity games. In particular, the transition relations in parity games
(which correspond to references in BESs) are both explored and represented more efficiently.

In state-space exploration, event locality can be exploited by using local transition relations. This
may greatly reduce the amount of calls to nextStateE for instances in which only a few parameters
are changed. Fewer nextStateE calls leads to performance improvements, because the nextStateE
function may involve complex rewrite steps, whereas applying an existing local transition is a very
simple and fast operation. Section 4.4.2 further illustrates this.

4.4.1 Dependency

We define a notion of dependency in clustered PBESs based on event locality. In order to do this,
a few functions are defined.

Definition 4.3 (changed) Function changed gives the indices of the elements of the parameter
vector that may be changed by a formula. For a data expression described by the function e :
(D1 ×D2 × ...×Dm)→(E1 × E2 × ...× En), the following holds:

changed(e) =
{
i | i 6 m ∧ i 6 n ∧ ∃ε.J~diKε 6= Je(~d)iKε

}
∪{i | m < i 6 n}

If the size of the output vectors is greater than the size of the input vectors, the newly introduced
elements are always in changed, due to the second part of the definition. If the result vectors of e
have a smaller length than the input vectors, the removed indices are not in changed, unless they
occur in another subexpression.

Tom Boshoven 38

TU/e A Symbolic Approach to PBES Instantiation

Definition 4.4 (changed equation) Consider an equation or cluster X .

We define changed(X) as the union of changed(e) for all occurring data expressions e, limited by
the length of the parameter vector to X . Note that such data expressions only occur as parameters
to recursion variables and cluster references, by Definition 3.1.

Definition 4.5 (used) Function used gives the parameters that occur somewhere in the formula,
and are not merely passed to the following state.

For a data expression described by the function e(~d) = 〈e1, e2, ..., en〉, we define the following:

used(e) ={i | ∃j.di ∈ FV (ej) ∧ 1 6 i 6 n ∧ 1 6 j 6 n ∧ i 6= j}
∪{i | di ∈ FV (ei) ∧ i ∈ changed(e) ∧ i 6 n}

Where FV (e) is the set of free variables in e.

The first part of this definition handles the variables that occur in expressions for different
indices than their own. If this happens, the variable is always in used. The second part of the
definition handles the case where the variable occurs in the expression for its own index, but is
part of a more complex expression, possibly involving other variables.

For example, assume an expression described by the function e(n : N,m : N, o : N) = 〈n,m+n, o〉.
Parameter n (index 1) is in used(e), because it occurs in the expression m + n and is therefore
not merely passed to the next state. Parameter m (index 2) is in used(e) for the same reason.
Parameter o (index 3) is not in used(e), because it is passed to the next state unchanged and does
not occur in the expressions for the other indices.

Definition 4.6 (used equation) Assume an equation X with parameters ~d and predicate formula
φ.

We define used(X) as the union of used(e) for all occurring data expressions e and the indices of
all parameters occurring in simple boolean expressions (guards). Thus, used(X) = used(φ) where
used(φ) is defined recursively as follows:

used(X ′(e)) =used(e) ∩ {i | 1 6 i 6 |~d|}
used(c(e)) =used(e) ∩ {i | 1 6 i 6 |~d|}

used(b⇒ ψ) ={i | di ∈ FV (b)} ∪ used(ψ)

used(b ∧ ψ) ={i | di ∈ FV (b)} ∪ used(ψ)

used(∀~v : D.ψ) =used(ψ)

used(∃~v : D.ψ) =used(ψ)

The same definition can be used if X is not a recursion variable, but a cluster name.

Note that we only allow parameter indices (as opposed to variables bound by a quantifier) to be
contained in the result of used.

Example 14 (changed and used) Assume X defined as follows:

νX(b : B, c : B) =X(b ∨ c,¬c) ∨ (∃d ∈ B.true ∧ c1(b, c, d))

We calculate changed(X) and used(X) as follows:

changed(X) =changed(λ 〈b, c〉 : B× B. 〈b ∨ c,¬c〉) ∪ changed(λ 〈b, c, d〉 : B× B× B. 〈b, c, d〉)
={1, 2} ∪ ∅
={1, 2}

used(X) =used(λ 〈b, c〉 : B× B. 〈b ∨ c,¬c〉) ∪ used(λ 〈b, c, d〉 : B× B× B. 〈b, c, d〉) ∪ ∅
={1, 2} ∪ {1, 2} ∪ ∅ ∪ ∅
={1, 2}

Tom Boshoven 39

TU/e A Symbolic Approach to PBES Instantiation

Definition 4.7 (changed and used in partitioned transitions) Assume an equation X with
n transition groups. We define changed(X , i) as changed(φ) and used(X , i) as changed(φ) where
X i = φ is the equation describing transition group i (with 1 6 i 6 n).

Because the set changed(e) is in general not computable, we may approximate it syntactically.
An expression e can be written in the form 〈e0, e1, ..., en〉. We approximate changed≈(e) as the
set of i for which ei 6= di (ei is not described by just the symbol di) or m 6 i < n. This also leads
to a syntactic approximation of used.

For example, if e(n : N,m : N, o : N) = 〈n,m+n, 2o−o〉, then changed≈(e) = {2, 3} (parameters
m and o), because the second parameter in the results (m+ n) is not equal to the symbol m and
the third parameter (2o− o) is not equal to the symbol o, although the expressions are equivalent.

If we assume a data expression described by the function e(n : N,m : N) = 〈n,m + n, n〉, then
changed≈(e) = {2, 3} (parameters m and the newly introduced one).

In the remainder of this document, changed and used may be replaced with changed≈ and
used≈, for practical purposes.

The functions changed and used describe the following two types of dependencies:

• Read dependency

There is a read dependency of an equation or cluster X on a variable dx if the variable is
used in any of the data expressions, or in a guard. This is true if and only if x ∈ used(X).

• Write dependency

There is a write dependency of an equation or cluster X on a variable dx if the value for the
parameter is changed while passing it on. This holds if and only if x ∈ changed(X).

When looking at dependencies based on event locality, we only evaluate the parameter vectors.
Although such a dependency could also be found between names of equations or clusters, it would
not be very useful. The reason for this is that read dependency on the name would be required
to always be true (since the equation itself depends on it) and since recursion variable names
can not be a function of parameters, symbolic exploration will not benefit from exploiting write
dependencies.

4.4.2 Local transition relation

Using the dependency information from Section 4.4.1, local transitions can be defined. Local
transitions describe a transition of only the part of a state which changes as a result of the
transition.

We introduce local transitions by means of an example.

Assume the following PBES E :

νX(n : N,m : N) =Y (f(n),m)

νY (n : N,m : N) =n < 10 ∧X(n, f(n))

Here, f is a function of type N→N. For simplicity, we assume f(0) = 1.

Clearly, used(X) = {1}, changed(X) = {1}, used(Y) = {1} and changed(Y) = {2}.
When exploring the transition relation from any state 〈X, 〈0,m〉 , E〉 with m ∈ N, we find the

transition 〈X, 〈0,m〉 , E〉→〈Y, 〈1,m〉 , E〉. Because the the transition function for X is not read-
or write dependent on the second parameter to X, the value of this parameter can simply be
copied in all cases. We describe this by saying that the transition function is local to only the first
parameter. When exploring any state 〈X, 〈0,m〉 , E〉 for any m ∈ N, this transition function can
be used to quickly determine the next state. After calculating this local transition function once,
it is not necessary to recompute the value of f(0). This is particularly useful when this involves
complex calculations.

Tom Boshoven 40

TU/e A Symbolic Approach to PBES Instantiation

There exist cases in which a transition is only read dependent or write dependent on a pa-
rameter. An example of this is seen in equation Y of E . This equation is read dependent on
the first parameter and write dependent on the second parameter. In such a case, the new
values of the write depended parameters depend only on the values of the read depended param-
eters. Assuming a state 〈Y, 〈0,m〉 , E〉 for some m ∈ N will yield the symbolic transition relation
〈Y, 〈0,m〉 , E〉→〈X, 〈n, 1〉 , E〉, where the value of n in the target state is always the same as the
first parameter in the source state.

We use the symbol ∗ to denote elements of the transition which are not relevant to the event
corresponding to the transition. A ∗ symbol in the source state denotes any value, while in a
target state it denotes the same value as the parameter in the source state with the same index.
We can denote the transition from 〈X, 〈0,m〉 , E〉 as 〈X, 〈0, ∗〉 , E〉→〈Y, 〈1, ∗〉 , E〉 and the transi-
tion from 〈Y, 〈0,m〉 , E〉 as 〈Y, 〈0, ∗〉 , E〉→〈X, 〈∗, 1〉 , E〉. By using this notation in our transition
representation, the amount of transitions that must be denoted to represent an entire state-space
can be much smaller.

Example 15 (Local transitions) Assume PBES E from Example 13:

νX(n : N, b : B) =(n > 0)⇒ (X(n,¬b) ∨ Y (n, b))

νY (n : N, b : B) =X(n− 1, b)

In this PBES, it holds that changed(X) = {2} and used(X) = {1, 2}.
The local transitions from state 〈X, 〈1, false〉 , E〉 can be found by calculating the next-states

nextStateE(〈X, 〈1, false〉 , E〉), which results in the following:

{〈X, 〈1, true〉 , E〉 , 〈Y, 〈1, false〉 , E〉}

We can then overlay these states with ∗ symbols where there is no write dependency:

{〈X, 〈∗, true〉 , E〉 , 〈Y, 〈∗, false〉 , E〉}

Because there is a read dependency on all parameters, the source state remains unchanged. The
result is the following set of transitions:{

〈X, 〈1, false〉 , E〉→〈X, 〈∗, true〉 , E〉
〈X, 〈1, false〉 , E〉→〈Y, 〈∗, false〉 , E〉

}

Note that while the dependencies for the first transition group are the same (changed(X, 1) =
{2} and used(X, 1) = {1, 2}), for the second transition group, there are fewer dependencies
(changed(X, 2) = ∅ and used(X, 2) = {1}).

When looking at the second transition group, the source state can be rewritten to 〈X, 〈1, ∗〉 , E〉
and the target state to 〈Y, 〈∗, ∗〉 , E〉, generalizing the transition further, removing the need to store
the transition of the second group for all values of b.

When using a partitioned relation, we find the following set of transitions:{
〈X, 〈1, false〉 , E〉→〈X, 〈∗, true〉 , E〉

〈X, 〈1, ∗〉 , E〉→〈Y, 〈∗, ∗〉 , E〉

}

4.5 Merging Groups

Instead of creating a single transition group per reference to a recursion variable or cluster, similar
transition groups can be combined.

Merging transitions groups is only useful if the two merged groups have similar dependencies.

Tom Boshoven 41

TU/e A Symbolic Approach to PBES Instantiation

4.6 Linked Decision Diagrams

Linked decision diagrams (LDDs) are the symbolic data structure that we propose to use in the
exploration. In order to define LDDs, we first define binary decision diagrams.

Binary decision diagrams (BDDs) are data structures that are used for compact symbolic storage
of boolean functions and manipulation thereof ([7, 6]).

BDDs are directed acyclic graphs (DAGs) in which each node represents a boolean property or
variable, except for the two final nodes 0 and 1. All nodes except these special nodes have two
outgoing edges, where one edge represents true as a value for the property or variable and the
other one represents false. Nodes 0 and 1 represent the outcome of the formula represented by the
BDD (false or true respectively). A BDD contains an initial node, which has no incoming edges.
Apart from the initial node and nodes 0 and 1, all nodes must have at least one incoming edge.
By enumerating all paths from the initial node to 1, a set of all possible combinations of values
for the properties or variables is found, such that the result of the boolean function represented
by the BDD is true.

We make use of Ordered BDDs (OBDDs). This means that a total ordering l exists on all
variables in the graph. A node corresponding to a certain variable a may only have an edge to a
node corresponding to variable b if al b.

Example 16 (BDD) The following BDD is a representation of the formula ((¬a ∧ b) ∨ (b ∧ c)).

a

b

c

1 0

b

The normal edges represent true and the dashed edges represent false. The ordering al bl c is
used.

Following all paths from the initial node (”a”) to node 1 yields the set of valuations such that
the represented expression ((¬a ∧ b) ∨ (b ∧ c)) holds:

 a := true
b := true
c := true


[
a := false
b := true

]


Linked decision diagrams (LDDs), presented first in [2], use a method that is similar to BDDs

in order to store sets of strings or vectors. In LDDs, node 1 is called {ε}, node 0 is called ∅ and
all other nodes have a label.

All labeled nodes n in an LDD have two outgoing edges: n→n1 (“positive”, often represented
by an arrow going downward from the node) and n→n2 (“negative” often represented by an arrow
starting at the right of the node).

Tom Boshoven 42

TU/e A Symbolic Approach to PBES Instantiation

Definition 4.8 (LDD semantics) Assume an LDD node n with positive edge n→n1 and nega-
tive edge n→n2. Each subDAG (node and its transitive successors) of such a node n represents a
set of strings as follows:

J{ε}K ={ε}
J∅K =∅
JaK ={aw | w ∈ Jn1K} ∪ Jn2K

Example 17 (LDD) An LDD for the set of strings {bed, cab, car} is given in the following figure:

b c

e

d

a

b r

{ε} ∅

The negative edges are shown dashed. Note that the c and a symbols, which occur twice in the set
of strings, occur only once in the LDD.

Extended LDDs LDDs can only represent finite sets, because all included values for all elements
are enumerated. When representing transitions, it becomes useful to allow a vector element to
have any value. In order to represent this, we extend LDDs with a unary ∗ (”wildcard”) node, and
we extend the semantics as given in Definition 4.8 by the semantics for a ∗ node with a singleton
edge to a node n:

J∗K = {xw|x ∈ U ∧ w ∈ JnK}

Example 18 (Extended LDDs) Using extended LDDs, we can represent the set {v | v1 = a∧
v3 = c}. The LDD representing this set is given in the following figure:

a

∗

c

{ε} ∅

Tom Boshoven 43

TU/e A Symbolic Approach to PBES Instantiation

Using LDDs, it is possible to share common parts in the strings. This makes LDDs particularly
useful for efficiently storing a large set of similar strings. In order to improve this efficiency, we can
reorder the characters in strings, so that most of the common substrings occur in the beginning
or end of the string. This way, fewer nodes are needed and less memory is used. This can be
implemented by a mapping between the external ordering and the actual ordering of the elements.
Although it was proved that finding an optimal ordering for variables in a BDD is an NP-complete
problem [5], heuristics may be used for finding a good ordering, as implemented in [1].

4.6.1 Basic Operations

LDDs support various operations which allow for efficient manipulation of sets of states and
transitions. In order to define the operations on LDDs, we relate LDDs with ordered BDDs. An
LDD describes a set of vectors using a graph structure which is similar to a BDD. We can make
the similarities more explicit by viewing each node in an LDD as a predicate, making it possible
to intuitively define LDD operations using BDD operations.

Assume an LDD describing a set of vectors {〈a, b, c〉 , 〈a, b, d〉 , 〈b, b, c〉}. This yields the BDD
from Figure 3.

a

b

c

{ε}

d

b

b

c

∅

Figure 3: An LDD describing the set {〈a, b, c〉 , 〈a, b, d〉 , 〈b, b, c〉}

We can describe the same set symbolically as follows:

{v | (|v|= 3) ∧ ((v1 = a) ∧ (v2 = b) ∧ ((v3 = c) ∨ (v3 = d))) ∨ ((v1 = b) ∧ (v2 = b) ∧ (v3 = c))}

Ignoring the size constraint, the BDD corresponding to the guard expression is shown in Figure 4.
As ordering, we use v1 = al v1 = bl v2 = bl v3 = cl v3=d (ordering by vector element and then
by value).

It can be seen that Figures 3 and 4 are similar. The horizontal arrows correspond to false and
the vertical arrows correspond to true. Symbols ∅ and {ε} correspond to 0 and 1. The labels l of
the nodes on level n correspond to the expression vn = l.

We can interpret any LDD as a BDD containing only predicates of the form vn = a where vn is
the nth element of the stored vectors and a is an element of the data sort stored in the vectors.
The BDD should be ordered by the following l function:

((vn = a) l (vm = b))⇔ (n < m ∨ (n = m ∧ a @ b))

Tom Boshoven 44

TU/e A Symbolic Approach to PBES Instantiation

v1 = a

v2 = b

v3 = c

1

v3 = d

v1 = b

v2 = b

v3 = c

0

Figure 4: A BDD describing the set {〈a, b, c〉 , 〈a, b, d〉 , 〈b, b, c〉}

Here, @ is some total ordering on the elements of the alphabet.

Note that not all OBDDs following this description correspond directly to an LDD. For example,
it is possible for BDDs to represent the set in which v1 = a ∧ v1 = b holds, whereas in LDDs this
can only be represented by ∅. It is possible to efficiently remove cases such as this. Because of the
ordering function, we can see that this situation only occurs if the true branch of a BDD node
vn = a for some n and a has an edge to a BDD node vn = b for some b 6= a. Therefore, as a way
to resolve this issue, we can replace such a node vn = b by its false branch, removing its true
branch.

Furthermore, ”gaps” in an LDD are not allowed. A node describing vn may not have an edge
to a node describing vn+2, whereas in BDDs a node with the predicate vn = a may be connected
directly to a node with the predicate vn+2 = b. This corresponds to the quasi-reduced property of
BDDs ([23, 10]). Such a gap describes a situation in which any predicate of the form vn+1 = c
evaluates to true. Because the set described by the BDD is no longer finite (since vn+1 may have
any value, and the universe is not known and finite), there exists no finite LDD which describes
this set. In order to represent these gaps, we use the ∗ node from the definition of extended LDDs.
If a node vn = a has an edge to vm = b (with n < m), this can be represented in an LDD by an
edge from a to a string of m− n− 1 ∗ nodes, with the final one having an edge to b.

We only allow negated predicates (v1 6= a) if the universe for v1 is known and finite. This allows
us to perform set difference (S − S′ = S ∩ S′) if the set from which is subtracted is finite.

The translation from an OBDD without conjunctions between nodes at the same level, and
without negated predicates to an LDD (extended with ∗) follows the mapping from LDD to BDD
described above.

By characterizing an LDD as a BDD, it is possible to use BDD operations in order to expand
or refine the expression, implementing various set operations:

• S ∪ T
Since {s | φ(s)} ∪ {t | ψ(t)} = {u | φ(u) ∨ ψ(u)}, set union can be implemented by taking
the disjunction of the two BDDs representing the sets.

• S u T
We define an operation which is similar to set intersection, but ignores size constraints. This

Tom Boshoven 45

TU/e A Symbolic Approach to PBES Instantiation

is a type of prefix intersection.

(s
prefix

= t)⇔∀n : N.1 6 n 6 min(|s|, |t|) ∧ sn = tn

(s ∈ S u T)⇔(((s ∈ S) ∧ ∃t ∈ T.s prefix
= t) ∨ ((s ∈ T) ∧ ∃t ∈ S.s prefix

= t)

This can be implemented on BDDs using a conjunction. Note that the conjunction operation
may introduce BDDs such as v1 = a ∧ v1 = b. These occurrences may be removed from the
BDD, by the procedure described above.

• S
Negation on a BDD is implemented by switching the 1 and 0 nodes. Similarly, negation on
an LDD can be implemented by switching the {ε} and ∅ symbols.

Note that the result of the negation of an LDD is no longer an LDD. Because the universe
is not known or finite, the resulting BDD represents an infinite set, and a wildcard node can
not be used. Therefore, we allow negation only for calculating set difference, where the set
from which the operation subtracts must be finite. This way, the resulting set is finite and
can be translated into an LDD.

• S − T
Set difference (using prefix semantics, as in u) can be expressed using only (prefix) intersec-
tion and negation S − T = S u T , and can thus be implemented on LDDs.

• filter(S, n← a)

We want to refine a set S such that only the elements (note that these are vectors) from S in
which the nth element has value a: {v | v ∈ S ∧ vn = a}. This can be achieved by putting
the predicate vn = a in conjunction with the original BDD.

We denote the operation in which an LDD S is refined with the predicate vn = a as
filter(S, n← a).

• project(S, I)

Projections can be done by using existential abstraction on the BDD. Using this, it is possible
to describe the set {〈v2, ..., vn〉 | ∃v1 : 〈v1, v2, ..., vn〉 ∈ S} for some set S.

We denote the projection of a set S on a set of indices I as project(S, I).

• swap(S, V)

It is possible to change the order of vector elements in an LDD. This allows for transforming
a set {〈v1, v2, v3〉 | (v1 = a∨v1 = b)∧v2 = c} into {〈v1, v3, v2〉 | (v1 = a∨v1 = b)∧v3 = c}.
In order to do this in a BDD, which has no real concept of ”levels”, this requires substituting
all occurrences of v2 with v3 and vice versa. Note that this requires an additional reordering
for all substituted occurrences, in order to satisfy the ordering of the BDD.

We denote the swapping of the elements with indices n and m in set X as swap(X, 〈n,m〉).
• enum(S)

Lastly, it is possible to enumerate all elements of a finite set. This corresponds closely to the
semantics as presented in Definition 4.8. Note that when following the semantics, use of the
∗ extension as presented above will result in an infinite set, which can not be enumerated.

By convention, we ignore ∗ values at the end of vectors. Enumerating the set {〈v1, v2〉 | v1 =
a} therefore yields {〈a〉}. The reason for doing this lies in the graph functions presented
below. A transition function may generate a set of vectors with various lengths, but only
the explicit parts of these vectors represent the actual states.

By combining these operations, it is possible to describe the functions that allow for symbolic
exploration.

Tom Boshoven 46

TU/e A Symbolic Approach to PBES Instantiation

4.6.2 States and Transitions

We describe how states and transitions are stored in LDDs, and then define the operations which
make symbolic state-space traversal possible.

We represent a state
〈
X , ~d, E

〉
by the vector 〈X 〉++ ~d. A set of these vectors can be stored in an

LDD. States representing true and false are denoted as 〈>〉 and 〈⊥〉. The rank and decoration
mappings are not stored in the state vectors, as in the given exploration method, they depend
only on the first element of this vector.

The transitions are stored using an LDD as well. Instead of storing the complete set of tran-
sitions, we use local transitions as described in Section 4.4.2. Assume a PBES E and transition

relation
〈
X, ~d, E

〉
→
〈
X ′, ~d′, E

〉
. We obtain a vector 〈v1, v2, ..., vN 〉 (where N = 2·max(|~d|, |~d′|)+2)

describing the transition relation as follows:

v1 =X

v2 =X ′

vn + 3 =


d(n+1)/2 if n is odd, (n+ 1)/2 6 |~d|
∗ if n is odd, (n+ 1)/2 > |~d|
d′n/2 if n is even, n/2 6 |~d′|
∗ if n is even, n/2 > |~d′|

For example, a transition 〈X, 〈0, 1〉 , E〉→〈X ′, 〈1, 1〉 , E〉 is represented by the vector 〈X,X ′, 0, 1, 1, 1〉.
The main reason for alternating the elements of the source and target state is that these are often
related. Grouping them together possibly improves efficiency of the containing LDD.

The ∗ symbols in these transitions denote ∗ nodes in the LDD. In order to store local transitions,
we also make use of this node to represent the ∗ values in the local transition. By doing this, we
simplify the graph operations.

Using the defined basic LDD operations, we can define the operations that work on sets of states
and transitions.

Definition 4.9 (source and target) We define functions source and target for getting the source
and target states from a set of transitions.

source(T) =project(T, {2n+ 1 | n ∈ N ∧ 2n+ 1 6 max(|T |)})
target(T) =project(T, {2n+ 2 | n ∈ N ∧ 2n+ 2 6 max(|T |)})

Note that the offset by 1 in the index is there because we only use positive natural numbers as
indices. These functions are simply projections to even or odd states. It is not necessary to trim
the resulting vectors to the correct length, because they are padded with ∗ nodes, which cause only
a single node of overhead each, since they are placed at the end of the structure. These extra nodes
do not interfere with any of the BDD operations (since they do not exist in the corresponding
BDD) and thus they do not interfere with the LDD operations, which are based entirely on BDD
operations.

Definition 4.10 (explode) Whereas source and target remove the target or source states from
a transition to obtain a set of single (partial) states, explodesource and explodetarget introduce
source or target states, transforming a state into set of transitions.

explodesource(T) ={v | t ∈ T ∧ n ∈ N ∧ n < |T |∧v2n+1 = tn+1 ∧ v2n+2 = ∗}
explodetarget(T) ={v | t ∈ T ∧ n ∈ N ∧ n < |T |∧v2n+1 = ∗ ∧ v2n+2 = tn+1}

Tom Boshoven 47

TU/e A Symbolic Approach to PBES Instantiation

The explode functions can be implemented using swap operations.

Example 19 (explode) Assume a state vector s = 〈X, 1, 2, 3〉. Then the following holds:

explodesource({s}) = {〈X, ∗, 1, ∗, 2, ∗, 3, ∗〉}

The result is a transition vector representing any transition from X(1, 2, 3).

Furthermore, the following holds:

explodetarget({s}) = {〈∗, X, ∗, 1, ∗, 2, ∗, 3〉}

The result of this operation is a transition vector representing any transition to X(1, 2, 3).

Definition 4.11 (match) In order to find out which local transitions need to be generated, we
need a function match to match local transitions to the global set of source states. This function
is defined as follows:

match(S, Slocal) =S u Slocal

Because the ∗ elements of the local transitions are translated into ∗ nodes in the LDD describing
these transitions, which allows any value to be filled in for the ∗, matching the source or target of
a local transition corresponds to taking the (prefix) intersection of the two sets.

Example 20 (match) Assume a local transition 〈X, 〈1, ∗〉 , E〉→〈X, 〈2, ∗〉 , E〉, represented by a
transition vector t = 〈X,X, 1, 2, ∗, ∗〉. Then source({t}) = {〈X, 1, ∗〉}. Assume some set of
states S = {〈X, 1, 2〉 , 〈X, 1, 3〉 , 〈X, 2, 1〉 , 〈Y, 1〉}. We use match to find the states in this set
which are described by the source of t, by calculating match(S, {〈X, 1, ∗〉}). The result of this
calculation is the set of all states in S of which the first element is X and the second is 1. Thus
match(S, {〈X, 1, ∗〉}) = {〈X, 1, 2〉 , 〈X, 1, 3〉}.

Definition 4.12 (next and prev) We define the function next which calculates the set of next-
states from a set of states, following a set of local transitions. We also define the prev function
which follows the transitions backwards and obtains a set of previous-states.

We define next and prev as follows:

next(S,R, Iwi) =target(swap(match(explodesource(S), R), [〈2i+ 2, 2i+ 1〉 |i ∈ Iwi]))

prev(S,R, Iri) =source(swap(match(explodetarget(S), R), [〈2i+ 2, 2i+ 1〉 |i ∈ Iri]))

Here, S is the set of source state vectors, R is the set of local transitions to follow and Iwi is the
set of write independent indices, which is the set of all indices i of the target vectors for which
i 6∈ changed(X , n). Similarly, Iri is the set of read independent indices of the source vectors
(i 6∈ used(X , n)).

Function prev is used in the recursive algorithm for solving the resulting BES. This is described
in Section 5.3.1.

Note that the set of states returned by the prev function is an overapproximation of the ac-
tual set of previous states. Assume a transition 〈X, 〈a, ∗〉 , E〉→〈X, 〈b, ∗〉 , E〉 and a transition
〈X, 〈c, ∗〉 , E〉→〈X, 〈b, ∗〉 , E〉. Assume initial state 〈X, 〈a, d〉 , E〉. Computing the set of next-
states yields {〈X, 〈b, d〉 , E〉}. Calling prev on this single state 〈b, d〉 will result in a set of states
{〈X, 〈a, d〉 , E〉 , 〈X, 〈c, d〉 , E〉}, while the state 〈X, 〈c, d〉 , E〉 is not present in the graph. In order
to solve this, the resulting set of prev needs to be intersected with the set of states in the graph.

Example 21 (next) Assume transition vector t = 〈X,X, 1, 2, ∗, ∗〉 from Example 20. We can
calculate the set of next-states of a state represented by the vector s = 〈X, 1, 2〉 following transition

Tom Boshoven 48

TU/e A Symbolic Approach to PBES Instantiation

t by computing next({s}, {t}, {2}). Here, Iwi = {2}, because X is not write dependent on the
second parameter.

First, we calculate S′ = explodesource({s}) = {〈X, ∗, 1, ∗, 2, ∗〉}. We then match it to the transi-
tion using T ′ = match(S′, {t}) = {X,X, 1, 2, 2, ∗}. Then the source and target for the second pa-
rameter are swapped using T ′′ = swap(T ′, [〈6, 5〉]) = {X,X, 1, 2, ∗, 2}. Taking the target of this, we
find target(T ′′) = {〈X, 2, 2〉}. This is indeed the result of applying the transition X(1, ∗)→X(2, ∗)
to state X(1, 2).

4.7 Algorithm

Using the defined operations, it is possible to write an algorithm which calculates for any set of
states, the set of next-states, thereby performing a single exploration step. This algorithm, named
nextStateSym, is given in Algorithm 2.

Algorithm 2 nextStateSym

1: function nextStateSym(S0, C)
2: S := S0 − {〈>〉 , 〈⊥〉} . Ignore the two special nodes
3: T := ∅ . Next states
4: for all recursion variables and clusters X do
5: SX := filter(S, 1← X)
6: for all transition groups n for X do
7: R := C[X , n]
8: S′ := SX −match(SX , source(R)) . Read transitions from the cache if possible
9: while S′ 6= ∅ do . Find all unseen local transitions

10: Pick some s from S′

11: t := nextStateEX ,n(s)
12: for all i ∈ used(X , n) do . Generate the local transition
13: si+1 := ∗
14: end for
15: for all i ∈ changed(X , n) do
16: ti+1 := ∗
17: end for
18: u := 〈〉
19: for n ∈ N, n < max(|s|, |t|) do

20: u2n+1 :=

{
sn if n < |s|
∗ otherwise

21: u2n+2 :=

{
tn if n < |t|
∗ otherwise

22: end for
23: S′ := S′ −match(S′, {s}) . Remove all other matching states from S′

24: R := R ∪ {u}
25: end while
26: C[X , n] := R
27: Iwi := {i ∈ N | i < |R|/2 ∧ i 6∈ changed(X , n)}
28: T := T ∪ next(SX , R, Iwi)
29: end for
30: end for
31: return 〈T, C〉
32: end function

This algorithm performs a next-state calculation on a potentially large set of states S0 (stored
in an LDD) simultaneously after generating the local transition functions. It uses a cache C,

Tom Boshoven 49

TU/e A Symbolic Approach to PBES Instantiation

containing for each transition group X , n (notation: C[X , n]), the transition relation as explored
so far. This way, the results of previous calculations can be reused in a next step. The new set
of local transitions is returned, and can be used as a cache in the subsequent step. Usage of this
cache is optional.

The algorithm evaluates all transition groups separately. For each of these groups, the local
transition functions are generated. This is done by generating the global transition function from
the set of states S′, and replacing the values by ∗, following the description in Section 4.4.2.
All states matching this local transition are removed from S′. This way, a complete set of local
transitions for the current states is formed. These local transitions are applied to the set of current
states, finding the set of next states for the transition group. After following this process for all
transition groups of all recursion variables and clusters, the complete set of successors of the states
in S0 is calculated.

Example 22 (nextStateSym) Assume the clustered PBES E from Example 11:

νX(b : B, c : B) =¬(b ∧ c)⇒ (X(b ∨ c,¬c) ∨ ∃d ∈ B.true ∧ c1(b, c, d))

c1(b : B, c : B, d : B) =X(b ∧ c, d) ∧X(b ∧ d, c)

In order to calculate the next-states from state 〈X, 〈false, false〉 , E〉, we use the procedure
nextStateSym({〈X, false, false〉}, ∅). At the start of the algorithm, S = {〈X, false, false〉}
and T = ∅.

First, the transitions for X are evaluated. Variable SX is assigned the set {〈X, false, false〉}.
Transition group 1 for this recursion variable is then used. Since C[X, 1] = ∅, S′ = SX and the algo-
rithm will calculate nextStateEX,1(〈X, 〈false, false〉 , E〉). This results in the set {〈X, false, true〉}.
This global transition is then transformed into a local transition, resulting in the equivalent tran-
sition {〈X, false, false〉→ 〈X, false, true〉}, as there is a read and write dependency on both pa-
rameters. Then S′ is empty, so all local relations have been found. The set of target states is
calculated by using next, resulting in 〈X, false, true〉.

The next transition group is 2 of recursion variable X. Again, nextStateEX,2(〈X, false, false〉)
is calculated, resulting in {〈c1, false, false, false〉 , 〈c1, false, false, true〉}. Calculating the local
transition yields {〈X, ∗, ∗〉→〈c1, ∗, ∗, false〉 , 〈X, ∗, ∗〉→〈c1, ∗, ∗, true〉}. Applying this transition
results in the following set:

T = {〈X, false, true〉 , 〈c1, false, false, false〉 , 〈c1, false, false, true〉}

Since S does not contain any c1 states, the last two transition groups have no effect on the set
of next-states. Therefore, the operation results in the following tuple:

〈{〈X, false, true〉 , 〈c1, false, false, false〉 , 〈c1, false, false, true〉},
{X, 1→{〈X, ∗, ∗〉→〈c1, ∗, ∗, false〉 ,

〈X, ∗, ∗〉→〈c1, ∗, ∗, true〉},
X, 2→{〈X, false, false〉→ 〈X, false, true〉}
c1, 1→ ∅
c1, 2→ ∅}〉

The first element of this tuple is a set containing all explored states, and the second element
contains the found local transitions per transition group. The union of the sets of local transitions
per group is the complete set of found local transitions.

Using the symbolic next-state procedure, it is possible to perform a complete exploration of the
state-space, as shown in Algorithm 3.

This algorithm repeatedly calls nextStateSym until the (least) fixed-point is reached. Option-
ally, it caches all transitions between steps. The returned cache from the nextStateSym call

Tom Boshoven 50

TU/e A Symbolic Approach to PBES Instantiation

Algorithm 3 explorePBESSym

1: function explorePBESSym(s0, useCache)
2: S := {s0} . Encountered states
3: T := ∅ . Explored states
4: C[X , n] := ∅ for all X , n . Transition cache
5: while S 6= T do
6: T := S
7: if useCache then
8: 〈S, C〉 := nextStateSym(S, C)
9: else

10: 〈S, C′〉 := nextStateSym(S, ∅)
11: for all X , n do
12: C[X , n] := C[X , n] ∪ C′[X , n]
13: end for
14: end if
15: end while
16: d = λs.d(s0) . d(〈X , p, E〉) = d(X)
17: r = λs.rankE(s0) . r(〈X , p, E〉) = rankE(X)
18: return 〈S, s0, C, d, r〉
19: end function

is used to define the → function. The decoration and rank mappings depend only on the first
element of a state node (the recursion variable or cluster name), and are defined as such. A vector
〈S, s0,→p, d, r〉 is returned in which S is an LDDs as described in Section 4.6.2, s0 is the initial
state, d is a mapping from states to decorations and r is a mapping from ranked states to their
ranks. The returned value →p is the partitioned set of explored transitions. Each partition of
→p is an LDD containing a set of local transitions, as described in Section 4.6.2. The reason for
returning a partitioned transition relation is that the next function on local transitions will only
work on transitions from the same partition, because it depends on the value of changed.

There are several alternatives to this exploration method. While nextStateSym only calculates
the set of next-states for a set of states, a complete exploration requires the set of transitive next-
states. This can be calculated by repeatedly using nextStateSym, but it is possible to define
an exploration procedure which may explore more than a single level of the graph at a time. One
strategy is saturation ([10]), in which the transitions corresponding to a transition group are not
applied once but repeatedly, until the set of next-states does not change by applying the relation.
Another method is chaining, in which the resulting states for each transition group are also used in
the exploration of the next group. This strategy can be implemented in Algorithm 2 by changing
the assignment of S′ to S′ := (SX ∪ filter(T, 1← X))−match(SX , source(R)). Using saturation
or chaining, the number of exploration steps may be reduced.

4.7.1 Usage

The instantiation algorithm from Section 4.7 results in a 5-tuple 〈S, s0,→, C, r〉, where S is a
symbolic data structure containing the set of all state vectors and C is a mapping from transition
group X , n to a symbolic data structure containing all local transitions corresponding to this
group.

The functions defined in Sections 4.6.1 and 4.6.2 can be used on these structures. Because S is
fully explored, it is not necessary to use nextStateSym to find the set of next-states.

Definition 4.13 (nextC and prevC) We define functions nextC and prevC which calculate the

Tom Boshoven 51

TU/e A Symbolic Approach to PBES Instantiation

set of next-states over the transitions stored in C as follows:

nextC(S
′) =

⋃
X ,n∈dom(C)

next(S′, C[X , n], {i ∈ N | i < max{|u| | u ∈ S′} ∧ i 6∈ changed(X , n)})

prevC(S
′) =

⋃
X ,n∈dom(C)

prev(S′, C[X , n], {i ∈ N | i < max{|u| | u ∈ S′} ∧ i 6∈ used(X , n)})

It is important to note that following the local transitions backwards (as done in prevC) does
not necessarily result in states that are in S, as shown in Section 4.6.2. In order to find the
previous-states in S, intersecting the two sets suffices.

Similarly to nextStateSym, chaining and saturation techniques may be used to improve per-
formance of nextC .

Example 23 (next and prev) Assume a set of local states S and a local transition mapping C
as follows:

S ={〈X, 1, 2〉 , 〈X, 1, 3〉 , 〈Y, 2, 2, 3〉 , 〈Y, 2, 3, 4〉 , 〈T 〉 , 〈F 〉}

C =

X, 1→
{
〈X,Y, 1, 2, ∗, 2, ∗, 3〉
〈X,Y, 1, 2, ∗, 3, ∗, 4〉

}
Y, 1→

{
〈Y, T, ∗, ∗, ∗, ∗, ∗, ∗〉

}


Node that S is fully explored over C.

Assume a set of states S′ ⊆ S as follows:

S′ ={〈X, 1, 2〉 , 〈Y, 2, 3, 4〉 , 〈T 〉 , 〈F 〉}

We compute the set of next-states nextC(S′) as follows:

nextC(S
′) =next(S′, {〈X,Y, 1, 2, ∗, 2, ∗, 3〉 , 〈X,Y, 1, 2, ∗, 3, ∗, 4〉}, ∅)
∪ next(S′, {〈Y, T, ∗, ∗, ∗, ∗, ∗, ∗〉}, ∅)
={〈Y, 2, 2, 3〉 , 〈Y, 2, 3, 4〉} ∪ ∅
={〈Y, 2, 2, 3〉 , 〈Y, 2, 3, 4〉}

Similarly, the set of previous-states of this resulting set is computed as follows:

S′′ ={〈Y, 2, 2, 3〉 , 〈Y, 2, 3, 4〉}
prevC(S

′′) =prev(S′′, {〈X,Y, 1, 2, ∗, 2, ∗, 3〉 , 〈X,Y, 1, 2, ∗, 3, ∗, 4〉}, {2})
∪ prev(S′′, {〈Y, T, ∗, ∗, ∗, ∗, ∗, ∗〉}, ∅)
={〈X, 1, 2, ∗〉 , 〈X, 1, 3, ∗〉} ∪ ∅
={〈X, 1, 2, ∗〉 , 〈X, 1, 3, ∗〉}

Note that 3 is not included in the Iri parameter to prev for group X, 1, because the source states
of the transition have only two parameters.

Because all resulting states are included in S, it is not necessary to intersect the result with S.

4.8 BESsyness

The described steps for obtaining a structure graph from a PBES are defined such that any
resulting structure graph is trivially BESsy (see Definition 2.6). BESsyness is a highly desired
property, because a BESsy structure graph corresponds to a valid BES. We give a short explanation
why the resulting structure graphs have the BESsyness property.

Tom Boshoven 52

TU/e A Symbolic Approach to PBES Instantiation

The first property which must hold on the structure graph, states that all nodes s for which
d(s) ∈ {>,⊥} may not have a successor with respect to →. This property is trivially validated by
definition of the true and false nodes, as given in Definition 4.1. This definition explicitly states
that nextStateE for these nodes is equal to ∅, and thus they have no successors in the resulting
structure graph.

The second property states that for all nodes s, d(s) ∈ {∧,∨} or r(s) is defined, if and only if
s has a successor with respect to →. This property is also trivially validated by Definition 4.1,
because it follows directly from the definition of nextStateE that all states except true and false
(which do not have a rank) have at least one successor with respect to →. Furthermore, as
explained in Section 4.2 and enforced in Algorithms 1 and 3, d(s) is always assigned either ∧ or
∨, except for the true and false nodes. As a result, this property is true for both the true and
false nodes and the other nodes.

The third property of BESsy structure graphs states that d(s) must be equal to ∧ or ∨ for all
nodes s with multiple successors with respect to →. As explained above, this is trivially valid
on the generated structure graphs, because d(s) ∈ {∧,∨} holds for all nodes with at least one
successor.

The final property states that all cycles with respect to → contain at least one ranked node.
Ranked nodes, as explained in Section 4.2, correspond to nodes that were instantiated from equa-
tions (as opposed to clusters).

Assume that a cycle
〈
ca, ~da, E

〉
,
〈
cb, ~db, E

〉
, ...,

〈
cz, ~dz, E

〉
,
〈
ca, ~da, E

〉
of unranked nodes exists.

Then this cycle must contain at least one transition from
〈
ci, ~di, E

〉
→
〈
cj , ~dj , E

〉
such that i > j.

Thus, the clustered PBES from which the structure graph is generated must contain a cluster
ci with a reference to cluster cj such that i > j. Following the Cluster procedure, defined in
Definition 3.1, we find that clusters only refer to newly generated ”fresh” clusters, and therefore
a cluster ci can only refer to a cluster cj if i < j. From this contradiction it follows that the
structure graph does not contain cycles of unranked nodes.

4.9 Optimizations

Operations exist for optimizing a structure graph. These operations are based on BES transfor-
mations for simplifying a system. Some of these optimizations, such as true/false-elimination, can
be applied efficiently on a symbolic structure graph.

4.9.1 True/false-elimination

True/false-elimination is the operation which performs the following boolean transformations:

b ∧ true→b
b ∧ false→false
b ∨ true→true
b ∨ false→b

On a structure graph, the following transformations achieve this:

1. All transitions to a true-node from a conjunctive node with at least one other transition are
removed.

2. All transitions to a false-node from a disjunctive node with at least one other transition are
removed.

3. All unranked conjunctive nodes with a transition to a false-node are replaced by false.

Tom Boshoven 53

TU/e A Symbolic Approach to PBES Instantiation

4. All unranked disjunctive nodes with a transition to a true-node are replaced by true.

5. For ranked conjunctive nodes with a transition to a false-node all other outgoing transitions
are removed.

6. For ranked disjunctive nodes with a transition to a true-node all other outgoing transitions
are removed.

7. All unranked nodes with a single transition to the true-node are replaced by this node.

8. All unranked nodes with a single transition to the false-node are replaced by this node.

These transformations are quite complex, compared to the regular set of boolean optimizations,
due to the added difficulty of preserving BESsyness. This preservation is required in order to be
able to transform the result to a valid BES.

All of the transformations require removal of specific transitions from the graph. Because in
the described symbolic instantiation approach, only local transitions are stored, it is not easy to
remove specific transitions from the graph. Furthermore, the removed transitions form an explicit
set of global transitions. These global transitions had been avoided during the instantiation, in
order to improve efficiency. Experiments have to be done in order to determine whether applying
these optimizations is useful in practice.

We describe two approaches for removing transitions and we give algorithms to calculate the
exact transitions to be removed.

In order to be able to remove transitions, it is possible to transform the set of local transitions
into global transitions. This simplifies the method, but for large systems this may not be feasible.
Getting a set of global transitions →G from a set of local transitions → and states S is done by
calculating →G :=→u explodesource(S) u explodetarget(S). Repeating this for the transitions in
all transition groups and taking the union of the results, the complete set of global transitions is
found. From a set of global transitions, the set difference operator can be used safely for removing
transitions.

The second approach to removing transitions is to lift the restrictions that prevent negative
predicates (v1 6= a) to exist in the BDD corresponding to the symbolic structure. Following
this restriction, the set of transitions can no longer necessarily be transformed into an LDD,
because it may contain negations. The next and prev operations still work as expected. Note
that when removing transitions from the graph, they have to be removed for all transition groups.
However, the resulting symbolic structure may be unexpected. A rather complex structure may
represent a transition which in practice never occurs. This happens when all occurring transitions
corresponding to a certain transition group have been removed.

In addition to removing transitions, some operation require transitions to be added. We add
these transitions to a new transition group with only explicit transitions.

When allowing transitions to be added and removed, the following procedures correspond to the
transformations described above. We evaluate a symbolic structure graph 〈S, s0, C, d, r〉.

1. First, we find all conjunctive states with a transition to the true state.

Sprev = filter(prevC({〈>〉}), 1← {X ∈ X | d(X) = ∧})

We find all states, except the true state, to which the states in Sprev have a transition as
follows:

S′ = nextC(Sprev)− {〈>〉}
By intersecting the previous states of S′ with Sprev, we find the set of conjunctive states
which have another transition than the one to the true state:

S′prev = Sprev u prevC(S′)

Tom Boshoven 54

TU/e A Symbolic Approach to PBES Instantiation

From this, we build the set of transitions to remove:

→rem = explodesource(S
′
prev) u explodetarget({〈>〉})

2. Symmetric to the previous procedure.

3. First, we find all unranked conjunctive states with a transition to the false state.

Sprev = filter(prevC({〈⊥〉}), 1← {X ∈ X | d(X) = ∧ ∧ X 6∈ dom(rankE)})

These nodes should be replaced by the false node. To do this, we find their predecessors:

Sprev2 = prevC(Sprev)

We remove the transition from states in Sprev2 to states in Sprev and add a transition from
the states in Sprev2 to the false state.

→rem =explodesource(Sprev2) u explodetarget(Sprev)

→add =explodetarget(Sprev2) u explodetarget({〈⊥〉})

4. Symmetric to the previous procedure.

5. First, we find all ranked conjunctive states with a transition to the false state.

Sprev = filter(prevC({〈⊥〉}), 1← {X ∈ X | d(X) = ∧ ∧ X ∈ dom(rankE)})

All transitions except the one to false should be removed. We find these transitions as
follows:

S′ = nextC(Sprev)− 〈>〉
→rem = explodesource(S

′
prev) u explodetarget(S′)

6. Symmetric to the previous procedure.

7. First, we find all unranked states with a transition to the true state.

Sprev = filter(prevC({〈true〉}), 1← {X ∈ X | X 6∈ dom(rankE)})

We find all states, except the true state, to which the states in Sprev have a transition as
follows:

S′ = nextC(Sprev)− {〈>〉}
By subtracting the previous states of S′ from Sprev, we find the set of states which do not
have another transition than the one to the true state:

S′prev = Sprev − prevC(S′)

These nodes should be replaced by the true-node. To do this, we find their predecessors:

Sprev2 = prevC(Sprev)

We remove the transition from states in Sprev2 to states in Sprev and add a transition from
the states in Sprev2 to the true state.

→rem =explodesource(Sprev2) u explodetarget(Sprev)

→add =explodetarget(Sprev2) u explodetarget({〈>〉})

8. Symmetric to the previous procedure.

Tom Boshoven 55

TU/e A Symbolic Approach to PBES Instantiation

Example 24 (True/false-elimination) We evaluate the following structure graph:

s1 s2 s3

> ⊥

s4 s5

d = ∨
r = 1

d = ∧d = ∨

d = ∧ d = ∨

We use the described simplification steps on this graph. We first apply the first optimization step.
We find Sprev = {s2}, S′ = {s3} and S′prev = {s2}, and thus remove the edge from s2 to >. This
results in the following graph:

s1 s2 s3

> ⊥

s4 s5

d = ∨
r = 1

d = ∧d = ∨

d = ∧ d = ∨

The second step does not modify the graph, because S′prev = ∅.
In the third step, we find that Sprev = ∅, and thus the graph is not modified.

In the fourth step, Sprev = {s5}, Sprev2 = {s4}, and as a result, the transition from s4 to s5 is
removed and a transition from s4 to > is added:

s1 s2 s3

> ⊥

s4 s5

d = ∨
r = 1

d = ∧d = ∨

d = ∧ d = ∨

In the fifth and sixth step, Sprev = ∅, so the graph remains the same.

For the seventh step, Sprev = {s4, s5}, S′ = ∅, S′prev = {s4, s5} and Sprev2 = {s1}. We therefore
remove the edge from s1 to s4 and s1 to s5 (ignoring the fact that this last edge does not exist) and
add an edge from s1 to >. Step eight is done in a similar way, resulting in the following structure
graph:

Tom Boshoven 56

TU/e A Symbolic Approach to PBES Instantiation

s1 s2 s3

> ⊥

s4 s5

d = ∨
r = 1

d = ∧d = ∨

d = ∧ d = ∨

Executing the fifth step on this structure graph results in the following optimized graph:

s1 s2 s3

> ⊥

s4 s5

d = ∨
r = 1

d = ∧d = ∨

d = ∧ d = ∨

It can be seen that the ranked node only retains an edge to the > node, so the equation corre-
sponding to this node can not be optimized any more.

Tom Boshoven 57

TU/e A Symbolic Approach to PBES Instantiation

5 Solving

After instantiating a PBES to a BES, the BES can be solved using one of various algorithms from
the literature. We first relate structure graphs to parity games ([14]). Following this relation, we
extend the recursive algorithm for solving parity games to the realm of symbolic structure graphs,
in order to apply the algorithm directly on the instantiation results. In addition, we describe how
the Gauß elimination algorithm for solving BESs ([24]) extends to symbolic structure graphs.

5.1 Parity Games

Parity games are graph games which have a direct correspondence with boolean equation systems
in simple recursive form. We define parity games, and relate them to structure graphs.

5.1.1 Simple Recursive Form

Simple Recursive Form (SRF) is a normal form for BESs, in which all equations must be fully
conjunctive or disjunctive.

This limits the form of Φ, changing the definition of a BES (see Section 2.1) as follows:

BESSRF ::=(σX = ΦSRF)

| (σX = ΦSRF) BES

ΦSRF ::=Φ∧ | Φ∨
Φ∧ ::=X | Φ∧ ∧ Φ∧
Φ∨ ::=X | Φ∨ ∨ Φ∨

Example 25 (SRF) The following BES is not in SRF:

νX =X ∧ (Y ∨ Z)

µY =Y

νZ =Y

The reason for this is that the equation for X contains both a conjunction and a disjunction.

Every BES can be rewritten into a BES in SRF with an equal solution, by introducing new
equations. The previous example can be rewritten to SRF as follows:

νX =X ∧X ′
νX ′ =Y ∨ Z
µY =Y

νZ =Y

Note that the solution for X is unchanged.

It should also be remarked that, due to the fact that SRF does not allow true and false to occur
in the equations, in the transformation to SRF, these are often introduced as special equations
νT = T and µF = F . When solving a boolean equation system for one of these variables, the
result for F is false and for T is true.

BESs in SRF have a one-to-one mapping with parity games ([14]). Parity games are two-player
graph games where each node corresponds to a variable and the set of outgoing edges for a node
corresponds to the variables occurring in the right-hand side of that formula. Additionally, all
nodes have a priority (∈ Z) associated to them, which represents both the ordering of the formulas
and their fixed-point symbols (ν is even, µ is odd) and they have shapes (� or �) which describe
whether they are conjunctive or disjunctive respectively.

Tom Boshoven 58

TU/e A Symbolic Approach to PBES Instantiation

Definition 5.1 (Parity game) We define a parity game Γ as a tuple 〈〈S�, S�〉 , s0,→, p〉 where:

• S� is a finite set of nodes with the shape �

• S� is a finite set of nodes with the shape �

• S� ∩ S� = ∅

• s0 is the initial node

• → ⊆ (S� ∪ S�)× (S� ∪ S�) is the set of edges

• p : (S� ∪ S�)→Z is the priority function

The priority function corresponds with the rankE function from Definition 2.4.

Figure 5 shows the parity game corresponding to the BES from Example 25.

X

X ′

Y

Z

2

2

1

0

Figure 5: A parity game which corresponds to the BES from Example 25.

When playing a parity game, a token is moved over the edges of the graph by two players, one
of which is named even and the other named odd. The shape of the node the token is currently on
determines which of the players may make the next move (� is odd, � is even). A game is won by
a player P when the token is moved over an infinite path in which the highest occurring priority
corresponds to the name of P .

Solving a parity game corresponds to solving the BES it represents. A parity game is solved
by finding a strategy in the graph game for one of the two players such that by following it, this
player inevitably wins the game.

Algorithms exist to solve parity games. Examples of these algorithms are the recursive algo-
rithm ([32]) and small progress measures ([19]).

5.2 Transformation to Parity Games

The explored BES, which is in structure graph form, can be translated into a parity game. This
translation is useful, because various algorithms for solving parity games exist. An algorithm to
do this is given in [22]. This algorithm works only under the condition that the structure graph
is BESsy (see Definition 2.6). Section 4.8 shows that this is the case for the structure graphs that
are generated by the described instantiation approach.

The transformation algorithm corresponds to the transformation of a BES into Simple Recursive
Form, through a process called normalization. The resulting structure graph of a BES in SRF is
then easily translated into a parity game.

The transformation of a BES to SRF consists of separating conjunctive and disjunctive subex-
pressions, by means of introduction of additional equations for these subexpressions. In a structure
graph, this corresponds to transforming unranked nodes, decorated with ∧ or ∨ into ranked nodes.
There are a few options for the ranks. A valid option would be to assign a cluster the rank of its
containing equation. A simpler option is to always assign the lowest occurring rank to all unranked
nodes. Note that it is not necessary for a node to already exist with this rank. Furthermore, the

Tom Boshoven 59

TU/e A Symbolic Approach to PBES Instantiation

used SRF form does not have a notion of true and false. We represent these as the additional
equations (ν> = >)(µ⊥ = ⊥). This translates to a structure graph as two special nodes, each
with a self-loop, where the > node has an even rank and the ⊥ node has an odd rank. Thus, we
can normalize a BESsy structure graph to SRF by changing r to r′ and → to →′ as follows:

r′(X) :=


r(X) if r(X) is defined

1 if r(X) is not defined and d(X) = ⊥
0 otherwise

→′ :=→∪ {〈>,>〉 , 〈⊥,⊥〉}

It is shown that this approach is sound in [22].

After normalization, transformation of a structure graph G = 〈S, s0,→, d, r′〉 into a parity game
Γ = 〈〈S�, S�〉, s′0,→′′, p〉 is done as follows:

S� = {s ∈ S|d(s) ∈ {∨,⊥}}
S� = {s ∈ S|d(s) ∈ {∧,>}}
s′0 = s0

→′′ =→′
p = r′

Note that in this obtained parity game, sets S� and S� are LDDs, and →′′ is a set of local
transitions stored in an LDD.

By applying this transformation on the structure graph, it becomes possible to use existing
algorithms for parity games to executed on the results.

We may use the information about the relation between BESsy structure graphs and parity
games in order to apply algorithms that are used for solving parity games, directly to a BESsy
structure graph.

5.3 Directly

We describe some solving algorithms and how they work on structure graphs. By optimizing these
algorithms for use with the LDD structure, we can obtain efficient ways to solve BESs.

5.3.1 Recursive Algorithm

The recursive algorithm for solving parity games, following from [32], is an algorithm that makes
use of induction on the ranks in parity games, in order to solve the games.

We make use of the relation between parity games and BESsy structure graphs to rewrite this
algorithm for structure graphs.

Attractor Set Central to the recursive algorithm is the concept of an attractor set. An attractor
set is a set in which a certain outcome is possible or inevitable. We extend the notion of attractor
sets from parity games to structure graphs.

Definition 5.2 (Attractor set) We define function to calculate the attractor set of a set of
structure graph nodes. Assume a structure graph G = 〈S, s0,→, d, r〉. We calculate the©-attractor
set (with © ∈ {∧,∨}) of a set of nodes S′ as follows:

Tom Boshoven 60

TU/e A Symbolic Approach to PBES Instantiation

Attrn©(G, S′) =S′

Attrn+1
© (G, S′) =Attrn©(G, S′)

∪
{
s ∈ S′ | d(s) =©∧ ∃s′ ∈ S.s→s′ ∧ s′ ∈ Attrn©(G, S′)

}
∪
{
s ∈ S′ | d(s) 6∈ {©,>,⊥} ∧ ∀s′ ∈ S.s→s′ ⇒ s′ ∈ Attrn©(G, S′)

}
Attr©(G, S′) =

⋃
n∈N

Attrn©(G, S′)

We make a case distinction on the decoration of a state. If d(s) is undefined, it is unimportant
whether it is used in the first or second set, because states with undefined decoration have exactly
one next-state, and thus the ∃ and ∀ quantifiers coincide. If d(s) ∈ {>,⊥}, there are no successors.
The universally quantified subset would always include these nodes. This is undesired, because there
is no path from these nodes to any state in S′ and therefore these nodes should not be included in
the attractor set for these states, unless they are included in S′.

We can use a simple algorithm to calculate the attractor set of a set of nodes using LDD
operations on an explored structure graph state-space.

Algorithm 4 attractorSetSym

1: function attractorSetSym(©, 〈S, s0, C, d, r〉, S′)
2: T := S′ . We accumulate the attractor set in T
3: T ′ := ∅
4: X := project(S, {0})
5: X© := {〈X 〉 | 〈X 〉 ∈ X ∧ d(X) =©}
6: X© := {〈X 〉 | 〈X 〉 ∈ X ∧ d(X) 6∈ {©,>,⊥}}
7: while T 6= T ′ do . Calculate fixed point
8: T ′ := T
9: T1 := filter(prevC(T), 1← X) u S . Predecessors with decoration ©

10: T := T ∪ T1
11: Tp := filter(prevC(T), 1← X©) u S . Predecessors with decoration 6∈ {©,>,⊥}
12: T2 := Tp − prevC(nextC(prevC(T))− S) . In Tp but no predecessors of any other node
13: T := T ∪ T2
14: end while
15: return T
16: end function

Algorithm Using the algorithm for attractor sets, we can build the complete recursive algorithm.
This algorithm, shown in Algorithm 5, is very similar to the general recursive algorithm. The main
difference is that the attractor sets are generated using LDD operations.

The result of the recursive algorithm is a tuple 〈Z∧, Z∨〉 of sets of states. The first element
of this tuple contains all states for which the semantics or interpretation is true. The second
element is the set of states for which the semantics or interpretation evaluate to false. It holds
that S = Z∧ ∪ Z∨ and Z∧ ∩ Z∨ = ∅.

In order to solve a symbolic structure graph 〈S, s0, C, d, r〉, it is sufficient to test whether s0 ∈
recursiveSym(〈S, s0, C, d, r〉)0.

5.3.2 Gauß Elimination

In addition to the recursive algorithm, which is generally applied to parity games, we evaluate the
Gauß elimination algorithm. Gauß elimination ([24]) is an algorithm for solving BESs. It consists
of four steps which must be applied repeatedly, until an answer is found:

Tom Boshoven 61

TU/e A Symbolic Approach to PBES Instantiation

Algorithm 5 recursiveSym

1: function recursiveSym(〈S, s0, C, d, r〉)
2: if S = ∅ then
3: return 〈∅, ∅〉
4: end if
5: X := project(X , S)
6: m := max {r(X)|〈X 〉 ∈ X}

7: ©,© :=

{
∧,∨ if m is even or undefined

∨,∧ otherwise

8: X :=

{
{X ∈ X | r(X) = m} if m is defined

{ci | ci is a cluster} otherwise

9: T := filter(S, 1← X)
10: A := attractorSetSym(©,G, T)
11: 〈X∧, X∨〉 := recursiveSym(〈S −A, s0,→, d, r〉)
12: if X© = ∅ then
13: Z© := A ∪ S©
14: Z© := ∅
15: else
16: B := attractorSetSym(©,G, S©)
17: 〈Y∧, Y∨〉 := recursiveSym(〈S −B, s0,→, d, r〉)
18: Z© := Y©
19: Z© := B ∪ Y©
20: end if
21: return 〈Z∧, Z∨〉
22: end function

1. Local resolution

All occurrences of a recursion variable X with fixed-point ν are replaced by true in the
defining equation of X , and all occurrences of a recursion variable X ′ with fixed-point µ are
replaced by false in the defining equation of X ′.

2. Boolean simplification

Operations for simplifying boolean equations must be done. The following is a minimal set
of operations:

• f ∧ false→false
• f ∧ true→f
• f ∨ true→true
• f ∨ false→f

3. Substitution to the left

All occurrences of X ′ in equations to the left of the defining equation for X ′ are replaced by
the right-hand side of this defining equation.

4. Global substitution of closed equations

If the right-hand side of an equation for X is true or false, all occurrences of X in the
right-hand sides of equations may be replaced by this value.

We describe possible implementations on symbolic structure graphs for all steps.

Tom Boshoven 62

TU/e A Symbolic Approach to PBES Instantiation

Local resolution We start with local resolution. Local resolution on structure graphs corre-
sponds to the detection of cycles containing exactly one ranked node. The edge in the cycle leading
to the node must be replaced by an edge to true or false, depending on the rank of the node. In
general, detection of variable-length cycles using the available operators is hard. We can define
a process for finding these cycles by using an extension to the nextC function called nextTrans,C .
Whereas the nextC function takes a set of state vectors as a parameter, nextTrans,C takes a set of
interlaced 3-tuples as a parameter and returns a similar set. This must be done in such a way that
the first two vectors in the tuple remain unchanged, and the third elements contain the next-states
of the second elements. We can use this operation to find loops in the graph.

To use these interlaced 3-tuples, we introduce functions similar to source, target and explode:

• source3 is like source, and returns the first element of the interlaced 3-tuples

• target3 is like target, and returns the second element of the interlaced 3-tuples

• result3 returns the 3rd element of interlaced 3-tuples

To mirror these operations, we introduce explodesource3, explodetarget3 and exploderesult3.

Algorithm 6 finds the cycles in the graph. It returns a set of transition vectors such that the
target of the transition vector is the ranked node in the cycle, and the source is its predecessor in
the cycle. By removing the resulting transitions and replacing them by true or false, depending
on the rank of state, local resolution can be done.

Algorithm 6 cycleSym

1: function cycleSym(〈S, s0, C, d, r〉)
2: SX := filter(S, 1← {X | X ∈ X}) . Ranked nodes
3: T := explodesource3(SX) u exploderesult3(SX)
4: U := explodesource3(SX) u explodetarget3(SX)
5: Cycles := ∅
6: U := nextTrans,C(U)
7: repeat
8: R := U u T
9: Cycles := Cycles ∪ explodesource(target3(R)) u explodetarget(result3(R))

10: U := U − exploderesult3(SX) . Remove if the result is ranked
11: U := swap(u, [〈i, i+ 1〉 | i mod 3 = 2]) . Swap target and result
12: U := nextTrans,C(U)
13: until U = ∅
14: return Cycles
15: end function

Boolean simplification The second step, which is boolean simplification of the equations, is
described thoroughly in Section 4.9.1.

Substitution to the left The third step is the substitution of equations to the left. In a graph
setting, this corresponds to substituting an edge to a ranked node by an edge to an unranked clone
of this node. This operation is done by evaluating each recursion variable name X separately.
First, it is necessary to find nodes such that they have an edge to X , and the subformula they
represent is not part of an equation with lower rank than rankE(X). We can use a procedure
similar to cycleSym to find all first ranked predecessors of the predecessors of nodes for X . The
predecessors can then be filtered to include only the ones for which the first ranked predecessors
have a rank which is greater than or equal to rankE(X). From those nodes, a transition to X must
be replaced by a transition to c∗ with the same parameters. In addition to this, all transitions
from the original target node must be copied to the newly introduced node.

Tom Boshoven 63

TU/e A Symbolic Approach to PBES Instantiation

Global substitution of closed equations The fourth step is similar to steps 7 and 8 of
the boolean optimizations from Section 4.9, except that it is applied to ranked nodes instead of
unranked nodes.

Applying these steps until a fixed-point will result in a symbolic structure graph, such that
nextC({s0}) = {〈>〉} if and only if the resulting value for the initial state is true. As described in
Section 4.9, it is likely that the described operations do not perform well in practical environments.
An implementation of the described algorithms will provide the required feedback for determining
whether it is useful to further investigate Gauß elimination on symbolic structure graphs.

Tom Boshoven 64

TU/e A Symbolic Approach to PBES Instantiation

6 Conclusion

A complete approach was given for symbolic instantiation of parametrized boolean equation sys-
tems to boolean equation systems and the subsequent solving of these systems.

BES structure graphs were chosen in order to define the symbolic structure containing the result
of the instantiation. Based on this choice, the notion of clusters was defined, following the structure
of BES structure graphs. Functions were defined for identification of these clusters. In addition
to this, a preprocessing step was defined in order to overcome problems with existing strategies
for symbolic instantiation of PBESs. All transformations occurring in this step are proved to be
sound.

A complete algorithm for the instantiation of the clustered PBES into a symbolic BES structure
graph was given. This instantiation makes use of various techniques from the area of symbolic
state-space exploration.

Two algorithms were described for solving the resulting BESs, stored in a symbolic structure.
First, the recursive algorithm was extended from the realm of parity games to symbolic BES
structure graphs. In addition to this, Gauß elimination was defined on structure graphs.

Following the described steps allows for the instantiation and subsequent solving of a PBES with
a finite instantiation, using symbolic techniques.

Tom Boshoven 65

TU/e A Symbolic Approach to PBES Instantiation

7 Future Work

The objective of this work is a workable initial setup which allows for the implementation of
symbolic instantiation techniques into the mCRL2 toolset4. The most important piece of future
work is the actual implementation of the described techniques into this toolset, and performing
an analysis of their practical applicability. In particular, comparing the implementation of this
approach to implementations of other approaches, such as explicit exploration using mCRL2 ’s
explicit tools pbes2bool and pbespgsolve, as well as the symbolic tool pbes2lts-sym, present
in the LTSMin toolset ([4]).

Using an implementation, experiments should be done in order to determine the efficiency of
various approaches. The various used structures leave room for modifications. For instance the
cluster form, which describes an arbitrarily deep structure, may in practice benefit from a limited
depth. The results of the instantiation when the depth is limited are structure graphs with
more nodes, but dependencies may in some cases be limited by restricting depth, yielding a more
compact representation of the transition relation. Furthermore, experiments can be done around
the merging and reordering in transition groups.

An interesting alternative to the presented approach may be researched. Instead of rewriting the
PBES into the clustered form in order to simplify the transition to structure graphs, a different
approach may be investigated. It may be possible to make use of partitioned transition relations
directly on a PBES in GNF (strongly guardedness is not required). Using these partitioned
relations, instantiation can be done. This instantiation forms a graph in which each node represents
a single equation. This can not be used directly, because structure is lost (an issue which is
addressed in this work by clusters). However, because the transition groups have separate sets of
transitions, it is possible to recreate the structure after the instantiation. This can be done by
combining the results for the different transition groups that represent variables used in the same
level of the equation into separate nodes. This alternative strategy circumvents the clustering and
preprocessing, but requires some more bookkeeping, as well as manipulations on the instantiated
graph, in order to form a valid structure graph.

Finally, other solving algorithms (of which an overview can be found in [21]) should be investi-
gated, to see whether they can make efficient use of the symbolic data structure. In particular, an
extension of the small progress measures ([19]) algorithm to symbolic BES structure graphs may
be a promising solving strategy.

4http://mcrl2.org/

Tom Boshoven 66

http://mcrl2.org/

TU/e A Symbolic Approach to PBES Instantiation

References

[1] D. Beyer, C. Lewerentz, and A. Noack. Rabbit: A tool for bdd-based verification of real-time
systems. In Computer Aided Verification, pages 122–125. Springer, 2003.

[2] S. Blom and J. van de Pol. Symbolic reachability for process algebras with recursive data
types. Theoretical Aspects of Computing-ICTAC 2008, pages 81–95, 2008.

[3] S. Blom, J. Van De Pol, and M. Weber. Bridging the gap between enumerative and symbolic
model checkers. 2009.

[4] S. Blom, J. van de Pol, and M. Weber. Ltsmin: Distributed and symbolic reachability. In
Computer Aided Verification, pages 354–359. Springer, 2010.

[5] B. Bollig and I. Wegener. Improving the variable ordering of obdds is np-complete. Computers,
IEEE Transactions on, 45(9):993–1002, 1996.

[6] R. Bryant. Graph-based algorithms for boolean function manipulation. Computers, IEEE
Transactions on, 100(8):677–691, 1986.

[7] R. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams. ACM
Computing Surveys (CSUR), 24(3):293–318, 1992.

[8] J. Burch, E.M. Clarke, and D. Long. Symbolic model checking with partitioned transition
relations. Computer Science Department, page 435, 1991.

[9] T. Chen, B. Ploeger, J. Van De Pol, and T. Willemse. Equivalence checking for infinite systems
using parameterized boolean equation systems. CONCUR 2007–Concurrency Theory, pages
120–135, 2007.

[10] G. Ciardo and A. Yu. Saturation-based symbolic reachability analysis using conjunctive and
disjunctive partitioning. Correct Hardware Design and Verification Methods, pages 146–161,
2005.

[11] E. Clarke, K. McMillan, S. Campos, and V. Hartonas-Garmhausen. Symbolic model checking.
In Computer Aided Verification, pages 419–422. Springer, 1996.

[12] E.M. Clarke, O. Grumberg, and D.A. Peled. Model checking. MIT press, 2000.

[13] M. del Mar Gallardo, C. Joubert, and P. Merino. Implementing influence analysis using
parameterised boolean equation systems. In Leveraging Applications of Formal Methods,
Verification and Validation, 2006. ISoLA 2006. Second International Symposium on, pages
416–424. IEEE, 2006.

[14] E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus and determinacy. In Foundations
of Computer Science, 1991. Proceedings., 32nd Annual Symposium on, pages 368–377. IEEE,
1991.

[15] J. Groote and R. Mateescu. Verification of temporal properties of processes in a setting with
data. Algebraic Methodology and Software Technology, pages 74–90, 1999.

[16] J.F. Groote and T. Willemse. Parameterised boolean equation systems. Theoretical Computer
Science, 343(3):332–369, 2005.

[17] Y. Hwong, V. Kusters, and T. Willemse. Analysing the control software of the compact muon
solenoid experiment at the large hadron collider. Fundamentals of Software Engineering, pages
174–189, 2012.

[18] S. Janssen. Tools for parameterized boolean equation systems, 2008.

Tom Boshoven 67

TU/e A Symbolic Approach to PBES Instantiation

[19] M. Jurdziński. Small progress measures for solving parity games. In STACS 2000, pages
290–301. Springer, 2000.

[20] G. Kant and J. Van de Pol. Efficient instantiation of parameterised boolean equation systems
to parity games. GRAPHITE 2012, 2012.

[21] J. Keiren. An experimental study of algorithms and optimisations for parity games, with an
application to boolean equation systems, 2009.

[22] J. Keiren, M. Reniers, and T. Willemse. Structural analysis of boolean equation systems.
ACM Transactions on Computational Logic (TOCL), 13(1):8, 2012.

[23] S. Kimura and E.M. Clarke. A parallel algorithm for constructing binary decision diagrams.
In Computer Design: VLSI in Computers and Processors, 1990. ICCD’90. Proceedings., 1990
IEEE International Conference on, pages 220–223. IEEE, 1990.

[24] A. Mader. Modal µ-calculus, model checking and gauß elimination. Tools and Algorithms for
the Construction and Analysis of Systems, pages 72–88, 1995.

[25] A. Mader. Verification of modal properties using boolean equation systems. Bertz Verlag,
1997.

[26] S. Orzan, W. Wesselink, and T. Willemse. Static analysis techniques for parameterised
boolean equation systems. Tools and Algorithms for the Construction and Analysis of Sys-
tems, pages 230–245, 2009.

[27] P. Stevens and C. Stirling. Practical model-checking using games. Tools and Algorithms for
the Construction and Analysis of Systems, pages 85–101, 1998.

[28] C. Stirling. Modal and temporal logics. In Handbook of logic in computer science (vol. 2),
pages 477–563. Oxford University Press, Inc., 1993.

[29] A. van Dam, B. Ploeger, and T. Willemse. Instantiation for parameterised boolean equation
systems. Theoretical Aspects of Computing-ICTAC 2008, pages 440–454, 2008.

[30] M Van Eekelen, S. Ten Hoedt, R. Schreurs, and Y. Usenko. Analysis of a session-layer protocol
in mcrl2. Formal Methods for Industrial Critical Systems, pages 182–199, 2008.

[31] B. Vergauwen and J. Lewi. A linear algorithm for solving fixed-point equations on transition
systems. CAAP’92, pages 322–341, 1992.

[32] W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on
infinite trees. Theoretical Computer Science, 200(1-2):135–183, 1998.

Tom Boshoven 68

TU/e A Symbolic Approach to PBES Instantiation

A Coq

The forms, transformations and proofs from Section 3.5 were also performed using the proof
assistant software Coq5. Doing these proofs in a proof assistant gives us more certainty of the
validity of the proved lemmas and theorems. In addition to this, proving properties on PBESs
using this framework results in useful feedback for further development of the PBES formalization
in Coq.

In this Appendix, we give listings of the implementations in Coq.

A.1 PBES Framework

The proofs make use of a framework around PBESs in Coq, developed by Carst Tankink6. The
proofs are done on an experimental version of this framework. A cleaned-up version of the used
framework is given below.

1 (** This structure/record describes a language , parameterized over a type of ’names ’ and an
interpretation of these names to actual Coq terms. *)

2 Structure language := {
3 (** Types for our language *)
4 type : Type
5 (** Denotation takes the abstract names in type , and interprets them into Coq datatypes. *)
6 ; type_denote : type -> Type
7

8 (** Operators. Just binary for now. Unary , ternary etc can be added here when necessary. *)
9 (** We declare a set of names , together with the intended signature. *)

10 ; binop: type -> type -> type -> Type
11 (** Just like with type , the binary operations takes a name plus a signature , and interprets it

to an actual Coq operator. *)
12 ; binop_denote : forall t1 t2 t3, binop t1 t2 t3 -> type_denote t1 -> type_denote t2 ->

type_denote t3
13 }.
14

15 (** Set some implicit arguments. *)
16 Arguments type_denote {_} _ . (* The language we work on can be determined from the type given.

*)
17 Arguments binop {_} _ _ _ . (* The language is implicit. Name and signature are required. *)
18 Arguments binop_denote {_ _ _ _} _ _ _. (* Given the operator , we can derive the signature. You

need to give an interpretation of the signature , though. *)
19

20 (** We now define a simple language , over naturals and propositions , with a few operators. To
add to the language (provided you do not want to add another arity), you do it here.*)

21

22 Require Import Program.
23

24 (** The language ranges over a type of ’nats ’ and a type of ’propositions ’ *)
25 Inductive sort := nat_sort | prop_sort.
26

27 (** We take the natural interpretation for the sorts. *)
28 Definition sort_denote s: Type :=
29 match s with
30 | nat_sort => nat
31 | prop_sort => Prop
32 end.
33

34 (** Binary operators are defined similarly: they have a symbol and a signature. *)
35 Inductive sort_binop: sort -> sort -> sort -> Type :=
36 (** Pure binary operators. *)
37 | and_symb : sort_binop prop_sort prop_sort prop_sort
38 | or_symb : sort_binop prop_sort prop_sort prop_sort
39 | impl_symb : sort_binop prop_sort prop_sort prop_sort
40 (** Relation between naturals: equality. *)
41 | eq_symb : sort_binop nat_sort nat_sort prop_sort
42

43 (** Binary functions *)
44 | plus_symb : sort_binop nat_sort nat_sort nat_sort
45 | mult_symb : sort_binop nat_sort nat_sort nat_sort.
46

47 (** The interpretation is as expected. *)
48 Definition sort_binop_denote {s1 s2 s3} (op : sort_binop s1 s2 s3):
49 sort_denote s1 -> sort_denote s2 -> sort_denote s3 :=

5Coq Proof Assistant (http://coq.inria.fr/), version 8.4rc1, running on a 64 bits GNU/Linux machine.
6http://www.cs.ru.nl/~carst/

Tom Boshoven 69

http://coq.inria.fr/
http://www.cs.ru.nl/~carst/

TU/e A Symbolic Approach to PBES Instantiation

50 match op with
51 | and_symb => and
52 | or_symb => or
53 | impl_symb => impl
54 (** @eq is Leibniz equality *)
55 | eq_symb => @eq nat
56 | plus_symb => plus
57 | mult_symb => mult
58 end.
59

60 (** Given the building blocks , we define the language of data sorts as being Canonical ,
allowing Coq to do a bit more type inference. *)

61 Canonical Structure sorts := {|
62 type := sort
63 ; type_denote := sort_denote
64 ; binop := sort_binop
65 ; binop_denote := @sort_binop_denote
66 |}.
67

68 (** Given a language , we can define expressions over that language. *)
69 Section data_exp.
70 Variable l : language.
71

72 (** Right now , we use arbitrary naturals for data variable names. This is not (yet) de Bruijn
indices , but could be extended to be so when necessary. *)

73 Definition var := nat.
74

75 (** Note that data expressions are typed (with their expected result). *)
76 Inductive data_exp : type l -> Type :=
77 (** Variables take a type argument and a name. *)
78 | d_var t : var -> data_exp t
79 (** Constants are taken from the actual types , and fed into the data_exp type. *)
80 | d_const t : type_denote t -> data_exp t
81 (** Building up expresions out of binary operators. Note: when adding other arities above , add

an inhabitant of data_exp here as well. *)
82 | d_binop t1 t2 t3 : forall op: binop t1 t2 t3, data_exp t1 -> data_exp t2 -> data_exp t3.
83

84 (** Data_env gives values to variables. They are stratified by type , so you have a set of names
for nat_sort and one for prop_sort. An alternative would be to type the variables

themselves , and have environment rely on that type. I am not yet sure which is better. *)
85 Definition data_env := forall t: type l, var -> type_denote t.
86

87 (** Data_evaluation takes a data expression and a data environment and evaluates the expression
to a Coq expression *)

88 Definition data_eval (E: data_env): forall t, data_exp t -> type_denote t :=
89 fix eval {t} (e: data_exp t) :=
90 match e with
91 | d_var t v => E t v
92 | d_const t c => c
93 | d_binop t1 t2 t3 op e1 e2 => binop_denote op (eval e1) (eval e2)
94 end.
95

96 End data_exp.
97

98 Arguments data_eval {_} _ {_} _.
99 Arguments d_binop {_ _ _ _} _ _ _.

100 Arguments d_var {_} _ _.
101 Arguments d_const {_} _ {_}.
102

103 (** Right now , recursion variables are just names. *)
104 Definition recvar := nat.
105

106 (** Predicate formulae *)
107 Inductive pred_form :=
108 (** First , the constants: true and false. *)
109 | p_true : pred_form
110 | p_false : pred_form
111

112 (** Data expressions that result in propositions can be used as part of a predicate formula.
*)

113 | p_bool : data_exp _ prop_sort -> pred_form
114

115 (** Recursion variables occur in the predicate formulae. They are a name together with a data
expression of the correct type. *)

116 | p_var : forall s: type sorts , recvar -> data_exp sorts s -> pred_form
117

118 (** Binary connectors for predicate formulae. *)
119 | p_and : pred_form -> pred_form -> pred_form
120 | p_or : pred_form -> pred_form -> pred_form
121

Tom Boshoven 70

TU/e A Symbolic Approach to PBES Instantiation

122 (** Quantification. *)
123 | p_forall : var -> type sorts -> pred_form -> pred_form
124 | p_exists : var -> type sorts -> pred_form -> pred_form.
125

126 (** Standard environment for interpreting recursion variables. *)
127 Definition recvar_env := forall s: type sorts , recvar -> (type_denote s -> Prop).
128

129 (** Boolean equality on our own sorts. *)
130 Definition beq_sort (t1 t2: sort) : bool :=
131 match t1 , t2 with
132 | nat_sort , nat_sort => true
133 | prop_sort , prop_sort => true
134 | _, _ => false
135 end.
136

137 (** Boolean equality can be used to establish Leibniz equality. Just run the algorithm. *)
138 Lemma beq_eq_conv (t1 t2: sort) : beq_sort t1 t2 = true -> t1 = t2.
139 Proof.
140 intros t1t2.
141 destruct t1, t2.
142 reflexivity.
143 simpl in t1t2. inversion t1t2.
144 simpl in t1t2. inversion t1t2.
145 reflexivity.
146 Qed.
147

148 Require Import EqNat.
149

150 (** Update on data environements , defined interactively (there is some type conversion going on
)

151 Update takes an environment ’eps ’ a type and a value of that type , and a variable.
152 It returns an environment that returns value for x, and the value in ’eps ’ for any other

variable. *)
153 Definition update (eps: data_env sorts) {t: sort} (value : type_denote t) (x: var): data_env

sorts.
154 Proof.
155 unfold data_env.
156

157 (** The new data environment is a function that takes a type and a variable. (with the intended
relation x’:t’ *)

158 intros t’ x’.
159 (** Deternine whether x and x’ have the same type , are the same. the _eqn keeps the equations

in the context. *)
160 destruct (beq_sort t t’) as []_eqn.
161 * destruct (beq_nat x x’) as []_eqn.
162 - rewrite <- beq_eq_conv with (t1 := t) by assumption. (** x’ = x, t’ = t. Return value. *)
163 apply value.
164 - apply eps. apply x’. (** Types match , find it in eps. *)
165 * apply eps. apply x’. (** When the type don ’t match , don ’t bother with the variable

comparison , lookup in eps. *)
166 Defined.
167

168 (** Semantics for predicate formulae: creates Coq propositions/predicates. *)
169 Fixpoint pred_sem (p: pred_form) (eta: recvar_env) (eps: data_env sorts): Prop :=
170 match p with
171 | p_true => True
172 | p_false => False
173 (** Evaluate data expressions in the given environment. *)
174 | p_bool exp => data_eval eps exp
175 (** Recursion variables evaluate to predicates over data. *)
176 | p_var s name exp => eta s name (data_eval eps exp)
177 | p_and phi1 phi2 => pred_sem phi1 eta eps /\ pred_sem phi2 eta eps
178 | p_or phi1 phi2 => pred_sem phi1 eta eps \/ pred_sem phi2 eta eps
179 (** Quantifications become quantifications on the Coq level , over the actual Coq types. *)
180 | p_forall d D phi => forall x: type_denote D, pred_sem phi eta (update eps x d)
181 | p_exists d D phi => exists x: type_denote D, pred_sem phi eta (update eps x d)
182 end.

A.2 Strongly Guarded Form

First, some helper definitions are done:

1 Require Import Bool.
2

3 (** Whether p is a (possibly generalized) conjunction. **)
4 Definition is_conjunction(p: pred_form) : bool :=
5 match p with

Tom Boshoven 71

TU/e A Symbolic Approach to PBES Instantiation

6 | p_true => false
7 | p_false => false
8 | p_bool b => false
9 | p_var _ _ _ => false

10 | p_and _ _ => true
11 | p_or _ _ => false
12 | p_forall _ _ _ => true
13 | p_exists _ _ _ => false
14 end.
15

16 (** Whether p is a (possibly generalized) disjunction. **)
17 Definition is_disjunction(p: pred_form) : bool :=
18 match p with
19 | p_true => false
20 | p_false => false
21 | p_bool b => false
22 | p_var _ _ _ => false
23 | p_and _ _ => false
24 | p_or _ _ => true
25 | p_forall _ _ _ => false
26 | p_exists _ _ _ => true
27 end.
28

29 (** Whether a predicate formula is a simple boolean formula (recursion variable free). **)
30 Fixpoint is_bool_expr(p: pred_form) : Prop :=
31 match p with
32 | p_true => True
33 | p_false => True
34 | p_bool b => True
35 | p_var _ _ _ => False
36 | p_and phi1 phi2 => (is_bool_expr phi1) /\ (is_bool_expr phi2)
37 | p_or phi1 phi2 => (is_bool_expr phi1) /\ (is_bool_expr phi2)
38 | p_forall d D phi => (is_bool_expr phi)
39 | p_exists d D phi => (is_bool_expr phi)
40 end.
41 Fixpoint is_bool_expr_b(p: pred_form) : bool :=
42 match p with
43 | p_true => true
44 | p_false => true
45 | p_bool b => true
46 | p_var _ _ _ => false
47 | p_and phi1 phi2 => (is_bool_expr_b phi1) && (is_bool_expr_b phi2)
48 | p_or phi1 phi2 => (is_bool_expr_b phi1) && (is_bool_expr_b phi2)
49 | p_forall d D phi => (is_bool_expr_b phi)
50 | p_exists d D phi => (is_bool_expr_b phi)
51 end.
52

53 (** Small lemma to help combine is_bool_expr and is_bool_expr_b. **)
54 Lemma is_bool_expr_bool (p: pred_form):
55 is_bool_expr_b p = true <-> is_bool_expr p.
56 Proof.
57 induction p; simpl; try tauto.
58 split. intros. apply eq_true_false_abs with true. tauto. rewrite H. tauto. contradiction.
59 split; intros. rewrite andb_true_iff in H. tauto.
60 rewrite andb_true_iff. tauto.
61 split; intros. rewrite andb_true_iff in H. tauto.
62 rewrite andb_true_iff. tauto.
63 Qed.

Definition 3.4

1 Fixpoint guard_and(p: pred_form) : pred_form :=
2 match p with
3 | p_true => p_true
4 | p_false => p_false
5 | p_bool b => p_bool b
6 | p_var _ _ _ => p_true
7 | p_and phi1 phi2 => p_and (guard_and phi1) (guard_and phi2)
8 | p_or phi1 phi2 => p_or (guard_and phi1) (guard_and phi2)
9 | p_forall d D phi => p_forall d D (guard_and phi)

10 | p_exists d D phi => p_exists d D (guard_and phi)
11 end.
12 Fixpoint guard_or(p: pred_form) : pred_form :=
13 match p with
14 | p_true => p_true
15 | p_false => p_false
16 | p_bool b => p_bool b
17 | p_var _ _ _ => p_false

Tom Boshoven 72

TU/e A Symbolic Approach to PBES Instantiation

18 | p_and phi1 phi2 => p_and (guard_or phi1) (guard_or phi2)
19 | p_or phi1 phi2 => p_or (guard_or phi1) (guard_or phi2)
20 | p_forall d D phi => p_forall d D (guard_or phi)
21 | p_exists d D phi => p_exists d D (guard_or phi)
22 end.

We define some helper Lemmas about the results of the guard transformations:

1 (** The results of guard_and and guard_or are always simple booleans expressions. **)
2 Lemma guard_bool_expr (p: pred_form):
3 is_bool_expr (guard_and p) /\ is_bool_expr (guard_or p).
4 Proof.
5 induction p; simpl; tauto.
6 Qed.
7

8 (** If a guard_function is used on a simple boolean expression , it acts as identity. **)
9 Lemma guard_or_on_bool_expr (p: pred_form):

10 is_bool_expr p -> (guard_or p) = p.
11 Proof.
12 intros. induction p; simpl; simpl in H; try tauto.
13 (** Case p_and **)
14 assert (guard_or p1 = p1). apply IHp1. apply H.
15 assert (guard_or p2 = p2). apply IHp2. apply H.
16 rewrite H0 , H1. tauto.
17 (** Case p_or **)
18 assert (guard_or p1 = p1). apply IHp1. apply H.
19 assert (guard_or p2 = p2). apply IHp2. apply H.
20 rewrite H0 , H1. tauto.
21 (** Case p_exists **)
22 assert (guard_or p = p). apply IHp. apply H.
23 rewrite H0. tauto.
24 (** Case p_exists **)
25 assert (guard_or p = p). apply IHp. apply H.
26 rewrite H0. tauto.
27 Qed.
28 Lemma guard_and_on_bool_expr (p: pred_form):
29 is_bool_expr p -> (guard_and p) = p.
30 Proof.
31 intros. induction p; simpl; simpl in H; try tauto.
32 (** Case p_and **)
33 assert (guard_and p1 = p1). apply IHp1. apply H.
34 assert (guard_and p2 = p2). apply IHp2. apply H.
35 rewrite H0 , H1. tauto.
36 (** Case p_or **)
37 assert (guard_and p1 = p1). apply IHp1. apply H.
38 assert (guard_and p2 = p2). apply IHp2. apply H.
39 rewrite H0 , H1. tauto.
40 (** Case p_exists **)
41 assert (guard_and p = p). apply IHp. apply H.
42 rewrite H0. tauto.
43 (** Case p_exists **)
44 assert (guard_and p = p). apply IHp. apply H.
45 rewrite H0. tauto.
46 Qed.
47

48 (** guard_X . guard_Y = guard_Y **)
49 Lemma guard_guard (p : pred_form):
50 ((guard_and (guard_and p)) = (guard_and p)) /\
51 ((guard_and (guard_or p)) = (guard_or p)) /\
52 ((guard_or (guard_and p)) = (guard_and p)) /\
53 ((guard_or (guard_or p)) = (guard_or p)).
54 Proof.
55 induction p; simpl; repeat split; intuition;
56 try rewrite H;
57 try rewrite H0; try rewrite H1; try rewrite H2; try rewrite H3;
58 try rewrite H4; try rewrite H5; try rewrite H6; try rewrite H7;
59 tauto.
60 Qed.

Lemma 3.5

1 Lemma guard_strength (p : pred_form) :
2 forall eta1 eta2 eps , (
3 (pred_sem p eta1 eps -> pred_sem (guard_and p) eta2 eps) /\
4 (pred_sem (guard_or p) eta1 eps -> pred_sem p eta2 eps)
5).
6 Proof.
7 intro. intro.

Tom Boshoven 73

TU/e A Symbolic Approach to PBES Instantiation

8 induction p; simpl; try tauto.
9 (* Case p_and *)

10 split; intros; destruct H; split.
11 apply IHp1. apply H.
12 apply IHp2. apply H0.
13 apply IHp1. apply H.
14 apply IHp2. apply H0.
15 (* Case p_or *)
16 split; intros; destruct H.
17 left. apply IHp1. apply H.
18 right. apply IHp2. apply H.
19 left. apply IHp1. apply H.
20 right. apply IHp2. apply H.
21 (* Case p_forall *)
22 split; intros; apply IHp; apply H.
23 (* Case p_exists *)
24 split; intros; destruct H; exists x; apply IHp; apply H.
25 Qed.

Lemma 3.6

1 Lemma guard (p : pred_form) :
2 (forall eta eps , ((pred_sem (guard_and p) eta eps) <-> (pred_sem p (fun (so: type sorts) (r:

recvar) (t: type_denote so) => True) eps)) /\
3 ((pred_sem (guard_or p) eta eps) <-> (pred_sem p (fun (so: type sorts) (r:

recvar) (t: type_denote so) => False) eps))).
4 Proof.
5 simpl. induction p; intros; simpl; try tauto.
6 (* Case and *)
7 destruct (IHp1 eta eps), (IHp2 eta eps).
8 split; split; split; tauto.
9 (* Case or *)

10 destruct (IHp1 eta eps), (IHp2 eta eps).
11 split; split; intros; tauto.
12 (* Case forall *)
13 split; split; intros; destruct (IHp eta (update eps x v)); intuition.
14 (* Case exists *)
15 split; split; intros; destruct H; exists x; destruct (IHp eta (update eps x v)); intuition.
16 Qed.
17

18 Lemma guard_strength2 (p : pred_form) :
19 (forall p’,
20 (forall eta eta ’ eps , (pred_sem p eta eps) -> (pred_sem p’ eta ’ eps)) ->
21 (forall eta ’’ eps ’’, (pred_sem (guard_and p) eta ’’ eps ’’) -> (pred_sem p’ eta ’’ eps ’’))
22) /\
23 (forall p’,
24 (forall eta eta ’ eps , (pred_sem p’ eta eps) -> (pred_sem p eta ’ eps)) ->
25 (forall eta ’’ eps ’’, (pred_sem p’ eta ’’ eps ’’) -> (pred_sem (guard_or p) eta ’’ eps ’’))
26).
27 Proof.
28 split; intros.
29 apply H with (fun (so: type sorts) (r: recvar) (t: type_denote so) => True).
30 apply (guard p eta ’’ eps ’’). apply H0.
31

32 apply (guard p eta ’’ eps ’’).
33 apply H with eta ’’. apply H0.
34 Qed.

Definition 3.8 Note that these transformations are slightly different, in order to make them
trivially well-defined.

1 Fixpoint F_or(p: pred_form) : pred_form :=
2 if (is_bool_expr_b p) then p_false else
3 match p with
4 | p_true => p_false
5 | p_false => p_false
6 | p_bool _ => p_false
7 | p_var s name expr => p_var s name expr
8 | p_and phi1 phi2 => p_and (guard_and (p_and phi1 phi2)) (if (is_bool_expr_b phi1) then (

F_and phi2) else if (is_bool_expr_b phi2) then (F_and phi1) else (p_and (F_and phi1) (
F_and phi2)))

9 | p_or phi1 phi2 => if (is_bool_expr_b phi1) then (F_or phi2) else if (is_bool_expr_b phi2)
then (F_or phi1) else (p_or (F_or phi1) (F_or phi2))

10 | p_forall d D phi => p_and (guard_and (p_forall d D phi)) (p_forall d D (p_or (guard_or phi)
(F_or phi)))

11 | p_exists d D phi => p_exists d D (p_and (guard_and phi) (F_and phi))

Tom Boshoven 74

TU/e A Symbolic Approach to PBES Instantiation

12 end
13 with F_and(p: pred_form) : pred_form :=
14 if (is_bool_expr_b p) then p_true else
15 match p with
16 | p_true => p_true
17 | p_false => p_true
18 | p_bool _ => p_true
19 | p_var s name expr => p_var s name expr
20 | p_and phi1 phi2 => if (is_bool_expr_b phi1) then (F_and phi2) else if (is_bool_expr_b phi2)

then (F_and phi1) else (p_and (F_and phi1) (F_and phi2))
21 | p_or phi1 phi2 => p_or (guard_or (p_or phi1 phi2)) ((if (is_bool_expr_b phi1) then (F_or

phi2) else if (is_bool_expr_b phi2) then (F_or phi1) else (p_or (F_or phi1) (F_or phi2))
))

22 | p_forall d D phi => p_forall d D (p_or (guard_or phi) (F_or phi))
23 | p_exists d D phi => p_or (guard_or (p_exists d D phi)) (p_exists d D (p_and (guard_and phi)

(F_and phi)))
24 end.
25

26 (** Right -hand side of F applied to a complete equation. **)
27 Definition rhs(p: pred_form) : pred_form :=
28 (if is_conjunction p then p_and (guard_and p) (F_and p) else p_or (guard_or p) (F_or p)).

Lemma 3.10 and Theorem 3.11

1 Theorem sound (p: pred_form):
2 forall eta eps , pred_sem (rhs p) eta eps <-> pred_sem p eta eps.
3 Proof.
4

5 (** Case distinction without splitting the induction hypotheses. **)
6 assert (forall eta eps ,
7 (pred_sem (p_and (guard_and p) (F_and p)) eta eps <-> pred_sem p eta eps) /\
8 (pred_sem (p_or (guard_or p) (F_or p)) eta eps <-> pred_sem p eta eps)).
9

10 induction p; simpl; try tauto; intros.
11 (** Case p_and **)
12 destruct (IHp1 eta eps), (IHp2 eta eps).
13 case_eq (is_bool_expr_b p1); case_eq (is_bool_expr_b p2); intros.
14 (** p1 and p2 are simple boolean expressions. **)
15 rewrite is_bool_expr_bool in H3, H4.
16 repeat rewrite guard_and_on_bool_expr.
17 repeat rewrite guard_or_on_bool_expr.
18 simpl. tauto. tauto. tauto. tauto. tauto.
19 (** p1 is simple boolean expression , p2 is not. **)
20 rewrite is_bool_expr_bool in H4. simpl.
21 repeat rewrite guard_and_on_bool_expr with p1.
22 repeat rewrite guard_or_on_bool_expr with p1.
23 split; intros. rewrite <- H1. simpl. tauto.
24 simpl. split; intros. destruct H5.
25 rewrite <- H2. simpl. tauto. rewrite <- H1. simpl. tauto.
26 right. rewrite <- H1 in H5. simpl in H5. tauto.
27 tauto. tauto.
28 (** p2 is simple boolean expression , p1 is not. **)
29 rewrite is_bool_expr_bool in H3. simpl.
30 repeat rewrite guard_and_on_bool_expr with p2.
31 repeat rewrite guard_or_on_bool_expr with p2.
32 split; intros. rewrite <- H. simpl. tauto.
33 split; intros. destruct H5.
34 rewrite <- H0. simpl. tauto. rewrite <- H. simpl. tauto.
35 right. rewrite <- H in H5. simpl in H5. tauto.
36 tauto. tauto.
37 (** neither are simple boolean expressions. **)
38 simpl. split; split; intros.
39 rewrite <- H,<- H1. simpl. tauto.
40 rewrite <- H,<- H1 in H5. simpl in H5. tauto.
41 destruct H5.
42 rewrite <- H0,<- H2. simpl. tauto.
43 rewrite <- H,<- H1. simpl. tauto.
44 rewrite <- H,<- H1 in H5. simpl in H5. tauto.
45 (** Case p_or **)
46 destruct (IHp1 eta eps), (IHp2 eta eps).
47 case_eq (is_bool_expr_b p1); case_eq (is_bool_expr_b p2); intros.
48 (** p1 and p2 are simple boolean expressions. **)
49 rewrite is_bool_expr_bool in H3, H4.
50 repeat rewrite guard_and_on_bool_expr.
51 repeat rewrite guard_or_on_bool_expr.
52 simpl. tauto. tauto. tauto. tauto. tauto.
53 (** p1 is simple boolean expression , p2 is not. **)
54 rewrite is_bool_expr_bool in H4. simpl.

Tom Boshoven 75

TU/e A Symbolic Approach to PBES Instantiation

55 repeat rewrite guard_and_on_bool_expr with p1.
56 repeat rewrite guard_or_on_bool_expr with p1.
57 split; intros. split; intros. rewrite <- H2. simpl. tauto.
58 split. rewrite <- H1 in H5. simpl in H5. tauto. rewrite <- H2 in H5. simpl in H5. tauto.
59 rewrite <- H2. simpl. tauto. tauto. tauto.
60 (** p2 is simple boolean expression , p1 is not. **)
61 rewrite is_bool_expr_bool in H3. simpl.
62 repeat rewrite guard_and_on_bool_expr with p2.
63 repeat rewrite guard_or_on_bool_expr with p2.
64 split; intros. split; intros. rewrite <- H0. simpl. tauto.
65 split. rewrite <- H in H5. simpl in H5. tauto. rewrite <- H0 in H5. simpl in H5. tauto.
66 rewrite <- H0. simpl. tauto. tauto. tauto.
67 (** neither are simple boolean expressions. **)
68 simpl. split; split; intros.
69 rewrite <- H0,<- H2. simpl. tauto.
70 split. rewrite <- H,<- H1 in H5. simpl in H5. tauto.
71 rewrite <- H0,<- H2 in H5. simpl in H5. tauto.
72 rewrite <- H0,<- H2. simpl. tauto.
73 rewrite <- H0,<- H2 in H5. simpl in H5. tauto.
74 (** Case p_forall **)
75 case_eq (is_bool_expr_b p); intros; simpl.
76 (** p is a simple boolean expression. **)
77 rewrite guard_and_on_bool_expr. rewrite guard_or_on_bool_expr. tauto.
78 apply is_bool_expr_bool. apply H. apply is_bool_expr_bool. apply H.
79 (** p is no simple boolean expression. **)
80 split; split; intros. destruct (IHp eta (update eps x v)). apply H2. apply H0.
81 split; intros; destruct (IHp eta (update eps x v)). apply H1. apply H0.
82 apply H2. apply H0.
83 destruct (IHp eta (update eps x v)). destruct H0. apply H2. left. apply H0.
84 destruct H0. destruct (H3 x).
85 apply H2. left. apply H4. apply H1. split. apply H0. apply H1. apply H2. right. apply H4.
86 right. split; intros; destruct (IHp eta (update eps x v)). apply H1. apply H0.
87 apply H2. apply H0.
88 (** Case p_exists **)
89 case_eq (is_bool_expr_b p); intros; simpl.
90 (** p is a simple boolean expression. **)
91 rewrite guard_and_on_bool_expr. rewrite guard_or_on_bool_expr. tauto.
92 apply is_bool_expr_bool. apply H. apply is_bool_expr_bool. apply H.
93 (** p is no simple boolean expression. **)
94 split. split; intros. destruct H0.
95 destruct H1; destruct H1; exists x; destruct (IHp eta (update eps x v)).
96 apply H3. left. apply H1. apply H3. apply H3.
97 destruct H0. apply H2. apply H1.
98 destruct H0. split. exists x. destruct (IHp eta (update eps x v)). apply H1. apply H0.
99 destruct (IHp eta (update eps x v)). rewrite <- H2 in H0. destruct H0.

100 left. exists x. apply H0. right. exists x. split. apply H1. apply H2. apply H2.
101 apply H2. right. apply H0.
102 apply H1. apply H2. right. apply H0.
103 split; intros. destruct H0. destruct H0. exists x. destruct (IHp eta (update eps x v)).
104 apply H2. left. apply H0.
105 destruct H0. exists x. destruct (IHp eta (update eps x v)). apply H1. apply H0.
106 destruct H0. right. exists x. destruct (IHp eta (update eps x v)). apply H1. apply H0.
107

108 unfold rhs. case (is_conjunction p); intros; destruct (H eta eps); tauto.
109 Qed.

Definition 3.7

1 (** Check whether en equation is a guarded conjunction.
2 This checks whether phi1 is a valid guard and the conjunction of p1 and p2 satisfies the

strongly guarded property. **)
3 Definition is_guarded_conj(phi1: pred_form)(phi2: pred_form) : Prop :=
4 (is_bool_expr phi1) /\ (forall eta eps , (pred_sem phi1 eta eps) -> (pred_sem (p_and phi1 (

guard_and phi2)) eta eps)).
5

6 (** Check whether en equation is a guarded disjunction.
7 This checks whether phi1 is a valid guard and the disjunction of p1 and p2 satisfies the

strongly guarded property. **)
8 Definition is_guarded_disj(phi1: pred_form)(phi2: pred_form) : Prop :=
9 (is_bool_expr phi1) /\ (forall eta eps , (pred_sem (p_or phi1 (guard_or phi2)) eta eps) -> (

pred_sem phi1 eta eps)).
10

11 (** Whether a predicate formula is of the form RHS_and / RHS_or exactly.
12 This is very strong: there is no leniency for reversed parameters to operators and removed

trivial subexpressions. **)
13 Fixpoint is_rhs_and(p: pred_form) : Prop :=
14 match p with
15 | p_true => False

Tom Boshoven 76

TU/e A Symbolic Approach to PBES Instantiation

16 | p_false => False
17 | p_bool b => False
18 | p_var _ _ _ => True
19 | p_and phi1 phi2 => (is_rhs_and phi1) /\ (is_rhs_and phi2)
20 | p_or phi1 phi2 => (is_guarded_disj phi1 phi2) /\ (is_rhs_or phi2)
21 | p_forall d D phi => (is_forall_body phi)
22 | p_exists d D phi => False
23 end
24 with is_rhs_or(p: pred_form) : Prop :=
25 match p with
26 | p_true => False
27 | p_false => False
28 | p_bool b => False
29 | p_var _ _ _ => True
30 | p_and phi1 phi2 => (is_guarded_conj phi1 phi2) /\ (is_rhs_and phi2)
31 | p_or phi1 phi2 => (is_rhs_or phi1) /\ (is_rhs_or phi2)
32 | p_forall d D phi => False
33 | p_exists d D phi => (is_exists_body phi)
34 end
35

36 (** Whether the predicate formula is of the form required in the body of a universal /
existential quantifier. **)

37 with is_forall_body(p: pred_form) : Prop :=
38 match p with
39 | p_or phi1 phi2 => (is_guarded_disj phi1 phi2) /\ (is_rhs_or phi2)
40 | _ => False
41 end
42 with is_exists_body(p: pred_form) : Prop :=
43 match p with
44 | p_and phi1 phi2 => (is_guarded_conj phi1 phi2) /\ (is_rhs_and phi2)
45 | _ => False
46 end.
47

48 (** Whether the predicate formula is of the form RHS. **)
49 Definition is_rhs(p: pred_form) : Prop :=
50 (is_rhs_and p) \/ (is_rhs_or p) \/ (is_bool_expr p).

Lemma 3.12
1 (** A lemma which helps in the proof of guard_F. **)
2 Lemma guard_F2 (p : pred_form):
3 (forall eta eps ,
4 (((pred_sem (guard_and p) eta eps) -> (pred_sem (guard_and (F_and p)) eta eps)) /\
5 ((pred_sem (guard_or (F_or p)) eta eps) -> (pred_sem (guard_or p) eta eps))) ->
6 (((pred_sem (guard_and p) eta eps) -> (pred_sem (guard_and (p_or (guard_or p) (F_or p)))

eta eps)) /\
7 ((pred_sem (guard_or (p_and (guard_and p) (F_and p))) eta eps) -> (pred_sem (guard_or p)

eta eps)))).
8 Proof.
9 intros.

10 induction p; simpl; try tauto.
11 (** Case p_and **)
12 assert (forall p: pred_form , (guard_and (guard_and p)) = (guard_and p)) as

guard_and_guard_and. intros. apply guard_guard.
13 split; intros; simpl in H; destruct H;
14 case_eq (is_bool_expr_b p1); case_eq (is_bool_expr_b p2); intros;
15 simpl; rewrite H2, H3 in H, H1; simpl in H, H1; try rewrite H2, H3 in H0; simpl in H0;
16 try rewrite is_bool_expr_bool in H2; try rewrite is_bool_expr_bool in H3.
17 (** p1 and p2 are simple boolean expressions. **)
18 left. rewrite (guard_or_on_bool_expr p1), (guard_or_on_bool_expr p2). apply H0. apply H2.

apply H3.
19 right. split. rewrite (guard_and_guard_and p1), (guard_and_guard_and p2). apply H0. apply H

. apply H0.
20 right. split. rewrite (guard_and_guard_and p1), (guard_and_guard_and p2). apply H0. apply H

. apply H0.
21 right. split. rewrite (guard_and_guard_and p1), (guard_and_guard_and p2). apply H0. apply H

. apply H0.
22 rewrite (guard_and_on_bool_expr p1), (guard_and_on_bool_expr p2) in H0. apply H0. apply H2.

apply H3.
23 (** p1 is simple boolean expression , p2 is not. **)
24 split. rewrite (guard_and_on_bool_expr p1) in H0. apply H0. apply H3. apply H1. apply H0.
25 (** p2 is simple boolean expression , p1 is not. **)
26 split. apply H1. apply H0.
27 rewrite (guard_and_on_bool_expr p2) in H0. apply H0. apply H2.
28 (** neither are simple boolean expressions. **)
29 apply H1. apply H0.
30 (** Case p_or **)
31 assert (forall p: pred_form , (guard_or (guard_or p)) = (guard_or p)) as guard_or_guard_or.

intros. apply guard_guard.

Tom Boshoven 77

TU/e A Symbolic Approach to PBES Instantiation

32 split; intros; simpl in H; destruct H;
33 case_eq (is_bool_expr_b p1); case_eq (is_bool_expr_b p2); intros;
34 simpl; rewrite H2, H3 in H, H1; simpl in H, H1; try rewrite H2, H3 in H0; simpl in H0;
35 try rewrite is_bool_expr_bool in H2; try rewrite is_bool_expr_bool in H3.
36 (** p1 and p2 are simple boolean expressions. **)
37 rewrite (guard_or_on_bool_expr p1), (guard_or_on_bool_expr p2). left. apply H0. apply H2.

apply H3.
38 apply H. apply H0. apply H. apply H0. apply H. apply H0.
39 rewrite (guard_and_on_bool_expr p1), (guard_and_on_bool_expr p2) in H0. apply H0. apply H2.

apply H3.
40 (** p1 is simple boolean expression , p2 is not. **)
41 destruct H0. destruct H4.
42 rewrite guard_or_guard_or , guard_or_guard_or in H4. apply H4.
43 apply H1. apply H4.
44 (** p2 is simple boolean expression , p1 is not. **)
45 destruct H0. destruct H4.
46 rewrite guard_or_guard_or , guard_or_guard_or in H4. apply H4.
47 apply H1. apply H4.
48 (** neither are simple boolean expressions. **)
49 destruct H0. destruct H4.
50 rewrite guard_or_guard_or , guard_or_guard_or in H4. apply H4.
51 apply H1. apply H4.
52 (** Case p_forall **)
53 assert (forall p: pred_form , (guard_and (guard_and p)) = (guard_and p)) as

guard_and_guard_and. intros. apply guard_guard.
54 split; intros; simpl in H;
55 case_eq (is_bool_expr_b p); intros; simpl; rewrite H1 in H; simpl in H; try rewrite H1 in H0;

simpl in H0.
56 (** p is a simple boolean expression. **)
57 rewrite is_bool_expr_bool in H1.
58 rewrite (guard_or_on_bool_expr p). left. apply H0. apply H1.
59 (** p is no simple boolean expression. **)
60 right. split. rewrite guard_and_guard_and. apply H0.
61 apply H. apply H0.
62 (** p is a simple boolean expression. **)
63 rewrite is_bool_expr_bool in H1.
64 rewrite (guard_and_on_bool_expr p) in H0. apply H0. apply H1.
65 (** p is no simple boolean expression. **)
66 apply H. apply H0.
67 (** Case p_exists **)
68 assert (forall p: pred_form , (guard_or (guard_or p)) = (guard_or p)) as guard_or_guard_or.

intros. apply guard_guard.
69 split; intros; simpl in H;
70 case_eq (is_bool_expr_b p); intros; simpl; rewrite H1 in H; simpl in H; try rewrite H1 in H0;

simpl in H0.
71 (** p is a simple boolean expression. **)
72 rewrite is_bool_expr_bool in H1.
73 rewrite guard_or_on_bool_expr. left. apply H0. apply H1.
74 (** p is no simple boolean expression. **)
75 destruct H. destruct H. apply H0. left. apply H. right. apply H.
76 (** p is a simple boolean expression. **)
77 rewrite is_bool_expr_bool in H1.
78 rewrite guard_and_on_bool_expr in H0. apply H0. apply H1.
79 (** p is no simple boolean expression. **)
80 destruct H0. destruct H2. rewrite guard_or_guard_or in H2. apply H2.
81 apply H. apply H2.
82 Qed.
83

84 (** Used for proving strongly guardedness. **)
85 Lemma guard_F (p : pred_form):
86 forall eta eps ,
87 ((pred_sem (guard_and p) eta eps) -> (pred_sem (guard_and (F_and p)) eta eps)) /\
88 ((pred_sem (guard_or (F_or p)) eta eps) -> (pred_sem (guard_or p) eta eps)).
89 Proof.
90 induction p; intros; simpl; try tauto.
91 (** Case p_and **)
92 case_eq (is_bool_expr_b p1); case_eq (is_bool_expr_b p2); intros; simpl;
93 try rewrite is_bool_expr_bool in H; try rewrite is_bool_expr_bool in H0.
94 (** p1 and p2 are simple boolean expressions. **)
95 tauto.
96 (** p1 is simple boolean expression , p2 is not. **)
97 split; intros. apply IHp2. apply H1.
98 split. rewrite (guard_and_on_bool_expr p1) in H1. apply H1. apply H0.
99 apply guard_F2. split; intros; apply IHp2; apply H2. simpl. tauto.

100 (** p2 is simple boolean expression , p1 is not. **)
101 split; intros. apply IHp1. apply H1.
102 split. apply guard_F2. split; intros; apply IHp1; apply H2. simpl. tauto.
103 rewrite (guard_and_on_bool_expr p2) in H1. apply H1. apply H.
104 (** neither are simple boolean expressions. **)
105 split; intros. split. apply IHp1. apply H1. apply IHp2. apply H1.

Tom Boshoven 78

TU/e A Symbolic Approach to PBES Instantiation

106 split; apply guard_F2.
107 split; intros; apply IHp1; apply H2. simpl. tauto.
108 split; intros; apply IHp2; apply H2. simpl. tauto.
109 (** Case p_or **)
110 case_eq (is_bool_expr_b p1); case_eq (is_bool_expr_b p2); intros; simpl;
111 try rewrite is_bool_expr_bool in H; try rewrite is_bool_expr_bool in H0.
112 (** p1 and p2 are simple boolean expressions. **)
113 tauto.
114 (** p1 is simple boolean expression , p2 is not. **)
115 split; intros. destruct H1.
116 rewrite (guard_or_on_bool_expr p1). left. left. apply H1. apply H0.
117 (* Hierarchy is wrong , so left and right don ’t work. *)
118 assert ((pred_sem (guard_and (guard_or p2)) eta eps) \/ pred_sem (guard_and (F_or p2)) eta

eps).
119 apply guard_F2. split; intros; apply IHp2; apply H2. apply H1. tauto.
120 right. apply IHp2. apply H1.
121 (** p2 is simple boolean expression , p1 is not. **)
122 split; intros. destruct H1.
123 assert ((pred_sem (guard_and (guard_or p1)) eta eps) \/ pred_sem (guard_and (F_or p1)) eta

eps).
124 apply guard_F2. split; intros; apply IHp1; apply H2. apply H1. tauto.
125 rewrite (guard_or_on_bool_expr p2). left. right. apply H1. apply H.
126 left. apply IHp1. apply H1.
127 (** neither are simple boolean expressions. **)
128 split; intros. destruct H1.
129 assert ((pred_sem (guard_and (guard_or p1)) eta eps) \/ pred_sem (guard_and (F_or p1)) eta

eps).
130 apply guard_F2. split; intros; apply IHp1; apply H2. apply H1. tauto.
131 assert ((pred_sem (guard_and (guard_or p2)) eta eps) \/ pred_sem (guard_and (F_or p2)) eta

eps).
132 apply guard_F2. split; intros; apply IHp2; apply H2. apply H1. tauto.
133 destruct H1. left. apply IHp1. apply H1. right. apply IHp2. apply H1.
134 (** Case p_forall **)
135 split; intros;
136 case_eq (is_bool_expr_b p); intros; simpl; try rewrite H0 in H; simpl in H.
137 tauto.
138 intros. apply guard_F2. apply IHp. apply H.
139 tauto.
140 destruct H. destruct (H1 x).
141 assert (guard_or (guard_or p) = guard_or p). apply guard_guard. rewrite H3 in H2. apply H2.
142 apply IHp. apply H2.
143 (** Case p_exists **)
144 split; intros;
145 case_eq (is_bool_expr_b p); intros; simpl; try rewrite H0 in H; simpl in H.
146 tauto. destruct H.
147 right. exists x. split.
148 assert (guard_and (guard_and p) = guard_and p). apply guard_guard. rewrite H1. apply H.
149 apply IHp. apply H.
150 tauto.
151 destruct H. exists x.
152 apply guard_F2. split; intros.
153 apply IHp. apply H1. apply IHp. apply H1.
154 apply H.
155 Qed.

Theorem 3.13

1 (** The results of F_and and F_or are always of their corresponding F_* form. **)
2 Lemma F_rhs_sub (p: pred_form):
3 (~ is_bool_expr p) -> (is_rhs_and (F_and p) /\ is_rhs_or (F_or p)).
4 Proof.
5 intros.
6 induction p; simpl; simpl in H; try contradiction; try tauto.
7 (** Case p_and **)
8 case_eq (is_bool_expr_b p1); case_eq (is_bool_expr_b p2); intros;
9 try rewrite is_bool_expr_bool in H0; try rewrite is_bool_expr_bool in H1.

10 (* p1 and p2 are simple boolean expressions *)
11 destruct H. tauto.
12 (** p1 is simple boolean expression , p2 is not. **)
13 split.
14 apply IHp2. rewrite <- not_true_iff_false in H0. rewrite is_bool_expr_bool in H0. tauto.
15 split. unfold is_guarded_conj. split. simpl. split; apply guard_bool_expr.
16 split. tauto. apply guard_F. apply H2.
17 apply IHp2. rewrite <- not_true_iff_false in H0. rewrite is_bool_expr_bool in H0. tauto.
18 (** p2 is simple boolean expression , p1 is not. **)
19 rewrite <- not_true_iff_false in H1. rewrite is_bool_expr_bool in H1.
20 split. apply IHp1. apply H1.
21 split. unfold is_guarded_conj. simpl. split. split; apply guard_bool_expr.

Tom Boshoven 79

TU/e A Symbolic Approach to PBES Instantiation

22 intros. split. apply H2. apply guard_F. apply H2.
23 apply IHp1. apply H1.
24 (** Neither are simple boolean expressions **)
25 rewrite <- not_true_iff_false in H0 , H1. rewrite is_bool_expr_bool in H0, H1.
26 split. split. apply IHp1. apply H1. apply IHp2. apply H0.
27 split. unfold is_guarded_conj. simpl. split. split; apply guard_bool_expr.
28 split. apply H2. split; apply guard_F; apply H2.
29 split. apply IHp1. apply H1. apply IHp2. apply H0.
30 (** Case p_or **)
31 case_eq (is_bool_expr_b p1); case_eq (is_bool_expr_b p2); intros;
32 try rewrite is_bool_expr_bool in H0; try rewrite is_bool_expr_bool in H1; simpl.
33 (* p1 and p2 are simple boolean expressions *)
34 destruct H. tauto.
35 (** p1 is simple boolean expression , p2 is not. **)
36 split. split. unfold is_guarded_disj. simpl. split. split; apply guard_bool_expr.
37 intros. destruct H2. apply H2. right. apply guard_F. apply H2.
38 apply IHp2. rewrite <- not_true_iff_false in H0. rewrite is_bool_expr_bool in H0. apply H0.
39 apply IHp2. rewrite <- not_true_iff_false in H0. rewrite is_bool_expr_bool in H0. apply H0.
40 (** p2 is simple boolean expression , p1 is not. **)
41 split. split. unfold is_guarded_disj. simpl. split. split; apply guard_bool_expr.
42 intros. destruct H2. apply H2. left. apply guard_F. apply H2.
43 apply IHp1. rewrite <- not_true_iff_false in H1. rewrite is_bool_expr_bool in H1. apply H1.
44 apply IHp1. rewrite <- not_true_iff_false in H1. rewrite is_bool_expr_bool in H1. apply H1.
45 (** Neither are simple boolean expressions **)
46 split. split. unfold is_guarded_disj. simpl. split. split; apply guard_bool_expr.
47 intros. destruct H2. apply H2. destruct H2. left. apply guard_F. apply H2.
48 right. apply guard_F. apply H2.
49 split.
50 apply IHp1. rewrite <- not_true_iff_false in H1. rewrite is_bool_expr_bool in H1. apply H1.
51 apply IHp2. rewrite <- not_true_iff_false in H0. rewrite is_bool_expr_bool in H0. apply H0.
52 split.
53 apply IHp1. rewrite <- not_true_iff_false in H1. rewrite is_bool_expr_bool in H1. apply H1.
54 apply IHp2. rewrite <- not_true_iff_false in H0. rewrite is_bool_expr_bool in H0. apply H0.
55 (** Case p_forall **)
56 rewrite <- is_bool_expr_bool in H. rewrite not_true_iff_false in H. rewrite H. simpl.
57 split. split. unfold is_guarded_disj. simpl. split. apply guard_bool_expr.
58 intros. destruct H0. apply H0.
59 apply guard_F. apply H0.
60 apply IHp. rewrite <- not_true_iff_false in H. rewrite is_bool_expr_bool in H. apply H.
61 split. unfold is_guarded_conj. simpl. split. apply guard_bool_expr.
62 split. apply H0. intros.
63 apply guard_F2. split; intros; apply guard_F; apply H1.
64 apply H0.
65 unfold is_guarded_disj. split. split.
66 apply guard_bool_expr.
67 intros. simpl in H0. destruct H0. apply H0.
68 apply guard_F. apply H0.
69 apply IHp.
70 rewrite <- not_true_iff_false in H. rewrite is_bool_expr_bool in H. apply H.
71 (** Case p_exists **)
72 rewrite <- is_bool_expr_bool in H. rewrite not_true_iff_false in H. rewrite H. simpl.
73 split. split. unfold is_guarded_disj. simpl. split. apply guard_bool_expr.
74 intros. destruct H0. apply H0.
75 destruct H0. exists x. apply guard_F2. split; intros; apply guard_F; apply H1.
76 apply H0.
77 split.
78 unfold is_guarded_conj. split.
79 apply guard_bool_expr.
80 intros. simpl. split. apply H0. apply guard_F. apply H0.
81 apply IHp. rewrite <- not_true_iff_false in H. rewrite is_bool_expr_bool in H. apply H.
82 unfold is_guarded_conj. split. split.
83 apply guard_bool_expr.
84 intros. simpl. split. apply H0. apply guard_F. apply H0.
85 apply IHp. rewrite <- not_true_iff_false in H. rewrite is_bool_expr_bool in H. apply H.
86 Qed.
87

88 (** The results of F are guarded and of the form RHS **)
89 Theorem F_rhs (p: pred_form):
90 is_rhs (rhs p).
91 Proof.
92 unfold is_rhs.
93 case_eq (is_bool_expr_b p); intros.
94 (** p is a simple boolean expression. **)
95 right. right. unfold rhs.
96 case (is_conjunction p).
97 simpl. split. apply guard_bool_expr. simpl.
98 induction p; simpl in H; simpl; try rewrite H; simpl; try tauto.
99 rewrite <- not_false_iff_true in H. tauto.

100 simpl. split. apply guard_bool_expr. simpl.
101 induction p; simpl in H; simpl; try rewrite H; simpl; try tauto.

Tom Boshoven 80

TU/e A Symbolic Approach to PBES Instantiation

102 rewrite <- not_false_iff_true in H. tauto.
103 (** p is no simple boolean expression. **)
104 unfold rhs. case (is_conjunction p).
105 right. left. simpl.
106 split. unfold is_guarded_conj. split.
107 apply guard_bool_expr.
108 intros. simpl. split. apply H0. apply guard_F. apply H0.
109 apply F_rhs_sub. rewrite <- not_true_iff_false in H. rewrite is_bool_expr_bool in H. apply H

.
110 left. simpl.
111 split. unfold is_guarded_disj. split.
112 apply guard_bool_expr.
113 intros. simpl in H0. destruct H0. apply H0. apply guard_F. apply H0.
114 apply F_rhs_sub. rewrite <- not_true_iff_false in H. rewrite is_bool_expr_bool in H. apply H

.
115 Qed.

Tom Boshoven 81

	Introduction
	Overview

	Background
	Boolean Equation Systems
	Structure Graphs

	Parametrized Boolean Equation Systems
	Explicit Instantiation

	Symbolic Instantiation
	Motivation
	Approach
	State-space
	Clusters
	Guarded Normal Form
	Strongly Guarded Form
	Transformation
	Correctness of the Transformation

	Clustered GNF

	Exploration
	Next-state function
	Explicit Exploration
	Symbolic Exploration
	Partitioned Transition Relation

	Event Locality
	Dependency
	Local transition relation

	Merging Groups
	Linked Decision Diagrams
	Basic Operations
	States and Transitions

	Algorithm
	Usage

	BESsyness
	Optimizations
	True/false-elimination

	Solving
	Parity Games
	Simple Recursive Form

	Transformation to Parity Games
	Directly
	Recursive Algorithm
	Gauß Elimination

	Conclusion
	Future Work
	Coq
	PBES Framework
	Strongly Guarded Form

