
Symbolic compositional model checking for mCRL2

January 15, 2013

Kevin van der Pol, BSc.
Master’s Thesis

Computer Science and Engineering

Supervisor:
T. A. C. Willemse, PhD

Eindhoven University of Technology
Department of Computer Science and Mathematics

Abstract

In model checking, we check whether a given model of a system satisfies a given property.
Often, the system consists of multiple components working in parallel. We use this informa-
tion of the system’s structure to reduce the model checking problem, in a procedure inspired
by H. R. Andersen [1]. There are two alternating steps. First, we remove one parallel com-
ponent from the model checking equation and change the property accordingly, to arrive at
an equivalent problem of equal or greater complexity. Second, we reduce the property again.
Hopefully, this results in an overall model checking problem of smaller complexity. We apply
this technique to models in the mCRL2 language. Using a symbolic approach, we extend the
partial model checking technique to models with infinitely large state spaces.

CONTENTS

Contents

Introduction 5

1 Preliminaries 6
1.1 Notation . 6
1.2 Knaster-Tarski’s theorem . 6
1.3 Transfinite induction . 7
1.4 Previous work . 8

2 Models 9
2.1 Data . 9
2.2 Actions . 10
2.3 Labeled transition systems . 14
2.4 Linear process equations . 15
2.5 Buffer example (1) . 16
2.6 Process descriptions . 17
2.7 Parallel composition . 17
2.8 Communication operator . 20
2.9 Allow operator . 24
2.10 Rename operator . 26
2.11 Abstraction operator . 29
2.12 Buffer example (2) . 32

3 Specifications 33
3.1 Parameterized modal equation systems . 33
3.2 Buffer example (3) . 36

4 Quotienting 38
4.1 Quotienting on labeled transition systems . 38
4.2 Quotienting on linear process equations . 39
4.3 Buffer example (4) . 46
4.4 Soundness . 48

5 Quotienting extensions 59
5.1 Quotienting process descriptions . 59
5.2 Quotienting the communication operator . 61
5.3 Quotienting the allow operator . 66
5.4 Quotienting the rename operator . 69
5.5 Quotienting the abstraction operator . 71
5.6 Buffer example (5) . 73

6 Property minimization 79
6.1 Simple evaluation . 80
6.2 Reachability analysis . 81
6.3 Constant propagation . 81
6.4 Unguardedness removal . 82
6.5 Trivial equation elimination . 83
6.6 Parameter elimination . 83
6.7 Action formulae simplification . 84

Conclusion 85

Future research 86

References 87

A Buffer example (4) calculations 88

4

INTRODUCTION

Introduction

The model checking problem is to determine whether a given system satisfies a given property.
Usually, the system is an abstracted software or hardware system. Model checking can be an
important step in validating the safety of a variety of systems, such as railroad switches and
signals, or critical medical equipment. This becomes increasingly hard as systems become very
large, which they typically are. Fortunately, such a large system usually consists of multiple
simpler components working in parallel.

The compositional model checking technique, first proposed by H. R. Andersen [1], exploits this
compositionality by operating on each of the components separately instead of calculating the more
complex behavior of the entire system. The compositional model checking technique consists of
two alternating steps: quotienting and reduction. Quotienting is moving part of the behavior from
the system to the property to be checked on the remainder. This makes the system smaller, but
the property larger. The next step is to reduce the property again. These steps make the model
checking problem smaller and thus faster to solve.

We apply the partial model checking technique to process descriptions in mCRL2 (Groote et
al. [2]). These process descriptions consist of atomic systems, called linear process equations,
working in parallel, with several additional operators on their combined behavior. One of these
operators is the communication operator, which provides explicit synchronization of the otherwise
completely parallel systems. We extended the quotienting procedure to symbolically incorporate
these operators in the property to be checked.

Andersen’s technique requires the systems to have a finite state space, which is not typically the
case. In mCRL2, one can concisely describe such systems with infinite state spaces. Therefore, we
extend compositional model checking to systems with infinite state spaces.

After some preliminaries, we first introduce the descriptions of systems in Section 2: the linear
process equations and the process operators working on them. Then, in Section 3, we introduce the
formalism we use to describe the properties we wish to check on these systems: the parameterized
modal equation systems, very similar to the well-known µ-calculus. The heart of this thesis is found
in Section 4 and Section 5. There, we provide definitions and proofs for a symbolic quotienting
procedure on parallel linear process equations and on process operators. Finally, in Section 6, we
explain a number of reductions which can be performed on the properties we obtain.

5

1. PRELIMINARIES

1 Preliminaries

1.1 Notation

We use assignments of functions to change environments and data environments.

Definition 1.1.1 (Assignment). An assignment of value b ∈ B to a ∈ A in function f : A→ B,
denoted f [a := b], is again a function with signature A → B. It is defined as follows, for any
a′ ∈ A:

f [a := b](a′) =

{
b if a = a′

f(a′) otherwise

1.2 Knaster-Tarski’s theorem

Knaster-Tarski’s theorem1 deals with monotone functions over a complete lattice and states that
the fixpoints of f again form a complete lattice. We first introduce monotonicity, complete lattices
and fixpoints:

Definition 1.2.1 (Monotonicity). Let A and B be ordered sets. A function f : A → B is
monotone, if and only if, for any a ≤ a′, also f(a) ≤ f(a′).

This is the first requirement of Knaster-Tarski’s theorem. The second is that the monotone
function is applied to elements of a complete lattice. The definition of a complete lattice, requires
the notion of infimum and supremum:

Definition 1.2.2 (Infimum and supremum). Let A be a set with ordering ≤. The infimum of
some A′ ⊆ A, denoted inf(A′), is the greatest element of A which is smaller than any element
of A′:

inf(A′) = max{a ∈ A | (∀a′ ∈ A′ . a ≤ a′)}

The supremum of A′, denoted sup(A′), is dual.

Note that an infimum or supremum need not exist. For example, let A be the positive real numbers
with the usual ordering ≤. Does the structure (A,≤) have an infimum for A? The greatest number
that is smaller than all positive real numbers is zero, which is not an element of A. Therefore,
inf(A) does not exist.

A complete lattice is a structure for which the infimum and supremum of any subset always
exists:

Definition 1.2.3 (Complete lattice). The structure (A,≤) is a complete lattice, if and only if,
for every A′ ⊆ A, there exists an infimum and a supremum in A.

Knaster-Tarski’s theorem then concludes something about the fixpoints of f :

Definition 1.2.4 (Fixpoints). An element a ∈ A is a fixpoint of a function f : A → A, if and
only if, a = f(a).

1Despite its name, Knaster-Tarski’s theorem is not actually due to Knaster and Tarski. For clarification on the
naming of Knaster-Tarski’s theorem and related theorems, refer to Lassez, et al. [7].

6

1.3. Transfinite induction 1. PRELIMINARIES

Of particular interest are the least fixpoint and the greatest fixpoint :

Definition 1.2.5 (Least and greatest fixpoints). The least fixpoint of a function f : A → A,
denoted µf , is that fixpoint a ∈ A that is smaller than any other fixpoint a′ ∈ A:

µf = a ∈ A, such that a = f(a) and (∀a′ ∈ A . a′ = f(a′)⇒ a ≤ a′)}

The greatest fixpoint, denoted νf , is dual.

Now, Knaster-Tarski’s theorem is as follows:

Theorem 1.2.6 (Knaster-Tarski’s theorem). (Tarski [11])
Let (A,≤) be a complete lattice, f : A → A a monotone function and P ⊆ A the set of all
fixpoints of f . The set P is not empty and the structure (P,≤) is a complete lattice.

In particular, the least fixpoint µf = inf({a ∈ A | f(a) ≤ a}) and the greatest fixpoint νf =
sup({a ∈ A | a ≤ f(a)}).

1.3 Transfinite induction

The least or greatest fixed point can be constructively defined by iteration of the monotone func-
tion, starting from the least or greatest element of A, respectively. As the domain may be uncount-
ably large, the number of iterative application may therefore also be uncountable. This means
mathematical induction does not suffice and we need transfinite induction.

Transfinite induction is an extension of mathematical induction to well-ordered sets, such as the
class of ordinals Ord. The class of ordinals not only contains zero and the successor ordinals, but
also limit ordinals:

Definition 1.3.1 (Limit ordinal). An ordinal α is a limit ordinal if it differs from zero and is
the supremum of all smaller ordinals. The first limit ordinal is commonly denoted ω.

Note that ω, the supremum of all natural numbers, is itself not a natural number.

We use a transfinite induction scheme, consisting of three parts: a base case for ordinal zero, an
inductive step for a successor ordinal and a transfinite case for limit ordinals:

Definition 1.3.2 (Transfinite induction on ordinals). Let P (α), where α is an ordinal, be a
proposition. From the following three statements, we may conclude P holds for any ordinal:

• Base: P (0)

• Inductive step: P (n)⇒ P (n+ 1), for any n ∈ Ord
• Transfinite case: let α be a limit ordinal. (∀β < α . P (β))⇒ P (α)

7

1. PRELIMINARIES 1.4. Previous work

We apply transfinite induction to finding the least or greatest fixpoint of a function. We define
the σ-approximants Fασ , where α is an ordinal, for finding σf , as follows:

Definition 1.3.3 (σ-approximants). Let f : A → A be a function and let ⊥ and > be the
least and greatest elements of A, respectively. The σ-approximant Fασ , where α is an ordinal,
is defined as follows:

• F 0
µ = ⊥

• F 0
ν = >

• Fn+1
σ = f(Fn+1

σ)

• Fαµ = sup({F βµ | β < α}), for limit ordinal α

• Fαν = inf({F βν | β < α}), for limit ordinal α

From Theorem 1.2.6 (Knaster-Tarski’s theorem) and this definition of σ-approximants, we obtain
a constructive definition of the least and greatest fixpoints:

Definition 1.3.4 (Constructive least and greatest fixpoints). Let (A,≤) be a complete lattice
and f : A→ A a monotone function.

µf = sup({Fαµ | α ∈ Ord})

νf = inf({Fαν | α ∈ Ord})
Furthermore, there is some ordinal for which this fixpoint is reached and because it is a fixpoint,
all higher σ-approximants are equal. Formally: there exists an ordinal α of cardinality at most
the cardinality of A, such that for β ≥ α:

σf = F βσ

1.4 Previous work

This work has its origin in the work of H. R. Andersen [1], who in 1995 described a quotienting
procedure for parallel composition of finite labeled transition systems (cf. Section 2.3 (Labeled
transition systems)). This parallel composition had an implicit synchronization mechanism, where
for any action a, there is a counterpart ā, which result in a silent action τ when occurring simulta-
neously. This quotienting procedure was very effective at reducing the complexity of large numbers
of simple, finite processes, in parallel.

Other interesting work on the subject is by F. Lang and R. Mateescu [6], who came to similar
results with a graph-based procedure. Again, this was restricted to finite processes in parallel
composition.

In an effort to take this to the mCRL2 setting, K. van der Pol [12] considered labeled transition
systems with multi-actions and the process operators parallel composition, communication and
allow. Still, this required the processes to have enumerable state spaces.

The current work seeks to expand this to linear process equations in a syntactic procedure that
does not require the state space of a process to be finite.

8

2. MODELS

2 Models

In this section, we introduce formalisms to describe processes. First, we describe the data we
allow the user to define in the tool. We abstract from how the user enters this information and
only limit ourselves to some necessary requirements on what the user may enter. Secondly, we
describe actions. The toolset mCRL2 uses multisets of actions called multi-actions to denote
actions occurring simultaneously. Then we look at the well-known labeled transition systems
and their syntactic representation in the mCRL2 toolset: the linear process equations. Lastly,
linear process equations are combined with process operators, e.g. parallel composition, to form
process descriptions. We formalize linear process equations and the process operators working on
them.

Readers who are already familiar with mCRL2 process descriptions are encouraged to skip this
section. For those readers, we can summarize this section as follows:

• There are no assumptions on user-defined data sorts, except the existence of an equality
relation ≈. A boolean data sort is assumed.

• Action formulae have no quantifiers and are in disjunctive normal form with boolean expres-
sions, multi-actions and negated multi-actions as literals.

• The most basic description of a process we consider, is linear process equations.

• We consider parallel composition || , the communication operator Γ, the allow operator ∇,
the rename operator ρ and the abstraction operator τ on linear process equations. Expres-
sions with linear process equations and process operators are called “process descriptions”.

• The communication operator is slightly generalized, with multi-actions as possible substitu-
tion results. For example, Γ{a|b→c|d}(P) would substitute a transition label a(1)|b(1) with
c(1)|d(1).

• The allow set of the allow operator is a set of multi-actions, e.g. {a|b, a}.
• Similar to the communication operator, the rename operator permits multi-actions as sub-

stitution results.

• A rename operator without explicit rename set, renames all action names to fresh ones.
This is done by adding a prime symbol as a decorator. For example, ρ(P) would substitute
a transition label a(1)|b(1) with a′(1)|b′(1).

• Similar to the allow operator, the abstraction set of the abstraction operator is a set of
multi-actions, e.g. {a|b, a}.

2.1 Data

A description of the types of data to be used, is taken as input to the model checking tool.

Definition 2.1.1 (Data sort). A data sort is a non-empty set of expressions with semantics in a
corresponding domain. We assume a set D of data sorts, which are ranged over by D1, D2,
The semantic domains of data sorts D1, D2, . . . are denoted D1,D2, These semantic domains
may not be empty.

For each defined data sort, we assume a set Dvar of data variables and a set func of functions.
Constants are functions with zero arguments. Each data variable x ∈ Dvar has a type D and
each function f ∈ func has a profile D1 × · · · × Dn → D, where D1, . . . , Dn are argument types
of f and D is its result type. This data sort is then the set of expressions E of the following
grammar:

9

2. MODELS 2.2. Actions

Grammar 2.1.2 (Data expression). The set of data expressions is given by the grammar

E ::= x | f(E1, . . . , En),

where expressions E1, . . . , En match the data type of the arguments of function f .

Data expressions can only be given a definite semantics, i.e. evaluate to a value in the correspond-
ing semantic domain, when all occurring data variables have a defined value. The value of data
variables are given in a data environment:

Definition 2.1.3 (Data environment). A data environment ε : Dvar → D is a partial function
that assigns data values to data variables.

Let ε be an arbitrary data environment. A data expression e is called closed in ε, if and only if,
all variables in e are assigned a value in ε.

Definition 2.1.4 (Data semantics). Let e be a data expression of sort D, closed in data envi-
ronment ε. The semantics of e in ε, denoted JeKε, is defined as follows:

JxKε = ε(x)Jf(e1, . . . , en)Kε = f(Je1Kε, . . . , JenKε)
Example 2.1.5 (Data expressions). An example of a data sort is Nat, the sort of natural numbers.
Its semantic domain is N, the set of natural numbers.

Let 37 : Nat be a constant, n and m be variables of sort Nat and let + : Nat × Nat → Nat be a
function. Examples of data expressions are n, +(n,m) or +(n, 37). Functions with two arguments
are usually written in infix notation, i.e. +(n, 37) is written as n+ 37.

Furthermore, we assume that the sort B of booleans is predefined. This includes the usual constants
true and false and the boolean connectives ∧,∨,¬ and ⇒.

We assume that data equivalence is defined for each data sort:

Definition 2.1.6 (Data equivalence semantics). For each data sort D, a function ≈: D×D → B
is assumed, with the following semantics:

Jd ≈ eKε = JdKε = JeKε
The (syntactic) definition of the ≈ operator depends on the data type and we assume this definition
is supplied by the user.

2.2 Actions

Transitions in the processes described in mCRL2 are labeled with multi-actions, which is a number
of parameterized actions occurring simultaneously. The following definitions are inspired by J. F.
Groote [3]. We start with a finite set of action names:

Definition 2.2.1 (Action names). We assume a finite set AN of action names, which are ranged
over by a, b, c,

We will use Latin lowercase letters to denote action names throughout this thesis. These action
names can be parameterized with a data expression to form an action:

10

2.2. Actions 2. MODELS

Definition 2.2.2 (Actions). Let AN be a set of action names and D1, . . . , Dn be data sorts. An
action is an action name with data parameters: for any a ∈ AN and any d1 : D1, . . . , dn : Dn,
a(d1, . . . , dn) is an action.

We often use the data sort D, without index, to abstract from the number of data parameters.
We restrict ourselves to actions with constant signatures, i.e. where the data for each action is
always of equal type.

Typically, we encounter multiple actions occurring simultaneously. For this, we introduce multi-
action names and multi-actions, which are multisets of unparameterized and parameterized action
names, respectively:

Definition 2.2.3 (Multi-action names). A multi-action name is an expression denoting a col-
lection of action names. The empty multi-action name is denoted τ . Let a ∈ AN be an action
name and let A be a multi-action name, then a|A is also a multi-action name.

For nonempty multi-action names, the trailing τ is left implicit.

Definition 2.2.4 (Multi-actions). A multi-action is a collection of actions occurring simulta-
neously. Multi-actions are ranged over by α, β, γ, The set Act of multi-actions is defined
as follows: the empty multi-action is denoted τ . Let a(d) be an action and let α ∈ Act be a
multi-action, then a(d)|α is also a multi-action.

As with multi-action names, the trailing τ is left implicit for nonempty multi-actions. We will
use Greek lowercase letters to denote multi-action names or multi-actions throughout this the-
sis, depending on the context. The expression α(d), where α is a multi-action name a1| . . . |an,
d is of sort D and a1 through an all take a parameter of type D, denotes the multi-action
a1(d)| . . . |an(d).

Note that this definition of multi-action is slightly different from the definition from J. F. Groote
[3]. A multi-action is a list of actions with τ representing the empty list, not a binary tree with
actions and τ as leaves, e.g. we exclude τ |τ . These definitions are essentially equivalent, but we
remove all superfluous occurrences of τ .

The constructor | will also be used in this thesis as an operator with a multi-action for its left
operand. This is a straightforward generalization of the constructor function | we described.

Example 2.2.5 (Actions). Let the sort Nat from Example 2.1.5 be defined and let print be
an action name. Let actions with action name print take one parameter of sort Nat. Further-
more, let n be a variable of sort Nat. Then, print(37), print(n) and print(n + 37) are actions.
A multi-action name would be τ , print or print|print. A multi-action would be τ , print(37) or
print(37)|print(n)|print(n+ 37). The expression print(true), where true is not an expression in Nat,
is disallowed, as is print(37, 37), and print if it is to be interpreted as an action or multi-action.
Note that τ can be both a multi-action name or a multi-action.

Suppose we abbreviate the multi-action name print|print to α. The expression α(n) is then an
abbreviation of the expression print(n)|print(n), a multi-action.

Let stop be an action that takes no parameters. Then stop can be an action name, an action, a
multi-action name or a multi-action. Likewise, the expression stop|stop can be both a multi-action
name and a multi-action.

11

2. MODELS 2.2. Actions

2.2.1 Operators on actions

In the semantics of multi-actions, we define the equality, inclusion and removal operators by the
following set of axioms from J. F. Groote [3]:

Definition 2.2.6 (Multi-action equality, inclusion and removal). The equality relation is the
strongest relation = for which the following axioms hold:

MA1 α|β = β|α
MA2 (α|β)|γ = α|(β|γ)

MA3 α|τ = α

For the inclusion relation v and the removal operator \, the following axioms hold:

MS1 τ v α = true

MS2 a(d)|α v τ = false

MS3 a(d)|α v a(e)|β = α v β , if d ≈ e
MS4 a(d)|α v b(e)|β = a(d)|(α \ b(e)) v β , if a 6≡ b or d 6≈ e

MD1 α \ τ = α

MD2 τ \ α = τ

MD3 α \ (β|γ) = (α \ β) \ γ
MD4 (a(d)|α) \ a(e) = α , if d ≈ e
MD5 (a(d)|α) \ b(e) = a(d)|(α \ b(e)) , if a 6≡ b or d 6≈ e

Here, ≡ denotes syntactic equality.

We define a function from multi-actions to multi-action names, which simply removes all data
parameters:

Definition 2.2.7 (Data removal from multi-actions). We define α as the multi-action name
obtained by removing all data from the multi-action α:

τ = τ

a(d)|α = a|α

The length of a multi-action name or a multi-action α, denoted |α|, is the number of action names
occurring in it:

Definition 2.2.8 (Length of multi-actions). We define |α| as the number of action names in
multi-action α:

|τ | = 0

|a(d)|α| = 1 + |α|

The removal, inclusion, equality and length operators are generalized to multi-action names in the
obvious way.

To make multi-action equality, inclusion and removal useful for syntactic descriptions of multi-
actions, we define them in the recursion scheme implied by the definition of multi-actions. It can
easily be verified that the axioms of Definition 2.2.6 (Multi-action equality, inclusion and removal)
are valid for these constructive definitions, i.e. that they are actually the intended operator.

12

2.2. Actions 2. MODELS

The following three definitions can be skipped if the reader is familiar with multi-action equality,
inclusion and removal. The main point is to show that these relations can be expressed as a
boolean data expression.

Definition 2.2.9 (Constructive removal). The removal operator \ : MA ×MA → MA removes
the second multi-action from the first. It is defined on the multi-action syntax as follows:

α \ τ = α

τ \ β = τ

a(d)|α \ b(e)|β =

{
α \ β if a ≡ b ∧ d ≈ e
a(d)|(α \ b(e)) \ β otherwise

Using the removal operator, we can define inclusion of one multi-action in another:

Definition 2.2.10 (Constructive inclusion). The inclusion operator v: MA ×MA → B checks
if the first multi-action is contained in the second. It is defined on the multi-action syntax as
follows:

α v τ = α ≡ τ
τ v β = true

a(d)|α v b(e)|β =

{
α v β if a ≡ b ∧ d ≈ e
α v b(e)|(β \ a(d)) ∧ a(d) v β otherwise

We can now define equality as follows:

Definition 2.2.11 (Constructive equality). The equality operator =: MA×MA → B checks if
the first multi-action equals the second. It is defined on the multi-action syntax as follows:

τ = β = β ≡ τ
a(d)|α = β = α = β \ a(d) ∧ a(d) v β

An alternative characterization of equality on multi-actions is that both multi-actions are included
in the other.

2.2.2 Action formulae

We denote sets of multi-actions using action formulae.

Grammar 2.2.12 (Action formulae). The action formulae are given by the following grammar:

AF ::= b

| α
| ¬(AF)

| AF ∧AF
| AF ∨AF

Here b is a boolean expression.

13

2. MODELS 2.3. Labeled transition systems

The semantics of action formulae are as follows:

Definition 2.2.13 (Action formulae semantics). The semantics of an action formula af in a
data environment ε, denoted JafKε, is a set of multi-actions, given by:

JbKε =

{
Act if JbKε
∅ otherwiseJα(e)Kε = {α(JeKε)}J¬(af)Kε = Act \ JafKεJaf ∧ af ′Kε = JafKε ∩ Jaf ′KεJaf ∨ af ′Kε = JafKε ∪ Jaf ′Kε

Note that in the rule for b, the occurrence of JbKε on the left hand side denotes the action
formula’s semantics, i.e. a set of states, while that on the right hand side denotes the boolean
expression’s semantics, i.e. true or false. The set Act is the set of all multi-actions (cf. Definition
2.2.4 (Multi-actions)).

Clearly, all action formulae can be rewritten to a form where negations only occur immediately be-
fore multi-actions. This can then be rewritten to disjunctive normal form, analogous to disjunctive
normal form for boolean formulae.

Definition 2.2.14 (Action formulae disjunctive normal form). The action formulae in disjunc-
tive normal form are given by the following grammar:

AF ::= C | C ∨ C
C ::= L | L ∧ L
L ::= b | α | ¬α

Here, b is a boolean expression and α is a multi-action. The disjuncts C are called clauses and
the conjuncts L are called literals.

2.3 Labeled transition systems

Labeled transition systems are the semantic basis of process descriptions in mCRL2. A labeled
transition system has an explicit set of states S, an explicit transition relation and an initial state.
The labeled transition systems are restricted to process descriptions of finite state spaces.

Formally, we define the labeled transition systems as follows:

Definition 2.3.1 (Labeled transition systems). Let Act be a set of multi-actions. A labeled
transition system t is a triple (St,→t, it), where St is a set of states, →t⊆ St × Act × St is a
transition relation between states and it ∈ St is the initial state.

We usually write s
a−→t s

′ instead of (s, a, s′) ∈→t. We often also drop the subscript t if it is clear
from the context.

Labeled transition systems are visually represent labeled transition systems with dots indicating
states and labeled arrows between states indicating transitions between them.

14

2.4. Linear process equations 2. MODELS

2.4 Linear process equations

Linear process equations are a subset of the process algebra mCRL2 (Groote et al. [2]). We use
this as our most basic description of a process, because it is sufficiently expressive for real-world
systems, while also being easy to understand. Also, it restricts our process descriptions to guarded
processes, disallowing such troublesome processes as “the process X equals two processes X in
parallel”: X = X ||X.

Linear process equations are models described as lists of condition-action-effect clauses. The
clauses are called summands, identified by summand indices. The three elements of a condition-
action-effect clause are:

• Condition: there is a boolean condition, an expression on data, that tells us when the
transition is enabled. If multiple transitions are enabled, one is chosen nondeterministically.

• Action: this multi-action expression is the transition label.

• Effect: the resulting state after taking the transition.

We formally define linear process equations as follows (Groote and Willemse [5]):

Definition 2.4.1 (Linear process equations). Let S be a data sort corresponding to the state
space S of a process. Let I be a set of summand indices, with for each summand index i a
data sort Ei. Let for each state s and data value e : Ei, the condition ci(s, e) : B specify if a
transition is possible, αi(s, e) ∈ Act denote the label of that transition and gi(s, e) ∈ S denote
the resulting state of the process. A linear process equation is a description of a system in the
following form:

P (s : S) =
∑
i∈I

∑
e:Ei

ci(s, e)→ αi(s, e) . P (gi(s, e))

We omit the summation symbol for summations over a single term, i.e. when I or the semantic
domain of Ei are singletons or when ci, αi and gi are independent from e. We restrict ourselves
to action labels αi(s, e) = ai,1(ei,1)| . . . |ai,ni(ei,ni), where ai,1 through ai,ni are action names and
ei,1 through ei,ni are expressions of the correct sort for that action name.

The standard process P , given in Definition 2.4.1 (Linear process equations), will be used through-
out this thesis.

The semantics of a linear process equation is a labeled transition system:

Definition 2.4.2 (Linear process equation semantics). The semantics of P with initial state
si ∈ S, is the labeled transition system JP (si)K, defined as follows:

• SJP (si)K = S
• →JP (si)K= {(s, αi(s, e), gi(s, e)) | i ∈ I ∧ e : Ei ∧ ci(s, e)}
• iJP (si)K = si

We also use a notational variant where the definition of a process occurs within the semantic
brackets J·K(si), meaning “JP (si)K, where P is defined as. . . ”.

15

2. MODELS 2.5. Buffer example (1)

empty d

in(d)

out(d)

Figure 1: A one-place buffer. The left state represents the buffer being empty. The square symbol
to the right represents a possibly infinite number of states where the buffer is full, one for each
element in D, denoted by the variable d. Similarly, there are possibly infinitely many transitions:
an in and out transition for each element in D.

2.5 Buffer example (1)

As a running example, we consider a buffer process. A buffer has a number of storage locations.
Data elements can be put in the buffer with the “in” action, provided it is not already full. If there
are data elements in the buffer, the “out” action outputs these elements, in the order in which
they entered. In this first example, we look at a one-place buffer.

A one-place buffer has one state for each of the possible data elements it can hold and one extra
state “empty” for when it is empty. If it holds a data element s, it can output that data element
with a out(s) action, ending up in the state empty. If it is empty, it can input any data element d
with a in(d) action, ending up in the state where it is holding d. This is illustrated in Figure 1. The
one-place buffer cannot be expressed as a finite labeled transition system when the data domain
D and thus the state space D ∪ {empty} is infinitely large. We express this process as a linear
process equation.

Let the linear process equation B1 represent the one-place buffer. The state parameter is a
variable s from D∪{empty}. There are two summands: one for when s ≈ empty and one for when
s 6≈ empty. If it is empty, there is a possible in transition for any data element from D, expressed
as a summation over d : D. The resulting process is B1(d). If the buffer is not empty, it holds a
data element s. The out transition is enabled for s and the resulting process is B1(empty).

Let the one-place buffer B1 be defined as follows:

B1(s : D ∪ {empty}) =
∑
d:D

s ≈ empty→ in(d) . B1(d)

+ s 6≈ empty→ out(s) . B1(empty)

16

2.6. Process descriptions 2. MODELS

2.6 Process descriptions

In this section, we define operators on linear process equations. These operators are defined
on labeled transition systems by J. F. Groote [3] and we lift these definitions to linear process
equations. There are five process operators we consider. There is the binary parallel composition
operator || and four unary process operators: the communication operator Γ, the allow operator∇,
the rename operator ρ and the abstraction operator τ .

The combination of linear process equations and process operators working on them, form the set
of process descriptions:

Grammar 2.6.1 (Process descriptions). A process description is an expression of the following
grammar, where P is a linear process equation and Q is a process description:

Q ::= P (s) | Q ||Q | ΓC(Q) | ∇V (Q) | ρC(Q) | τH(Q)

Here, C is a set of substitutions (cf. Definition 2.8.1 (Substitution function)) and V and H are
sets of multi-action names.

The remainder of this section explains these operators in detail. For each operator, we give the
following:

• an explanation of the intuition,

• a formal version of the definition on labeled transition systems, inspired by or taken from J.
F. Groote [3],

• an example of the operator on labeled transition systems,

• a derivation of the definition on linear process equations, using the definition on labeled
transition systems,

• an example of the operator on linear process equations.

2.7 Parallel composition

The parallel composition between two processes can do a transition from either of the two pro-
cesses, or a transition in both processes simultaneously. Actions occurring simultaneously will be
denoted using multi-actions. There is no implicit communication between those processes. Any
communication between processes will be made explicit using the communication operator, which
we will see in Section 2.8. The parallel composition on labeled transition systems is defined as
follows:

Definition 2.7.1 (Parallel composition on labeled transition systems). The parallel composition
of two labeled transition systems t1 and t2, is the labeled transition system t1 || t2 where:

• St1 || t2 = St1 × St2
• →t1 || t2 = {((s1, s2), α, (s′1, s2)) ∈ (St1 × St2)× Act× (St1 × St2) | s1

α−→t1 s
′
1} ∪

{((s1, s2), β, (s1, s
′
2)) ∈ (St1 × St2)× Act× (St1 × St2) | s2

β−→t2 s
′
2} ∪

{((s1, s2), α|β, (s′1, s′2)) ∈ (St1 × St2)× Act× (St1 × St2) | s1
α−→t1 s

′
1 ∧ s2

β−→t2 s
′
2}

• it1 || t2 = (it1 , it2)

17

2. MODELS 2.7. Parallel composition

a

(a) System t1

b

(b) System t2

a|b

b

b

a a

(c) System t1 || t2

Figure 2: Example of the parallel composition operator.

Example 2.7.2 (Parallel composition). An example of the parallel composition operator on la-
beled transition systems, is shown in Figure 2. Given are two systems, t1 and t2, their parallel
composition t1 || t2 is shown on the right.

The following properties on the parallel composition are obvious:

Fact 2.7.3 (Parallel composition properties). Up to state isomorphism and multi-action equality
on transition labels, parallel composition on labeled transition systems is associative, commu-
tative, and the system tδ = ({s}, ∅, s) is its unit element.

Next, we derive the parallel composition on linear process equations from the specification that it
corresponds to parallel composition on their semantic labeled transition systems:

J(P1 ||P2)(si1, si2)K = JP1(si1)K || JP2(si2)K
Let P1 and P2 be the following linear process equations:

P1(s : S1) =
∑
i∈I1

∑
e:E1,i

c1,i(s, e)→ α1,i(s, e) . P1(g1,i(s, e))

P2(s : S2) =
∑
i∈I2

∑
e:E2,i

c2,i(s, e)→ α2,i(s, e) . P2(g2,i(s, e))

We derive the parallel composition as follows:

JP1(si1)K || JP2(si2)K
= {Definition 2.4.2 (Linear process equation semantics)}

(S1, {(s, α1,i(s, e), g1,i(s, e)) | s ∈ S1 ∧ i ∈ I1 ∧ c1,i(s1, e)}, si1)

|| (S2, {(s, α2,i(s, e), g2,i(s, e)) | s ∈ S2 ∧ i ∈ I2 ∧ c2,i(s, e)}, si2)

= {Definition 2.7.1 (Parallel composition on labeled transition systems)}
(S1 × S2,

{((s1, s2), α1,i(s1, e), (g1,i(s1, e), s2)) | s1 ∈ S1 ∧ s2 ∈ S2 ∧ i ∈ I1 ∧ e : E1,i ∧ c1,i(s1, e)}
∪ {((s1, s2), α2,i(s2, e), (s1, g2,i(s2, e))) | s1 ∈ S1 ∧ s2 ∈ S2 ∧ i ∈ I2 ∧ e : E2,i ∧ c2,i(s2, e)}
∪ {((s1, s2), α1,i1(s1, e1)|α2,i2(s2, e2), (g1,i1(s1, e1), g2,i(s2, e2))) | s1 ∈ S1 ∧ s2 ∈ S2

∧ i1 ∈ I1 ∧ i2 ∈ I2 ∧ e1 : E1,i1 ∧ e2 : E2,i2 ∧ c1,i1(s1, e1) ∧ c2,i2(s2, e2)},
(si1, si2))

18

2.7. Parallel composition 2. MODELS

= {Definition 2.4.2 (Linear process equation semantics)}uwwwwwwwwwwv

P (s1 : S1, s2 : S2) =
∑
i∈I1

∑
e:E1,i

c1,i(s1, e)→ α1,i(s1, e) . P (g1,i(s1, e), s2)

+
∑
i∈I2

∑
e:E2,i

c2,i(s2, e)→ α2,i(s2, e) . P (s1, g2,i(s2, e))

+
∑
i1∈I1

∑
i2∈I2

∑
e1:E1,i1

∑
e2:E2,i2

c1,i1(s1, e1) ∧ c2,i2(s2, e2)→

α1,i1(s1, e1)|α2,i2(s2, e2) . P (g1,i1(s1, e1), g2,i2(s2, e2))

}����������~
(si1, si2)

So, we define parallel composition on linear process equations as follows:

Definition 2.7.4 (Parallel composition on linear process equations). Let P1 and P2 be the
following linear process equations:

P1(s : S1) =
∑
i∈I1

∑
e:E1,i

c1,i(s, e)→ α1,i(s, e) . P1(g1,i(s, e))

P2(s : S2) =
∑
i∈I2

∑
e:E2,i

c2,i(s, e)→ α2,i(s, e) . P2(g2,i(s, e))

The parallel composition of linear process equations P1 and P2, denoted P1 ||P2, is defined as
follows:

(P1 ||P2)(s1 : S1, s2 : S2) =∑
i∈I1

∑
e:E1,i

c1,i(s1, e)→ α1,i(s1, e) . (P1 ||P2)(g1,i(s1, e), s2)

+
∑
i∈I2

∑
e:E2,i

c2,i(s2, e)→ α2,i(s2, e) . (P1 ||P2)(s1, g2,i(s2, e))

+
∑
i1∈I1

∑
i2∈I2

∑
e1:E1,i1

∑
e2:E2,i2

c1,i1(s1, e1) ∧ c2,i2(s2, e2)→

α1,i1(s1, e1)|α2,i2(s2, e2) . (P1 ||P2)(g1,i1(s1, e1), g2,i2(s2, e2))

We assume the variables s1 and s2 are distinct. This can always be achieved by renaming
variables.

Lemma 2.7.5 (Parallel composition correspondence). The parallel composition on linear pro-
cess equations corresponds to the parallel composition on labeled transition systems, i.e.

J(P1 ||P2)(si1, si2)K = JP1(si1)K || JP2(si2)K.
Proof. By the derivation of parallel composition and Definition 2.7.4 (Parallel composition on
linear process equations).

19

2. MODELS 2.8. Communication operator

As a corollary, the properties of Fact 2.7.3 (Parallel composition properties) also apply to parallel
composition on linear process equations:

Corollary 2.7.6 (Parallel composition properties on linear process equations). From Fact
2.7.3 (Parallel composition properties) and Lemma 2.7.5 (Parallel composition correspondence)
it follows that parallel composition on linear process equations is associative and commutative
with respect to state isomorphism and multi-action equality on transition labels. Let the linear
process equation Pδ be defined as follows:

Pδ(s : {iPδ}) = false→ τ . Pδ(s)

As JPδ(iPδ)K = tδ, it is the unit element of parallel composition on linear process equations,
with respect to state isomorphism.

Example 2.7.7 (Example 2.7.2 as linear process equations). The process of Example 2.7.2 (Paral-
lel composition) can be expressed in linear process equations as follows: the left labeled transition
system is represented by linear process equation P1(true), and the right by P2(true).

P1(c : B) = c→ a . P1(¬c)
P2(d : B) = d→ b . P2(¬d)

(P1 ||P2)(c : B, d : B) = c→ a . (P1 ||P2)(¬c, d)

+ d→ b . (P1 ||P2)(c,¬d)

+ c ∧ d→ a|b . (P1 ||P2)(¬c,¬d)

2.8 Communication operator

The communication operator connects parallel components together so they can interact. A com-
munication operator performs a number of substitutions of action names, provided their data
arguments match.

What actions are to be substituted, is denoted by a set of substitutions. This is an argument
of the communication operator, which is then applied to a process. How the action names are
substituted, is given by the substitution function:

Definition 2.8.1 (Substitution function). Let a1, . . . , an and a′1, . . . , a
′
m be action names. A

substitution is an expression of the form a1| . . . |an → a′1| . . . |a′m, commonly abbreviated as
β → β′. The substitution function γ substitutes multi-actions for other actions, if their data
arguments match. Let α be a multi-action. We use β(d), where β = a1| . . . |an, to mean
a1(d)| . . . |an(d)

γ∅(α) = α

γC1∪C2
(α) = γC1

(γC2
(α))

γ{β→β′}(α) =

{
β′(d)|γ{β→β′}(α \ β(d)) if β(d) v α for some d ∈ D
α if no such d exists

The substitution set must yield a confluent substitution function: the order in which the sub-
stitutions are applied does not influence the result. Formally, we disallow sets of substitutions
for which the second rule in Definition 2.8.1 (Substitution function) yields different results for
different partitionings of C1, C2, i.e. it must hold that γC1

(γC2
(α)) = γC3

(γC4
(α)), for any α and

for any C3, C4 such that C1 ∪ C2 = C3 ∪ C4.

20

2.8. Communication operator 2. MODELS

Example 2.8.2 (Substitution function). Let C = {a|b → c}. When a|b is contained in a multi-
action α, and their data parameters are equal, it is substituted with c. If it occurs multiple times,
it is substituted multiple times: γC(a|a|b|b) = c|c. The result of a substitution is not substituted
again: γ{a|a→a}(a|a|a|a) = a|a, not a. It is therefore not generally the case that β(d) 6v γ{β→β′}(α)
for any d ∈ D.

The data parameter requirement is trivially fulfilled when there are none, i.e. γC(a|b) = c
in any environment ε. When there are data parameters, they must match to be substituted.
The data parameter of the result is equal to the data parameters of the original. For example,
γC(a(1)|b(1)) = c(1).

These data parameters can also be variables and then the result of the substitution function
depends on the data environment: γC(a(x)|b(y) = c(x) = c(y) only when Jx ≈ yKε equals true.
Note that x, y or any other equal data expression can be chosen as the result parameter, as they
are all semantically equal.

Data parameters also trivially match when there is only one to match, e.g. for sets of substitutions
a→ β. This is called a single substitution and the communication operator for single substitutions
is called the rename operator. It is discussed in more detail in Section 2.10.

We disallow the substitution set {a→ b, b→ c}, as it matters which substitution occurs first. For
example, γ{a→b}(γ{b→c}(a)) = γ{a→b}(a) = b is not equal to γ{b→c}(γ{a→b}(a)) = γ{b→c}(b) = c.

The communication operator for substitutions C applied to a labeled transition system t is equal
to t with the substitution function γC applied to all transition labels:

Definition 2.8.3 (Communication operator). The communication operator for substitutions C
applied to labeled transition system t, denoted ΓC(t), is defined as follows:

• SΓC(t) = St

• →ΓC(t)= {(s, γC(α), s′) ∈ St × Act× St | s α−→t s
′}

• iΓC(t) = it

We disallow substitutions where the actions on the left and right hand side take expressions of
a different sort as parameter.

We derive the communication operator on linear process equations from the communication op-
erator on the corresponding labeled transition system:

JΓC(P)(si)K = ΓC(JP (si)K)
The derivation is as follows:

ΓC(JP (si)K)
= {Definition 2.4.2 (Linear process equation semantics)}

ΓC((S, {(s, αi(s, e), gi(s, e)) | s ∈ S ∧ i ∈ I ∧ e : Ei ∧ ci(s, e)}, si))
= {Definition 2.8.3 (Communication operator)}

(S, {(s, γC(αi(s, e)), gi(s, e)) | s ∈ S ∧ i ∈ I ∧ e : Ei ∧ ci(s, e)}, si)

We may assume C only has one substitution β → β′, which we can always establish using the rule
γC1∪C2

(α) = γC1
(γC2

(α)).

21

2. MODELS 2.8. Communication operator

Following the definition of the substitution function, we want to see if β(d) v αi(s, e) for some
d ∈ D. We split up the transition labels syntactically into pairs (α1, α2) and check if β(d) = α1 for
some d ∈ D. If so, we recursively check if there are some substitutions to perform in α2. Because
β(d) = α1 can only hold if β and α1 are of equal length, we confine our search to submulti-actions
of length |β|. We define the function choosem on multi-actions α to give a set of all multi-actions
contained in α of length m, along with the remainder of α:

choosem(τ) =

{
{(τ, τ)} if m = 0

∅ otherwise

choosem(a(e)|α) =


{(a(e)|α1, α2) | (α1, α2) ∈ choosem−1(α)}

∪ {(α1, a(e)|α2) | (α1, α2) ∈ choosem(α)} if m > |α|+ 1

{(a(e)|α, τ)} if m = |α|+ 1

∅ otherwise

Let (α1, α2) ∈ choose|β|(α). We need to check if β(d) = α1 for some d ∈ D. Let a1(e1)| . . . |a|β|(e|β|) =
α1. We can immediately determine whether β = a1| . . . |a|β|. If not, β(d) 6= α1 for any d ∈ D.
Otherwise, we have to see if e1 ≈ . . . ≈ e|β|. We construct a list of condition-action-effect clauses
using the function CAE:

CAEP,β,β′,g(α, γ, c) =

c ∧
∧

(a1(e1)|...|a|β|(e|β|),α
′)∈choose|β|(α)

a1|...|a|β|=β

¬(e1 ≈ . . . ≈ e|β|)→ α|γ . P (g)

+
∑

(a1(e1)|...|a|β|(e|β|),α
′)∈choose|β|(α)

a1|...|a|β|=β

CAEP,β,β′,g(α
′, γ|β′(e1), c ∧ e1 ≈ . . . ≈ e|β|)

This function returns a list of condition-action-effect clauses, corresponding to the substitution
function being applied to the multi-action α. The multi-action γ accumulates the results of
substitutions so that they will not be substituted again. The conditions for when a substitution
occurs, are accumulated in the condition c.

The multi-action α is split into a1(e1)| . . . |a|β| and α′ by the choose function. There is one
summand for when there is no substitution, and one summand for each possible split in which
there is a substitution. In the first summand, a1(e1)| . . . |a|β|(e|β|) is not equal to β(d) for any
possible split and any data element d. No substitution takes place. In the other summands,
a1(e1)| . . . |a|β|(e|β|) is substituted to β′(e1) which is appended to the substitution results γ. Also,
the condition for the substitution to be successful, e1 ≈ . . . ≈ e|β|, is appended to the condition
c.

The recursion ends when there are no more submulti-actions in α that could be affected by the
substitution function, i.e. the choose function yields no candidates for substitution.

22

2.8. Communication operator 2. MODELS

So, we define the communication operator on linear process equations as follows:

Definition 2.8.4 (Communication operator on linear process equations). Let C be a set of
substitutions and let process P be the standard process. The communication operator of C
applied to process P , denoted ΓC(P), is again a linear process equation, defined as follows:

If C is not a singleton:

ΓC1∪C2
(P) = ΓC1

(ΓC2
(P))

If C is a singleton β → β′:

Γ{β→β′}(P) =
∑
i∈I

∑
e:Ei

CAEΓ{β→β′}(P),β,β′,gi(s,e)(αi(s, e), τ, ci(s, e)),

where CAE is defined as:

CAEP,β,β′,g(α, γ, c) =

c ∧
∧

(a1(e1)|...|a|β|(e|β|),α
′)∈choose|β|(α)

a1|...|a|β|=β

¬(e1 ≈ . . . ≈ e|β|)→ α|γ . P (g)

+
∑

(a1(e1)|...|a|β|(e|β|),α
′)∈choose|β|(α)

a1|...|a|β|=β

CAEP,β,β′,g(α
′, γ|β′(e1), c ∧ e1 ≈ . . . ≈ e|β|),

and choose is defined as:

choosem(τ) =

{
{(τ, τ)} if m = 0

∅ otherwise

choosem(a(e)|α) =


{(a(e)|α1, α2) | (α1, α2) ∈ choosem−1(α)}

∪ {(α1, a(e)|α2) | (α1, α2) ∈ choosem(α)} if m > |α|+ 1

{(a(e)|α, τ)} if m = |α|+ 1

∅ otherwise

Lemma 2.8.5 (Communication operator correspondence). The communication operator on
linear process equations corresponds to the communication operator on its semantic labeled
transition system, i.e. it holds that JΓC(P)(si)K = ΓC(JP (si)K).

Proof. By the derivation and definition of the communication operator on linear process equations,
Definition 2.8.4 (Communication operator on linear process equations).

Example 2.8.6 (Communication operator on linear process equations). Consider the following
processes P and Q:

P =
∑
d:D

true→ send(d) . P

Q =
∑
d:D

true→ receive(d) . Q

One repeatedly transmits data and the other repeatedly receives data. Their parallel composition
is the following process P ||Q:

(P ||Q) =
∑
d:D

true→ send(d) . (P ||Q)

+
∑
d:D

true→ receive(d) . (P ||Q)

+
∑
d:D

∑
d′:D

true→ send(d)|receive(d′) . (P ||Q)

23

2. MODELS 2.9. Allow operator

A successful data transfer from P to Q is when P sends data which is received by Q. This is the
action transfer. We let the actions send and receive communicate to action transfer, by applying
Γ{send|receive→transfer} to P ||Q. We abbreviate Γ{send|receive→transfer}(P ||Q) as R:

R =
∑
d:D

CAER,send|receive,transfer,id(send(d), τ, true)

+
∑
d:D

CAER,send|receive,transfer,id(receive(d), τ, true)

+
∑
d:D

∑
d′:D

CAER,send|receive,transfer,id(send(d)|receive(d′), τ, true)

As choose2 for send(d) and receive(d) yields the empty set, the recursion ends immediately for
the first two clauses. For the third clause, we calculate that choose2(send(d)|receive(d′)) equals
{(send(d)|receive(d′), τ)}. This yields two clauses: one for the case in which nothing communicates
to a transfer action, and one for each split (there is only one) with a recursive application of CAE
when it does communicate.

R =
∑
d:D

true→ send(d) . R

+
∑
d:D

true→ receive(d) . R

+
∑
d:D

∑
d′:D

true ∧ ¬(d ≈ d′)→ send(d)|receive(d′) . R

+ CAER,send|receive,transfer,id(τ, transfer(d), true ∧ d ≈ d′)

In this second recursion, choose2(τ) yields the empty set, so no candidates for substitution:

R =
∑
d:D

true→ send(d) . R

+
∑
d:D

true→ receive(d) . R

+
∑
d:D

∑
d′:D

true ∧ ¬(d ≈ d′)→ send(d)|receive(d′) . R

+ true ∧ d ≈ d′ → transfer(d) . R

Note that even though send and receive can now communicate to transfer, this does not exclude
those actions from occurring by themselves or occurring simultaneously with different parameters.

2.9 Allow operator

The allow operator does not change transition labels, but blocks transitions based on their action
labels. It uses a set of multi-action names, called the allow set, as a white-list. The allow operator
prevents multi-actions from occurring unless its multi-action name is in the allow set. This allow
set is a parameter to the allow operator. Data parameters are ignored.

24

2.9. Allow operator 2. MODELS

a|b

b

b

a a

(a) System t1 || t2

a|b
a a

(b) System ∇{a,a|b}(t1 || t2)

b

b

a a

(c) System ∇{a,b}(t1 || t2)

Figure 3: Example of the allow operator. Note that in the system ∇{a,b}(t1 || t2) on the right, the
transition with label a|b is removed, even though a and b are in the allow set.

On labeled transition systems, the formal definition of the allow operator is as follows:

Definition 2.9.1 (Allow operator). Let V be a set of multi-action names. The allow operator
for V applied to labeled transition system t, denoted ∇V (t), is defined as follows:

• S∇V (t) = St

• →∇V (t)= {(s, α, s′) ∈ St × Act× St | s α−→t s
′ ∧ α ∈ V ∪ {τ}}

• i∇V (t) = it

Note that a τ transition cannot be prevented by the allow operator.

Example 2.9.2 (Allow operator). An example of the allow operator on labeled transition systems,
is shown in Figure 3. We apply the allow operator to the labeled transition system t1 || t2 of example
Example 2.7.2.

We derive the definition of the allow operator on linear process equations from the allow operator
on the corresponding labeled transition system:

J∇V (P)(si)K = ∇V (JP (si)K)
Let P be the standard process. The derivation is as follows:

∇V (JP (si)K)
= {Definition 2.4.2 (Linear process equation semantics)}
∇V ((S, {(s, αi(s, e), gi(s, e)) | s ∈ S ∧ i ∈ I ∧ e : Ei ∧ ci(s, e)}, si))

= {Definition 2.9.1 (Allow operator)}
(S, {(s, αi(s, e), gi(s, e)) | s ∈ S ∧ i ∈ I ∧ e : Ei ∧ ci(s, e) ∧ αi(s, e) ∈ V ∪ {τ}}, si)

We can determine whether αi(s, e) is an element of V ∪{τ} for each condition-action-effect clause.

The allowed subset I ′ of I is where the action is in the allow set: I ′ = {i | αi(s, e) ∈ V ∪{τ}}.

= {set theory}
(S, {(s, αi(s, e), gi(s, e)) | s ∈ S ∧ i ∈ I ′ ∧ e : Ei ∧ ci(s, e)}, si)

= {Definition 2.4.2 (Linear process equation semantics)}JP (s : S) =
∑
i∈I′

∑
e:Ei

ci(s, e)→ αi(s, e) . P (gi(s, e))K(si)

25

2. MODELS 2.10. Rename operator

So, we define the allow operator on linear process equations as follows:

Definition 2.9.3 (Allow operator on linear process equations). Let process P be the standard
process, and let V be a set of multi-action names. The allow operator for V applied to P ,
denoted ∇V (P), is again a linear process equation, defined as follows:

∇V (P)(s : S) =
∑
i∈I′

∑
e:Ei

ci(s, e)→ αi(s, e) . P (gi(s, e)),

where I ′ = {i | αi(s, e) ∈ V ∪ {τ}}.
Lemma 2.9.4 (Allow operator correspondence). The allow operator on linear process equations
corresponds to the allow operator on labeled transition systems, i.e. it holds that

J∇V (P)(s)K = ∇V (JP (s)K).
Proof. By the derivation of allow operator and Definition 2.9.3 (Allow operator on linear process
equations).

We revisit the processes that keep sending and receiving data:

Example 2.9.5 (Allow operator on linear process equations). Consider the process R of Example
2.8.6 (Communication operator on linear process equations):

R =
∑
d:D

true→ send(d) . R

+
∑
d:D

true→ receive(d) . R

+
∑
d:D

∑
d′:D

d 6≈ d′ → send(d)|receive(d′) . R

+
∑
d:D

true→ transfer(d) . R

We noted that while the send and receive actions can communicate to a transfer action, this does
not prevent those actions from occurring on their own or occurring simultaneously with different
parameters. Using the allow operator, we can do exactly that. The only action we allow, is the
successful transfer action transfer. We define the allow set V = {transfer} and calculate ∇V (R).
There is only one clause for which the actions, stripped of their data parameters, are in the set
{transfer, τ}: the last clause. The others are simply removed:

∇V (R) =
∑
d:D

true→ transfer(d) . ∇V (R)

2.10 Rename operator

The rename operator substitutes action names. It is a special case of the communication operator,
where the substitutions have single action names on their left hand sides. This is called a single
substitution:

Definition 2.10.1 (Single substitutions). A single substitution is an expression of the form
a→ a′1| . . . |a′n, where a and a′1 through a′n are actions.

26

2.10. Rename operator 2. MODELS

The rename operator is equal to the communication operator:

Definition 2.10.2 (Rename operator). The rename operator for a set of single substitutions
C, applied to labeled transition system t, denoted ρC(t), is equal to ΓC(t).

We disallow substitutions where the actions on the left and right hand side take expressions of
a different sort as parameter.

The reason there is a separate rename operator and not only a communication operator, is that
it allows for a simpler definition for linear process equations. Since single substitutions only have
single action names on their left hand sides, matching data parameters is trivial. Because of this,
we do not need to consider data at all and we can define the renaming on the action right away.
We use this observation to derive a concise definition of ρC(P) from the equal ΓC(P). Let C be
a singleton a→ β. This can always be established using the rule that ρC1∪C2

(P) = ρC1
(ρC2

(P)).
We consider the following process:

Jρ{a→β′}(P)(si)K
We can simply go through the action names in αi(s, e) and replace the actions one by one. So, we
define the rename operator on multi-actions. The rename operator on processes then equals:

=

t
P (s : S) =

∑
i∈I

∑
e:Ei

ci(s, e)→ ρC(αi(s, e)) . P (gi(s, e))

|
(si)

Now, for the definition of rename on multi-actions. This is trivial, following the pattern of
Definition 2.8.1 (Substitution function):

ρC(τ) = τ

ρC(a(e)|α) = a(e)|ρC(α)

ρC(b(e)|α) = b(e)|ρC(α), where b 6≡ a

We use this as a more convenient definition of the rename operator:

Definition 2.10.3 (Rename operator for linear process equations). Let C be a set of single
substitutions and let process P be the standard process. The rename operator of C applied to
process P , denoted ρC(P), is again a linear process equation, defined as follows:

If C is not a singleton:

ρC1∪C2(P) = ρC1(ρC2(P))

If C is a singleton a→ β′:

ρC(P) =
∑
i∈I

∑
e:Ei

ci(s, e)→ ρC(αi(s, e)) . P (gi(s, e))

The rename operator on multi-actions is defined as:

ρC(τ) = τ

ρC(a(e)|α) = a(e)|ρC(α)

ρC(b(e)|α) = b(e)|ρC(α), where b 6≡ a

27

2. MODELS 2.10. Rename operator

Example 2.10.4 (Rename operator). Consider the process R Example 2.8.6 (Communication
operator on linear process equations). The process R is defined as follows:

R =
∑
d:D

true→ send(d) . R

+
∑
d:D

true→ receive(d) . R

+
∑
d:D

∑
d′:D

d 6≈ d′ → send(d)|receive(d′) . R

+
∑
d:D

true→ transfer(d) . R

We rename the send action to an out action. By simply going through every multi-action and
replacing the action name send with out, we obtain:

ρ{send→out}(R) =
∑
d:D

true→ out(d) . ρ{send→out}(R)

+
∑
d:D

true→ receive(d) . ρ{send→out}(R)

+
∑
d:D

∑
d′:D

d 6≈ d′ → out(d)|receive(d′) . ρ{send→out}(R)

+
∑
d:D

true→ transfer(d) . ρ{send→out}(R)

We use the rename operator ρ, with no substitution set, to denote replacing every action name a
with a fresh action name a′:

Definition 2.10.5 (Rename operator with no substitution set). Let process P be the standard
process. The rename operator for fresh action names, applied to P , denoted ρ(P), is defined as
follows:

ρ(P) =
∑
i∈I

∑
e:Ei

ci(s, e)→ ρ(αi(s, e)) . ρ(P (gi(s, e)))

The rename operator for fresh action names on multi-actions is defined as:

ρ(τ) = τ

ρ(a(e)|α) = a′|ρ(α)

Here, a′ is a fresh action name, not occurring in P .

28

2.11. Abstraction operator 2. MODELS

2.11 Abstraction operator

The abstraction operator hides behavior of the system, by renaming specified multi-actions into
the internal action τ . It can be thought of as the communication operator with τ on the right
hand side of the substitutions and without parameter matching.

First, we define this abstraction on multi-actions:

Definition 2.11.1 (Abstraction on multi-actions). Let H be a set of non-empty multi-action
names. The abstraction operator for H applied to multi-action α, denoted τH(α), is defined as
follows:

τH1∪H2
(α) = τH1

(τH2
(α))

τ{β}(α) =

{
τ{β}(α \ β′) , for some β′ v α and β′ = β

α , if no such β′ exists

The abstraction set must yield a confluent abstraction function: the order in which the abstractions
are applied does not influence the result. Formally, we disallow sets of multi-actions for which the
first rule in Definition 2.11.1 (Abstraction on multi-actions) yields different results for different
partitionings of H1, H2, i.e. it must hold that τH1

(τH2
(α)) = τH3

(τH4
(α)), for any H3, H4 such

that H1 ∪H2 = H3 ∪H4.

Example 2.11.2 (Abstraction operator on multi-actions). The abstraction operator hides multi-
actions occurring in another multi-action, if its multi-action name matches a multi-action name in
the abstraction set. For example, τ{a|b}(a|b|c) = c. If it occurs multiple times, it is hidden multiple
times: τ{a|b}(a|a|b|b|c) = c. Any parameters are not taken into account: τ{a|b}(a(1)|b(2)) = τ .

We disallow the abstraction set {a|b, a|c}, as it is not confluent. It matters which multi-action
name is abstracted from first: τ{a|b}(τ{a|c}(a|b|c)) = τ{a|b}(b) = b is not equal to what we obtain
when we hide the multi-actions in reverse order: τ{a|c}(τ{a|b}(a|b|c)) = τ{a|c}(c) = c.

The abstraction operator for a labeled transition system is the abstraction operator for multi-
actions applied to all transition labels:

Definition 2.11.3 (Abstraction operator). Let H be a set of multi-action names. The ab-
straction operator for H applied to labeled transition system t, denoted τH(t), is defined as
follows:

• SτH(t) = St

• →τH(t)= {(s, τH(α), s′) ∈ St × Act× St | s α−→t s
′}

• iτH(t) = it

We can derive the abstraction operator on linear process equations from the abstraction operator
on the corresponding labeled transition system:

JτH(P)K = τH(JP K)
AssumeH is a singleton β, which can always be established using the rule τH1∪H2

(P) = τH1
(τH2

(P)).

29

2. MODELS 2.11. Abstraction operator

τ{β}(P)

= {Definition 2.4.2 (Linear process equation semantics)}
τ{β}((S, {(s, αi(s, e), gi(s, e)) | s ∈ S ∧ i ∈ I ∧ e : Ei ∧ ci(s, e)}, si))

= {Definition 2.11.3 (Abstraction operator)}
(S, {(s, τ{β}(αi(s, e)), gi(s, e)) | s ∈ S ∧ i ∈ I ∧ e : Ei ∧ ci(s, e)}, si))

Similar to the derivation of the rename operator, we define the subsets Im of I as those clauses
with exactly m occurrences of β, excluding parameters. We can express this as

Im = {i | β| . . . |β︸ ︷︷ ︸
m

v αi(s, e) ∧ β| . . . |β︸ ︷︷ ︸
m+1

6v αi(s, e)}.

There are at most n = b |αi(s,e)||β| c occurrences of β. Let β = b1| . . . |bk. We obtain:

P (s : S) =
∑
i∈I0

∑
e:Ei

ci(s, e)→ αi(s, e) . P (gi(s, e))

+
∑
i∈I1

∑
e:Ei

ci(s, e)→ αi(s, e) \ b1(e1,1)| . . . |bk(e1,k) . P (gi(s, e))

...

+
∑
i∈In

∑
e:Ei

ci(s, e)→

αi(s, e) \ b1(e1,1)| . . . |bk(e1,k) \ · · · \ b1(en,1)| . . . |bk(en,k) . P (gi(s, e)),

where em,x is the expression of action bx in the mth occurrence of β. As τH is required to be
confluent, the exact order does not matter.

So, we define the abstraction operator on linear process equations as follows:

Definition 2.11.4 (Abstraction operator on linear process equations). Let process P be the
standard process, and let H be a set of multi-action names. The abstraction operator for H
applied to P , denoted τH(P), is again a linear process equation, defined as follows:

τ{β}(P)(s : S) =
∑
i∈I0

∑
e:Ei

ci(s, e)→ αi(s, e) . τ{β}(P)(gi(s, e))

+
∑
i∈I1

∑
e:Ei

ci(s, e)→ αi(s, e) \ b1(e1,1)| . . . |bk(e1,k) . τ{β}(P)(gi(s, e))

...

+
∑
i∈In

∑
e:Ei

ci(s, e)→

αi(s, e) \ b1(e1,1)| . . . |bk(e1,k) \ · · · \ b1(en,1)| . . . |bk(en,k) . τ{β}(P)(gi(s, e)),

where β = b1| . . . |bk, the sets Im = {i | β| . . . |β︸ ︷︷ ︸
m

v αi(s, e) ∧ β| . . . |β︸ ︷︷ ︸
m+1

6v αi(s, e)} and expression

em,x is the parameter of action bx in the mth occurrence of β.

30

2.11. Abstraction operator 2. MODELS

Lemma 2.11.5 (Abstraction operator correspondence). The abstraction operator on linear
process equations corresponds to the abstraction operator on its semantic labeled transition
system, i.e. it holds that JτH(P)(si)K = τH(JP (si)K).

Proof. By the derivation of the abstraction operator and Definition 2.11.4 (Abstraction operator
on linear process equations).

Example 2.11.6 (Abstraction operator on linear process equations). Consider the process R of
Example 2.8.6 (Communication operator on linear process equations):

R =
∑
d:D

true→ send(d) . R

+
∑
d:D

true→ receive(d) . R

+
∑
d:D

∑
d′:D

d 6≈ d′ → send(d)|receive(d′) . R

+
∑
d:D

true→ transfer(d) . R

Suppose that we would like to abstract from the possibility of send and receive occurring separately
or simultaneously with different parameters, but not blocking them as in Example 2.9.5. So, we
allow the system to perform these steps, but we hide their specifics, as we are only interested in
the transfer action. This can be done by the abstraction operator:

τ{send,receive}(R) =
∑
d:D

true→ τ . τ{send,receive}(R)

+
∑
d:D

true→ τ . τ{send,receive}(R)

+
∑
d:D

∑
d′:D

d 6≈ d′ → τ. τ{send,receive}(R)

+
∑
d:D

true→ transfer(d) . τ{send,receive}(R)

This can be reduced to:

τ{send,receive}(R) = true→ τ . τ{send,receive}(R)

+
∑
d:D

true→ transfer(d) . τ{send,receive}(R)

We have now hidden what other steps R can perform besides transfer.

31

2. MODELS 2.12. Buffer example (2)

2.12 Buffer example (2)

In Section 2.5, we introduced the process B1, a one-place buffer. We can string multiple one-
place buffers together, to form an n-place buffer. In this section, we use the process operators to
construct an n-place buffer from n one-place buffers. We use an inductive construction: given an
n-place buffer Bn and the one-place buffer B1 we have already seen, we construct an n+ 1-place
buffer. The illustrations below have no formal meaning and are meant to give some intuition to
the process we have modeled.

The first step is to put B1 and Bn in parallel:

B1 ||Bn

B1 Bn
in out in out

Now, we would like the output of B1 to serve as input to Bn. The problem is that we cannot
distinguish the actions of Bn and B1. For this, we use the rename operator: we rename the “out”
action of B1 to out′, and “in” of Bn to in′:

ρ{out→out′}(B1) || ρ{in→in′}(Bn)

B1 Bn
in out′ in′ out

The next logical step is to have these primed actions communicate. This enables us to model that
the data element which is given to the n-place buffer is the same element that was outputted by
the one-place buffer. We call this action “move”. For example, out′(1)|in′(1) communicates to
move(1).

Bn+1 = Γ{out′|in′→move}(ρ{out→out′}(B1) || ρ{in→in′}(Bn))

B1 Bn
in out′ in′ out

move

This does not prevent the primed actions from occurring with different parameters, e.g. out(1)|in(2),
or occurring on their own. To remove this behavior from our model, we use the allow operator.
We specify that only the unprimed “in” and “out” actions and the communicating “move” actions
are allowed.

∇{in,out,move}(Γ{out′|in′→move}(ρ{out→out′}(B1) || ρ{in→in′}(Bn)))

B1 Bn
in outmove

The “move” action is really an internal action of the buffer and not an interface to the outside
world. To make this explicit, we abstract from the “move” action with the abstraction opera-
tor.

τ{move}(∇{in,out,move}(Γ{out′|in′→move}(ρ{out→out′}(B1) || ρ{in→in′}(Bn))))

B1 Bn
in outτ

32

3. SPECIFICATIONS

3 Specifications

We present the fixpoint equations family of formalisms in which the specification of a system
can be expressed. These are the modal equation systems (Andersen [1]), inspired by the boolean
equation systems (Mader [8]), and its parameterized version, the parameterized modal equation
systems, which is a new formalism.

Modal equation systems reason over sets of states. The parameterized variants add reasoning with
data, allowing for quantification over data values and reasoning over infinitely many variables.
Parameterized modal equation systems can also be thought of as an equational variant of the
well-known first-order modal µ-calculus. We present the parameterized modal equation systems
in detail.

3.1 Parameterized modal equation systems

We use S to denote the set of states, which encompasses all specific state spaces of processes.
This is similar to how the generalized data sort D encompasses all specific user-defined data sorts
D1, D2,

Parameterized modal equation systems are a list of equations over a set of recursion variables X .
The semantics of a parameterized modal equation system is an assignment of a set of states for
each recursion variable. This is called an environment:

Definition 3.1.1 (Environments). Let X be a set of variables and S be a set of states. An
environment ρ : X → (D → 2S) is a function that assigns functions from data to sets of states
to variables.

The right hand sides of the equations in a parameterized modal equation system are called asser-
tions:

Definition 3.1.2 (Assertions). The assertions are given by the following grammar:

A ::= X(e)

| b
| A ∨A
| A ∧A
| 〈af〉A
| [af]A

| (∃d : D.A)

| (∀d : D.A)

Here, b is a boolean expression and af is an action formula.

33

3. SPECIFICATIONS 3.1. Parameterized modal equation systems

The semantics of assertions depend on a labeled transition system t, a data environment and an
environment for the recursion variables. The assertion’s semantics are as follows:

Definition 3.1.3 (Assertion semantics). The semantics of assertion A in environment ρ, data
environment ε and labeled transition system t, denoted JAKtρε, are defined as follows:

JX(e)Ktρε = ρ(X)(JeKε)
JbKtρε =

{
S if JbKε
∅ otherwiseJA1 ∨ A2Ktρε = JA1Ktρε ∪ JA2KtρεJA1 ∧ A2Ktρε = JA1Ktρε ∩ JA2KtρεJ〈af〉AKtρε = {s ∈ St | (∃s′ ∈ St : s

α−→t s
′ ∧ α ∈ JafKε ∧ s′ ∈ JAKtρε)}J[af]AKtρε = {s ∈ St | (∀s′ ∈ St : s

α−→t s
′ ∧ α ∈ JafKε⇒ s′ ∈ JAKtρε)}J(∃d : D.A)Ktρε =

⋃
v:D

JAKtρε[d := v]

J(∀d : D.A)Ktρε =
⋂
v:D

JAKtρε[d := v]

Here, e is a data expression and JeKε denotes the expression’s semantics in data environment ε,
and similarly for the boolean expression b. We often drop the subscript t if it is clear from the
context.

We often use a linear process equation P instead of an labeled transition system t with the
semantics of assertions and parameterized modal equation systems. As the semantics of linear
process equations are labeled transition systems, this is an obvious generalization.

Example 3.1.4 (Assertions). Some simple examples of assertions are as follows:

• “It is possible to perform an a-action”: 〈a〉true
• “No a-action is possible”: [a]false

• “An action other than a is possible”: 〈¬a〉true
• “An a or b-action is possible”: 〈a ∨ b〉true

Assertions provide some reasoning over paths, but only paths of limited depth. For example, we
cannot express “there is an infinite a-path” as an assertion. This is handled by the fixpoints in
a parameterized modal equation system. The parameterized modal equation systems are lists of
equations with a fixpoint symbol and a recursion variable on the left hand side and an assertion
on the right hand side:

Definition 3.1.5 (Parameterized modal equation system). The parameterized modal equation
systems are given by the following grammar:

PMES ::= ε | (σX(d : D) = A) PMES

Here, σ ∈ {ν, µ} is the fixpoint symbol, X ∈ X is a variable, d is a data variable appropriate
for X and A is an assertion. For nonempty parameterized modal equation systems, the trailing
ε is left implicit.

We often write a parameterized modal equation system

E = (σ1X1(d1 : D1) = A1) . . . (σnXn(dn : Dn) = An)

34

3.1. Parameterized modal equation systems 3. SPECIFICATIONS

in the following vertical format:

E =

σ1X1(d1 : D1) = A1

. . .

σnXn(dn : Dn) = An


A variable X is bound in E if and only if there is an equation in E with X on its left hand side.
Similarly, a variable X is occurring in E if and only if there is an equation in E with X on its right
hand side.

Definition 3.1.6 (Bound and occurring variables).

bnd(ε) = ∅
bnd((σX(d : D) = A) E) = {X} ∪ bnd(E)

occ(ε) = ∅
occ((σX(d : D) = A) E) = occ(A) ∪ occ(E)

occ(b) = ∅
occ(X) = {X}

occ(A1 ∨ A2) = occ(A1) ∪ occ(A2)

occ(A1 ∧ A2) = occ(A1) ∪ occ(A2)

occ(〈af〉A) = occ(A)

occ([af]A) = occ(A)

A parameterized modal equation system E is called closed if and only if all occurring variables are
also bound, i.e. occ(E) ⊆ bnd(E). Otherwise, it is called open.

The semantics of a parameterized modal equation system is an environment where the recursion
variable on the left hand side of each equation matches its definition on the right. Moreover, it
is the least or greatest such value for each recursion variable, depending on the fixpoint symbol,
where fixpoint symbols higher in the list take priority over those lower in the list:

Definition 3.1.7 (Parameterized modal equation system semantics). The semantics of param-
eterized modal equation system E in environment ρ, data environment ε and labeled transition
system t, denoted JEKtρε, are defined as follows:

JεKtρε = ρJ(σX(d : D) = A) EKtρε = JEKtρ[X := σΦρε]ε, where

Φρε := (λF : D → 2S .(λv : D.JAKt(JEKtρ[X := F]ε[d := v])ε))

Note that if a parameterized modal equation system E is closed, JEKtρ1ε = JEKtρ2ε holds for all
environments ρ1, ρ2, labeled transition system t and data environment ε.

With parameterized modal equation systems, we can express much more about paths of ac-
tions:

Example 3.1.8 (Parameterized modal equation systems). Examples of parameterized modal
equation systems:

• “an a-action will eventually occur”:

µX : [¬a]X ∧ 〈true〉true

35

3. SPECIFICATIONS 3.2. Buffer example (3)

• “there is an infinite a-path”:

νX : 〈a〉X

• “an a-action is always possible”:

νX : [true]X ∧ 〈a〉true

We will consider only parameterized modal equation systems where the data variables on the right
hand sides are bound on the left hand sides. It has been shown that for such parameterized modal
equation systems, the data environment has no influence on the semantics of a parameterized
modal equation system:

Lemma 3.1.9 (Parameterized modal equation system semantics data environment indepen-
dence). Let ρ be an environment and let ε and ε′ be data environments. Let E be a parameter-
ized modal equation system for which all data variables occurring at the right-hand side of an
equation are bound in the left-hand side. Then JEKρε = JEKρε′.

Proof. The situation is analogous to the case for parameterized boolean equation systems of Groote
and Willemse [4] (lemma 2.4).

In the remainder of this thesis, we consider only parameterized modal equation systems for which
all data variables occurring at the right-hand side of an equations are indeed bound in the left-hand
side. As the data environment has no influence on the semantics of such systems, we generally
omit it.

We are usually interested in only one variable of the parameterized modal equation system, which
is selected by a top assertion:

Definition 3.1.10 (Top assertions). A top assertion is an expression E ↓ X(e) for a closed
parameterized modal equation system E , a variable X ∈ bnd(E) and e : D.

The semantics of a top assertion are simply the value of the selected variable in the semantics of
the parameterized modal equation system:

Definition 3.1.11 (Top assertion semantics). The semantics of a top assertion E ↓ X(e) in
labeled transition system t, environment ρ and data environment ε, denoted JE ↓ X(e)Ktρε, are
defined as follows:

JE ↓ X(e)Kt = (JEKtρε)(X)(JeKε)
Finally, we define the notion of satisfaction, i.e. when a system satisfies a top assertion. A system
satisfies a top assertion if and only if its initial state is in the top assertion’s semantics:

Definition 3.1.12 (Satisfaction). Let t be a labeled transition system and let E ↓ X(e) be a
top assertion. System t satisfies E ↓ X(e) in environment ρ and data environment ε, denoted
t |= E ↓ X(e)ρε, if and only if it ∈ JE ↓ X(e)Ktρε.

3.2 Buffer example (3)

In previous sections, we modeled an n-place buffer. An instance of the model checking problem
consists of two parts: a model of a system and a property. In our setting, this property is expressed
as a parameterized modal equation system. We define the requirement that every element that
goes in our buffer, must eventually come out.

36

3.2. Buffer example (3) 3. SPECIFICATIONS

(
νX = [true]X ∧ (∀m : D . [in(m)]Y (m))

µY (m : D) = [¬out(m)]Y (m) ∧ 〈true〉true

)
↓ X

The equation for X corresponds to the part where something must always hold: after any step, X
must remain valid. The thing that must hold, is that for any m, after an in(m) transition, Y (m)
must be valid. Using a parameter for Y , we express that the element that eventually comes out
the buffer, is actually the same element that went in earlier.

Now, the Y (m) equation expresses that an out(m) action eventually occurs, i.e. within a finite
number of transitions. After any transition other than out(m), Y (m) must still hold. Also, some
transition must be enabled, otherwise there is no path to the out(m) transition.

In general, least fixpoints describe finite behavior and greatest fixpoint additionally also infinite
behavior (from Mader [8]). This can be seen in our small example. The equation for X is a greatest
fixpoint equation, as it must be true of all paths, including infinite paths. The equation for Y (m)
is a least fixpoint equation, because the out(m) transition may not be postponed indefinitely: it
must be satisfied on some finite path.

37

4. QUOTIENTING

4 Quotienting

Quotienting takes a parallel component from the model side of the model checking equation, and
incorporates its behavior in the property that has to be checked against the remainder. So, let E
be a property to be checked on P1 ||P2. By quotienting out P2 from E , we mean the construction
of a new property E/P2, such that the original model checking problem, P1 ||P2 |= E , has the
same solution as P1 |= E/P2. In this example we quotient out a parallel process, but we could also
quotient out process operators. The important thing to note is that after quotienting, the thing
that was quotiented out, is no longer present at the model side of the model checking equation,
and incorporated in the property side.

In this section, we look only at quotienting out linear process equations. First, we look at quoti-
enting on finite labeled transition systems, which was already established in previous work. Then,
we extend the quotienting procedure to linear process equations, which can have infinitely large
state spaces.

One idea we very often use, is to explicitly split a multi-action in pairs of multi-actions, e.g. we
split a|b into (a|b, τ), (a, b), (b, a) and (τ, a|b). Then, we imagine one part to be done by the process
we are quotienting out, and the other part will remain in the formula. We can immediately check
whether the process we are quotienting out can perform a step, or we can at least construct a
boolean expression that says if it can.

4.1 Quotienting on labeled transition systems

Quotienting on finite labeled transition systems was defined by Andersen [1]. He used a slightly
different definition for parallel composition, so we present here the version of Van der Pol [12].
This version is very similar and uses the mCRL2 definition of parallel composition. The formalism
used here, is parameterless modal equation systems.

As stated, the most important drawback of the definition on labeled transition systems is that it
requires the models to have enumerable state spaces. This model checking procedure also uses
single action names in the modal operators and does not deal with quantifiers in assertions.

The formal definition of quotienting on labeled transition systems is as follows:

Definition 4.1.1 (Quotienting on labeled transition systems). Let t = ({s1, . . . , sn},→t, it) be
a labeled transition system. Quotienting a state s ∈ St from an assertion is defined as follows:

X/s = Xs

true/s = true

(A1 ∧ A2)/s = (A1/s) ∧ (A2/s)

(〈α〉A)/s =
∨

β|γ=α

∨
s
β−→s′

〈γ〉(A/s′)

∨
{∨

s
β−→s′

(A/s′) if γ = τ

false otherwise

∨
{
〈γ〉(A/s) if β = τ

false otherwise

38

4.2. Quotienting on linear process equations 4. QUOTIENTING

Quotienting t from a modal equation system is defined as follows:

ε/t = ε

((σX = A) E)/t =


σXs1 = A/s1

. . .

σXsn = A/sn
E/t


Finally, quotienting a labeled transition system t from a top assertion is defined as follows:

(E ↓ X)/t = (E/t) ↓ Xit

There are two interesting things to note: first, we note that this quotienting procedure creates one
equation for each original equation and each state, multiplying the number of equations by the size
of the state space. This shows why state spaces are required to be finite and enumerable.

Second, we discuss the intuition behind the rule for the modal operators. As explained, we split
the multi-action into pairs, where we check if one part, β, can be done from state s, and the other,

γ, remains in the formula. This yields an assertion 〈γ〉(A/s′) for each possible step s
β−→ s′. Now,

if either of the two equals τ , rather than doing a τ transition, it is also fine for that process to
remain idle: the multi-actions β|τ and β are equal, as are τ |γ and γ. This gives rise to the two
case distinctions in this rule.

Soundness of this quotienting procedure was shown in previous work:

Theorem 4.1.2 (Quotienting is sound (Van der Pol [12])). For labeled transition systems with
finite state spaces, quotienting is sound with respect to satisfaction, i.e. t1 || t2 |= E ↓ X, if and
only if, t1 |= (E ↓ X)/t2 for closed modal equation system E and some X ∈ bnd(E).

4.2 Quotienting on linear process equations

We derive the correct definition for quotienting assertions from the following specification:

Let ρ1, ρ2 be two environments such that for any variable X, data element e, state s1 ∈ S1 from
P1, s2 ∈ S2 from P2, the following holds2:

(s1, s2) ∈ ρ1(X)(e) ⇔ s2 ∈ ρ2(X ′)(e, s1)

Assuming such ρ1, ρ2, for any two processes P1 and P2, state s1 ∈ S1 from P1, s2 ∈ S2 from P2,
data environment ε and any assertion A, we define quotienting such that:

(s1, s2) ∈ JAKP1 ||P2
ρ1ε ⇔ s2 ∈ JA/P1(s′)KP2

ρ2ε[s
′ := s1]

2For clarity, we decorate recursion variables with a prime when we quotient out an linear process equation. This
distinguishes X before the quotienting, which takes a number of parameters of a certain sort, from X′ after the
quotienting, which takes parameters of those same sorts and an additional state parameter.

39

4. QUOTIENTING 4.2. Quotienting on linear process equations

Derivation:
By structural induction on A. The case for variables X,Y, . . . follows from the assumption on
ρ1, ρ2, the boolean case is trivial, disjunction and conjunction simply distribute by Induction Hypothesis
and thus also existential and universal quantification. The interesting cases are the modal opera-
tors 〈·〉 and [·].

• X(e)

(s1, s2) ∈ JX(e)KP1 ||P2
ρ1ε

= {Definition 3.1.3 (Assertion semantics)}
(s1, s2) ∈ ρ1(X)(JeKε)

= {assumption on ρ1 and ρ2}
s2 ∈ ρ2(X ′)(JeKε, s1)

= {Definition 3.1.3 (Assertion semantics)}
s2 ∈ JX ′(e, s′)KP2ρ2ε[s

′ := s1]

• b

(s1, s2) ∈ JbKP1 ||P2
ρ1ε

= {Definition 3.1.3 (Assertion semantics)}

(s1, s2) ∈
{
S(P1 ||P2) if JbKε
∅ otherwise

= {assumption on s1, s2; s′ is free in b; set theory}

s2 ∈
{
S1 if JbKε[s′ := s1]

∅ otherwise

= {Definition 3.1.3 (Assertion semantics)}
s2 ∈ JbKP2

ρ2ε[s
′ := s1]

Induction Hypothesis: for any data environment ε′, it holds that

(s′1, s
′
2) ∈ JAKP1 ||P2

ρ1ε
′ ⇔ s′2 ∈ JA/P1(s′)KP2

ρ2ε
′[s′ := s′1].

• A1 ∨ A2

(s1, s2) ∈ JA1 ∨ A2KP1 ||P2
ρ1ε

= {Definition 3.1.3 (Assertion semantics)}
(s1, s2) ∈ JA1KP1 ||P2

ρ1ε ∪ JA2KP1 ||P2
ρ1ε

= {Induction Hypothesis, twice}
s2 ∈ JA1/P1(s′)KP2

ρ2ε[s
′ := s1] ∪ JA2/P1(s′)KP2

ρ2ε[s
′ := s1]

= {Definition 3.1.3 (Assertion semantics)}
s2 ∈ J(A1/P1(s′)) ∨ (A2/P1(s′))KP2

ρ2ε[s
′ := s1]

40

4.2. Quotienting on linear process equations 4. QUOTIENTING

• (∃d : D.A)

(s1, s2) ∈ J(∃d : D.A)KP1 ||P2
ρ1ε

= {Definition 3.1.3 (Assertion semantics)}
(s1, s2) ∈

⋃
v∈D

JAKP1 ||P2
ρ1ε[d := v]

= {Induction Hypothesis; set theory}
s2 ∈

⋃
v∈D

JA/P1(s′)KP2ρ2ε[d := v, s′ := s1]

= {Definition 3.1.3 (Assertion semantics)}
s2 ∈ J(∃d : D.A/P1(s′))KP2ρ2ε[s

′ := s1]

Here, it is assumed that d is a variable occurring free in A.

• 〈af〉A

This is the interesting case. First, we restrict ourselves to a convenient subset of action formulae.
Assume af is in disjunctive normal form. Using the rule that 〈af1 ∨ af2〉A = 〈af1〉A ∨ 〈af2〉A, this
can be further broken down so that the action formula in the modal operator is a conjunction over
boolean expressions b, multi-actions α and negated multi-actions ¬α. We derive definitions on
conjunctive action formulae using structural induction. As true is the unit element for conjunction,
we use this as a base case. The inductive steps are af ∧ b, af ∧ α and af ∧ ¬α.

We want to construct a formula for 〈af〉A, where part of the step is taken by the process we
are quotienting out, and the remainder still has to be performed by the remaining process. The
case for [·] is very similar. To do this, we first decompose af into a pair (af1, af2) such that
α1|α2 ∈ JafKε ⇔ α1 ∈ Jaf1Kε ∧ α2 ∈ Jaf2Kε for any ε. This split can be done in many different
ways, so we define the set of all possible splits. This is done by the function split:

The specification for split is: for any ε,

α|β ∈ JafKε⇔ ∃(af1,af2)∈split(af)α ∈ Jaf1Kε ∧ β ∈ Jaf2Kε.
Hypothesizing such a function, we can already see what 〈af〉A/P (si) should look like: a large
disjunction over each possible split (af1, af2) with an assertion we call Quotient. Intuitively, the
assertion Quotient(af1, af2,A, P (s), i) expresses that the process we are quotienting out, P , can
perform a step satisfying action formula af1 from state s, and the remainder process still has
to perform a step satisfying af2, after which assertion A holds. We use the shorthand notation

s
af−→JP K s

′ for the assertion
∨
i∈I(∃e : Ei.ci(s, e) ∧ cond(αi(s, e), af) ∧ s′ = gi(s, e)). If one of the

steps can be τ , then that process can also stay idle.

Definition 4.2.1 (Quotient). We define Quotient as follows:

Quotient(af1, af2,A, P (s), i) = (s
af1−−→JP K s

′ ∧ 〈af2〉A/P (s′))

∨ (τ ∈ Jaf2Kε ∧ s af1−−→JP K s
′ ∧ A/P (s′)))

∨ (τ ∈ Jaf1Kε ∧ 〈af2〉A/P (s)))

41

4. QUOTIENTING 4.2. Quotienting on linear process equations

The expression τ ∈ Jaf1Kε is of course not a valid assertion. We define the function cond to
construct it. The function cond takes a multi-action and an action formula and yields a boolean
expression. Its specification is: for any ε,

Jcond(β, af)Kε⇔ β ∈ JafKε.
The function cond is straightforward from the semantics of action formulae, Definition 2.2.13 (Ac-
tion formulae semantics):

Definition 4.2.2 (The function cond). Let β be a multi-action and af an action formula. The
boolean expression cond(β, af) is defined as:

cond(β, b) = b

cond(β, α) = α = β

cond(β,¬α) = α 6= β

cond(β, af1 ∧ af2) = cond(β, af1) ∧ cond(β, af2)

cond(β, af1 ∨ af2) = cond(β, af1) ∨ cond(β, af2)

Now, we define split:

• true. This case is trivial:

α|β ∈ JtrueKε
= {Definition 2.2.13 (Action formulae semantics)}

true

= {Definition 2.2.13 (Action formulae semantics)}
α ∈ JtrueKε ∧ β ∈ JtrueKε

Induction Hypothesis: α′|β′ ∈ JafKε⇔ ∃(af1,af2)∈split(af)α
′ ∈ Jaf1Kε ∧ β′ ∈ Jaf2Kε

• af ∧ b. Slightly less trivial:

α|β ∈ Jaf ∧ bKε
= {Definition 2.2.13 (Action formulae semantics), set theory}

α|β ∈ JafKε ∧{true , if JbKε
false , otherwise

= {Induction Hypothesis}

(∃(af1,af2)∈split(af)α ∈ Jaf1Kε ∧ β ∈ Jaf2Kε) ∧
{
true , if JbKε
false , otherwise

= {set theory, Definition 2.2.13 (Action formulae semantics)}(
∃(af1,af2)∈split(af)α ∈ Jaf1 ∧ bKε ∧ β ∈ Jaf2 ∧ bKε)

42

4.2. Quotienting on linear process equations 4. QUOTIENTING

• af ∧ a1(e1)| . . . |an(en). This is a more interesting case. We observe that for α|β to equal
a1(e1)| . . . |an(en), some subset of actions α′ v α must equal α, and that the remainder,
a1(e1)| . . . |an(en) \ α′, must equal β.

α|β ∈ Jaf ∧ a1(e1)| . . . an(en)Kε
= {Definition 2.2.13 (Action formulae semantics)}
α|β ∈ JafKε ∧ α|β = a1(Je1Kε)| . . . |an(JenKε)

= {Definition 2.2.6 (Multi-action equality, inclusion and removal)}
α|β ∈ JafKε ∧ ∨

α′va1(e1)|...|an(en)

α ∈ Jα′Kε ∧ β ∈ Ja1(e1)| . . . |an(en) \ α′Kε
= {Induction Hypothesis,Definition 2.2.13 (Action formulae semantics)}
∃(af1,af2)∈split(af)

∨
α′va1(e1)|...|an(en)

α ∈ Jaf1 ∧ α′Kε ∧ β ∈ Jaf2 ∧ a1(e1)| . . . |an(en) \ α′Kε
• af ∧ ¬a1(e1)| . . . |an(en). This is the most interesting case.

We observe that for α|β not to equal a1(e1)| . . . |an(en), some subset of actions α′ may equal
α, as long as β does not equal the remainder, a1(e1)| . . . an(en) \ α′.
It can also be the case that α equals some α′ 6v a1(e1)| . . . |an(en), in which case α|β will
never equal a1(e1)| . . . |an(en), regardless of β.

α|β ∈ Jaf ∧ ¬a1(e1)| . . . an(en)Kε
= {Definition 2.2.13 (Action formulae semantics)}
α|β ∈ JafKε ∧ α|β 6= a1(Je1Kε)| . . . |an(JenKε)

= {Definition 2.2.6 (Multi-action equality, inclusion and removal)}
α|β ∈ JafKε ∧ (∨

α′va1(e1)|...|an(en)

(α ∈ Jα′Kε ∧ β ∈ J¬a1(e1)| . . . |an(en) \ α′Kε
∨ α ∈ J¬a1(e1)| . . . |an(en) \ α′Kε ∧ β ∈ Jα′Kε)

∨ ∃α′ 6va1(e1)|...|an(en)(α ∈ Jα′Kε ∧ β ∈ JtrueKε
∨ α ∈ JtrueKε ∧ β ∈ Jα′Kε))

= {Induction Hypothesis,Definition 2.2.13 (Action formulae semantics)}
∃(af1,af2)∈split(af) ∧ α ∈ Jaf1Kε ∧ β ∈ Jaf2Kε ∧ (∨

α′va1(e1)|...|an(en)

((α ∈ Jα′Kε ∧ β ∈ J¬a1(e1)| . . . |an(en) \ α′Kε)
∨ (α ∈ J¬a1(e1)| . . . |an(en) \ α′Kε ∧ β ∈ Jα′Kε))

∨ ∃α′ 6va1(e1)|...|an(en)((α ∈ Jα′Kε ∧ β ∈ JtrueKε)
∨ (α ∈ JtrueKε ∧ β ∈ Jα′Kε)))

43

4. QUOTIENTING 4.2. Quotienting on linear process equations

So, let split be defined as follows:

Definition 4.2.3 (The function split).

split(true) = {(true, true)}
split(af ∧ b) = {(af1 ∧ b, af2 ∧ b) | (af1, af2) ∈ split(af)}
split(af ∧ α) = {(af1 ∧ α′, af2 ∧ α \ α′) | α′ v α ∧ (af1, af2) ∈ split(af)}

split(af ∧ ¬α) = {(af1 ∧ α′, af2 ∧ ¬(α \ α′)),
(af1 ∧ ¬α′, af2 ∧ (α \ α′)) | α′ v α ∧ (af1, af2) ∈ split(af)}
∪ {(af1 ∧ α′, af2), (af1, af2 ∧ α′) | α′ 6v α ∧ (af1, af2) ∈ split(af)}

Example 4.2.4 (Splitting action formulae). Consider splitting the action formula a|b:

split(true ∧ a|b)
= {(af1 ∧ α′, af2 ∧ a|b \ α′) | α′ v a|b ∧ (af1, af2) ∈ split(true)}
= {(true ∧ α′, true ∧ a|b \ α′) | α′ v a|b}
= {(τ, a|b), (a, b), (b, a), (a|b, τ)}

So, we check for each of these pairs (af1, af2) whether the process we are quotienting out, P , can
do an action α ∈ Jaf1Kε. What is left to check is whether the remainder process can perform an
action β ∈ Jaf2Kε.
Now consider splitting the negated action formula ¬a|b:

split(true ∧ ¬a|b)
= {(af1 ∧ α′, af2 ∧ ¬(a|b \ α′))| α′ v a|b ∧ (af1, af2) ∈ split(true)}
∪ {(af1 ∧ α′, af2) | α′ 6v a|b ∧ (af1, af2) ∈ split(true)}

= {(α′,¬(a|b \ α′)) | α′ v a|b}
∪ {(α′, true), (true, α′) | α′ 6v a|b}

= {(τ,¬a|b), (a,¬b), (b,¬a), (a|b,¬τ),

∪ {(a|a|b, true), (a|a|a|b, true), (a|a|a|a|b, true), . . . }

That last set is of course infinitely large. This means that we cannot enumerate all possible ways
in which α|β ∈ JafKε can be decomposed into α ∈ Jaf1Kε and β ∈ Jaf2Kε.
As can be seen in the example, there are infinitely many ways in which an action formula containing
a negative multi-action ¬α can be split. This means these cannot be enumerated and used in a
large disjunction. Fortunately, we do not need to know every af1 and af2 explicitly. Inspecting
Definition 4.2.1 (Quotient), we observe that we only need to know the following:

• αi ∈ Jaf1Kε and the corresponding af2

• αi ∈ Jaf1Kε and τ ∈ Jaf2Kε for the corresponding af2

• τ ∈ Jaf1Kε and the corresponding af2

The possibly infinitely large set of action formulae (af1, af2) is never explicitly required. We
move toward new functions split2 and Quotient2 which do not need to explicitly enumerate these
decompositions into af1 and af2. This split2 needs an additional argument β, which equals the αi
of a process P . We construct these boolean expressions straight away. The specification of split2
is as follows:

split2(β, af) = {(cond(β, af1), cond(τ, af2), cond(τ, af1), af2) | (af1, af2) ∈ split(af)}

44

4.2. Quotienting on linear process equations 4. QUOTIENTING

What is interesting, is that this is a finite set. The many ways in which the case af ∧¬α leads to
an infinitely large set of af1’s where α′ 6v α and we check whether β ∈ Jaf1Kε, collapse into only
one condition to check: β 6v α. This is simply a boolean expression.

The definition of the function split2 : Act × AF → 2BoolExpr×BoolExpr×BoolExpr×AF follows directly
from this specification. We define split2 as follows:

Definition 4.2.5 (split2). Let β be a multi-action and af be an action formula in disjunctive
normal form. We define the function split2 as follows:

split2(β, true) = {(true, true, true, true)}
split2(β, af ∧ b) = {(b1 ∧ b, b2 ∧ b, b3 ∧ b, af2 ∧ b) |

(b1, b2, b3, af2) ∈ split2(β, af)}
split2(β, af ∧ α) = {(b1 ∧ α′ = β, b2 ∧ α′ = α, b3 ∧ α′ = τ, af2 ∧ α \ α′) |

α′ v α ∧ (b1, b2, b3, af2) ∈ split2(β, af)}
split2(β, af ∧ ¬α) = {(b1 ∧ β 6v α, b2, false, af2) |

(b1, b2, b3, af2) ∈ split2(β, af)}
∪ {(b1 ∧ α′ = β, b2 ∧ α′ 6= α, b3 ∧ α′ = τ, af2 ∧ ¬(α \ α′)) |
α′ v α ∧ (b1, b2, b3, af2) ∈ split2(β, af)}

Finally, we arrive at the assertion Quotient2, which is similar to Definition 4.2.1 (Quotient), with the
conditions b1, b2, b3 of split2 directly plugged in for “αi(s, e) ∈ Jaf1Kε”, “τ ∈ Jaf2Kε”, “τ ∈ Jaf1Kε”
in the definition:

Definition 4.2.6 (Quotient2). Let b1, b2, b3 be boolean data expressions, af2 an action formula,
A an assertion, P (s) a linear process equation with initial state and i a summand of P . We
define the assertion Quotient2 as follows:

Quotient2(b1, b2, b3, af2,A, P (s), i) = (∃e : Ei.ci(s, e) ∧ b1 ∧ 〈af2〉(A/P (gi(s, e))))

∨ (∃e : Ei.ci(s, e) ∧ b1 ∧ b2 ∧ (A/P (gi(s, e))))

∨ (b3 ∧ 〈af2〉(A/P (s)))

So, we define quotienting on assertions as follows:

Definition 4.2.7 (Quotienting on assertions).

X(d)/P (s) = X ′(d, s)

b/P (s) = b

(A1 ∨ A2)/P (s) = A1/P (s) ∨ A2/P (s)

(〈af〉A)/P (s) =
∨
i∈I

∨
(b1,b2,b3,af2)∈split2(αi,af)

Quotient2(b1, b2, b3, af2,A, P (s), i)

(∃d : D.A)/P (s) = (∃d : D.A/P (s))

Using Definition 4.2.7 (Quotienting on assertions), we define quotienting on parameterized modal
equation systems:

Definition 4.2.8 (Quotienting on linear process equations). For arbitrary parameterized modal
equation system E , we define quotienting the process P (si) from E , denoted E/P (si), as follows:

ε/P (si) = ε

((σX(d : D) = A) E)/P (si) = (σX ′(d : D, s′ : S) = A/P (s′)) (E/P (si))

45

4. QUOTIENTING 4.3. Buffer example (4)

Finally, we define quotienting on top assertions:

Definition 4.2.9 (Quotienting on top assertions). Let E ↓ X(d) be a top assertion. We define
quotienting the process P (si) from E ↓ X(d), denoted (E ↓ X(d))/P (si), as follows:

(E ↓ X(d))/P (si) = (E/P (si)) ↓ X ′(d, si)

4.3 Buffer example (4)

We return to the running example of the buffer. The quotienting procedure on linear process
equations is illustrated by using quotienting to solving the model checking problem

B1(empty) |= E ↓ X,

where the one-place buffer B1 is defined as

B1(s : D ∪ {empty}) =
∑
d:D

s ≈ empty→ in(d) . B1(d)

+ s 6≈ empty→ out(s) . B1(empty),

and the top assertion E ↓ X expresses that for every data element that is fed to the buffer, that
same element will eventually come out again (cf. 3.2 (Buffer example (3))):(

νX = [true]X ∧ (∀m : D . [in(m)]Y (m))

µY (m : D) = [¬out(m)]Y (m) ∧ 〈true〉true

)
↓ X.

As stated, we use quotienting to solve this model checking problem. Using the fact that the
deadlock process is the unit element for parallel composition, we can rewrite this problem to

B1(empty) ||Pδ |= E ↓ X,

from which we quotient out B1(empty), to obtain the equivalent model checking problem

ρ(Pδ) |= (E ↓ X)/B1(empty).

This model checking problem still remains to be solved, which we will deal with later. First, we
calculate (E ↓ X)/B1(empty). The state parameter of B1 becomes a parameter in each of the
equations in E , and quotienting distributes over boolean connectives and quantifiers.

(E ↓ X)/B1(empty)

=


νX(s : D ∪ {empty}) = ([true]X)/B1(s)

∧ (∀m : D . ([in(m)]Y (m))/B1(s))

µY (m : D, s : D ∪ {empty}) = ([¬out(m)]Y (m))/B1(s)

∧ (〈true〉true)/B1(s)

 ↓ X(empty)

From here, the expressions grow rapidly. The entire calculation can be found in Appendix A.

There are four modal operators in E . There are two summands in B1: one where the buffer is full
and one where it is empty. We look at the eight combinations of modal operator and summand,
and check if the transition label in that summand matches part of the action formula in the modal
operator.

For each of these combinations, we use the function split2 to calculate all possible ways we can split
the action formula in two parts; one to match the transition label of the summand, one match a
transition in the remainder process, Pδ in this case. This gives 14 occurrences of Quotient2.

46

4.3. Buffer example (4) 4. QUOTIENTING

Finally, these occurrences of Quotient2 are each unfolded into three cases:

• the summand performs part of an action and the remainder process performs the rest,

• the summand performs the entire action and the remainder process stays idle, or

• B1 stays idle and the remainder process performs the entire action.

This gives a total of 42 conjuncts, most of which will turn out to equal true and some duplicate
conjuncts. In this example, we reduced these by hand. In Section 6, we briefly discuss how to
automate reduction of parameterized modal equation systems.

In Appendix A, we calculate that (E ↓ X)/B1(empty) equals the following top assertion:

νX(s : D ∪ {empty}) =

(∀s′ : D ∪ {empty}.[true]X(s′) ∧X(s′))

∧ (∀m : D .

[in(m)]Y (m, s)

∧ (s ≈ empty⇒ [τ]Y (m,m) ∧ Y (m,m))

)

µY (m : D, s : D ∪ {empty}) =

[¬out(m)]Y (m, s)

∧ (∀d : D.s ≈ empty ⇒ [true]Y (m, d) ∧ Y (m, d))

∧ (s 6≈ empty ∧ s 6≈ m ⇒ [true]Y (m, empty) ∧ Y (m, empty))

∧ (s 6≈ empty ∧ s ≈ m ⇒ [¬τ]Y (m, empty))



↓ X(empty)

So, our model checking problem is now as follows:

ρ(Pδ) |=



νX(s : D ∪ {empty}) =

(∀s′ : D ∪ {empty}.[true]X(s′) ∧X(s′))

∧ (∀m : D .

[in(m)]Y (m, s)

∧ (s ≈ empty⇒ [τ]Y (m,m) ∧ Y (m,m))

)

µY (m : D, s : D ∪ {empty}) =

[¬out(m)]Y (m, s)

∧ (∀d : D.s ≈ empty ⇒ [true]Y (m, d) ∧ Y (m, d))

∧ (s 6≈ empty ∧ s 6≈ m ⇒ [true]Y (m, empty) ∧ Y (m, empty))

∧ (s 6≈ empty ∧ s ≈ m ⇒ [¬τ]Y (m, empty))



↓ X(empty)

The solution to this model checking problem is equal to the solution of our original problem.
Interestingly, we can solve this specific model checking problem very easily, because Pδ is such
a simple process. As the deadlock process contains no transitions, the rename operator has no
effect. Moreover, all box modalities are equivalent to true. From there, it is quickly shown that
the model checking problem yields true. Of course, this exercise was intended to show a somewhat
large example of the quotienting procedure, not to solve this trivial model checking problem.

47

4. QUOTIENTING 4.4. Soundness

4.4 Soundness

In this section, we show that the quotienting procedure on linear process equations in simple
parallel composition, is sound. First, we show a relation between recursion variables before and
after quotienting on assertions. Second, we use this to establish soundness on parameterized
modal equation systems. Third, we prove soundness on top assertions and satisfaction, which
follow directly from the second proof.

Relation between recursion variables on assertions

We show that the recursion variables before and after quotienting on assertions, are related.

Lemma 4.4.1 (Relation between recursion variables for quotienting on assertions). For any two
environments ρ1, ρ2 such that for any s1 ∈ SJP1K, s2 ∈ SJP2K the relation

(∀X ∈ occ(A) . (s1, s2) ∈ ρ1(X)(d)⇔ s2 ∈ ρ2(X ′)(d, s1)) (4.1)

holds, it also holds that for any data environment ε,

(s1, s2) ∈ JAKP1 ||P2
ρ1ε(X)(d)⇔ s2 ∈ JA/P1(s1)KP2ρ2ε

Proof. By derivation of the definition of qoutienting on assertions, Definition 4.2.7 (Quotienting
on assertions).

Applicability of Knaster-Tarski’s Theorem

It remains to show that the quotienting procedure is sound for parameterized modal equation
systems and for top assertions. This leans heavily on Theorem 1.2.6 (Knaster-Tarski’s theorem),
so we will first establish that it is applicable. We need to show that environments form a complete
lattice, and that the semantics of a parameterized modal equation system is a monotone function
with respect to these environments.

We define an ordering on environments. Let the ordering ≤ on functions be defined as follows:
Let f, g : A→ B be functions from arbitrary domain A to an ordered B. Then f ≤ g if and only
if for all a ∈ A it holds that f(a) ≤ g(a). In our case, these functions are environments and thus
A = D and B = 2S . The ordering on 2S is simply ⊆.

Lemma 4.4.2 (Environments are a complete lattice). Environments are a complete lattice, i.e.
the set D → 2S with pointwise ordering, form a complete lattice.

Proof. The set 2S forms a complete lattice along with the ordering ⊆, as any set ordered by
inclusion forms a complete lattice. This means also D → 2S ordered by pointwise inclusion is a
complete lattice, as its codomain is a complete lattice.

Lemma 4.4.3 (Assertions are monotone). The semantics of assertions are monotone functions
with respect to the environment, i.e. for any assertion A, linear process equation P and data
environment ε, if ρ1 ≤ ρ2, then JAKP ρ1ε ⊆ JAKP ρ2ε.

Proof. By structural induction on A.

48

4.4. Soundness 4. QUOTIENTING

• X(e)

JX(e)KP ρ1ε

= ρ1(X(JeKε))
⊆ {assumption}
ρ2(X(JeKε))

= JX(e)KP ρ2ε

• b

JbKP ρ1ε

=

{
Act , if JbKε
∅ , otherwise

= JbKP ρ2ε

• A1 ∨ A2

JA1 ∨ A2KP ρ1ε

= JA1KP ρ1ε ∪ JA2KP ρ1ε

⊆ {Induction Hypothesis}JA1KP ρ2ε ∪ JA2KP ρ2ε

= JA1 ∨ A2KP ρ2ε

• 〈af〉A

J〈af〉AKP ρ1ε

=

{
s

∣∣∣∣∣ ∨
i∈I

(∃e : Ei.ci(s, e) ∧ αi(s, e) ∈ JafKε ∧ gi(s, e) ∈ JAKP ρ1ε)

}
⊆ {Induction Hypothesis}{

s

∣∣∣∣∣ ∨
i∈I

(∃e : Ei.ci(s, e) ∧ αi(s, e) ∈ JafKε ∧ gi(s, e) ∈ JAKP ρ2ε)

}
= J〈af〉AKP ρ2ε

We also show monotonicity of parameterized modal equation systems:

Lemma 4.4.4 (Parameterized modal equation systems are monotone). For any linear process
equation P , data environment ε and parameterized modal equation system E , if ρ1 ≤ ρ2, alsoJEKP ρ1ε ≤ JEKP ρ2ε.

Proof. By structural induction on E .

• ε: JεKρ1ε

= ρ1ε

≤ {assumption}
ρ2ε

= JεKρ2ε

49

4. QUOTIENTING 4.4. Soundness

• (σY (d : D) = A)E :

J(σY (d : D) = A)EKP ρ1ε

= JEKP ρ1[Y := σ(λF : D → 2S . (λv : D . JAKP (JEKP ρ1[Y := F]ε)ε[d := v]))]ε

≤ {Induction Hypothesis,Lemma 4.4.3 (Assertions are monotone)}JEKP ρ2[Y := σ(λF : D → 2S . (λv : D . JAKP (JEKP ρ2[Y := F]ε)ε[d := v]))]ε

= J(σY (d : D) = A)EKP ρ2ε

From the functions D → 2S forming a complete lattice, and the semantics of parameterized modal
equation systems being a monotone function, we conclude that Theorem 1.2.6 (Knaster-Tarski’s
theorem) is applicable for parameterized modal equation systems.

Unbound variables remain equal

We also use the fact that the semantics of a parameterized modal equation system does not change
the value of unbound variables. This proof is very simple:

Lemma 4.4.5 (Unbound variables remain equal). For any parameterized modal equation sys-
tem E , process P , environment ρ and data environment ε, it holds that

(∀X 6∈ bnd(E) . JEKP ρε(X) = ρ(X)).

Proof. By induction on the structure of E .

• ε:

JεKρε(X)

= {Definition 3.1.7 (Parameterized modal equation system semantics)}
ρ(X)

• (σY (d : D) = A)E :
Induction Hypothesis: for any environment η,

JEKP ηε(X) = η(X).

J(σY (d : D) = A)EKP ρε(X)

= {Definition 3.1.7 (Parameterized modal equation system semantics)}JEKP ρ[Y := σ(λF : D → 2S .(λv : D.JAKP ρ[Y := F]ε[d := v]))]ε(X)

= {Induction Hypothesis}
ρ[Y := σ(λF : D → 2S .(λv : D.JAKP ρ[Y := F]ε[d := v]))]ε(X)

= {Definition 1.1.1 (Assignment)}
ρ(X)

50

4.4. Soundness 4. QUOTIENTING

Soundness of quotienting on parameterized modal equation systems

Now for the soundness proof for quotienting on parameterized modal equation systems. We assume
a relation between variables which are not bound in E and prove that the variables which are bound
in E are related in the same way. The theorem that quotienting is sound for top assertions, easily
follows from this lemma.

Lemma 4.4.6 (Relating E and E/P). For parameterized modal equation system E , s1 ∈ SJP1K,
s2 ∈ SJP2K, and environments ρ1, ρ2 such that it holds that

(∀X ∈ occ(E) \ bnd(E) . (s1, s2) ∈ ρ1(X)(d)⇔ s2 ∈ ρ2(X ′)(d, s1)),

the following holds also:

(∀X ∈ bnd(E) . (s1, s2) ∈ (JEKP1 ||P2
ρ1ε)(X)(d)⇔ s2 ∈ (JE/P1(s1)KP2

ρ2ε)(X
′)(d, s1))

Proof. The proof is rather verbose and we note that the details can be freely skipped.

Proof by induction on the structure of E .

• ε: trivial (empty universal quantification).

• (σY (d : D) = A)E :

Induction Hypothesis: for environments ρ1, ρ2 such that for all s1 ∈ SJP1K, s2 ∈ SJP2K and all
X ∈ occ(E) \ bnd(E) it holds that

(s1, s2) ∈ ρ1(X)(d)⇔ s2 ∈ ρ2(X ′)(d, s1), (4.2)

it also holds that for all X ∈ bnd(E):

(s1, s2) ∈ (JEKP1 ||P2
ρ1ε)(X)(d)⇔ s2 ∈ (JE/P1(s1)KP2

ρ2ε)(X
′)(d, s1). (4.3)

Assume environments ρ1, ρ2 for which the assumption (4.2) holds. By Induction Hypothesis,
equation (4.3) also holds for these environments. Furthermore, we assume the variables unbound
in the next approximation are also related in this ρ1, ρ2, i.e. that equation (4.2) holds for all
X ∈ occ((σY (d′ : D) = A)E) \ bnd((σY (d′ : D) = A)E). What is to show in the induction step is
that for all X ∈ bnd((σY (d′ : D) = A)E), it holds that

(s1, s2) ∈ (J(σY (d′ : D) = A)EKP1 ||P2
ρ1ε)(X)(d)

⇔ s2 ∈ (J(σY (d′ : D) = A)E/P1(s1)KP2
ρ2ε)(X

′)(d, s1).

Take such X ∈ bnd((σY (d′ : D) = A)E), call it X0. There are three cases: X0 is bound in the
first equation, in an equation in E , or neither. The first case is the most interesting, the second we
handle using the Induction Hypothesis, and the third we handle using the assumption on unbound
variables.

1. X0 = Y

s2 ∈ J((σY (d′ : D) = A)E)/P1(s1)KP2ρ2ε(X
′
0)(d, s1)

= {Definition 4.2.8 (Quotienting on linear process equations)}
s2 ∈ J(σY (d′ : D, s′ : S) = A/P1(s′))(E/P1(s1))KP2ρ2ε(X

′
0)(d, s1)

= {Definition 3.1.7 (Parameterized modal equation system semantics)}
s2 ∈ JE/P1(s1)KP2

ρ2[Y ′ := σ(λF : D′ → 2S .(λv : D, s : S.JA/P1(s′)KP2
(JE/P1(s1)KP2

ρ2[Y ′ := F]ε[d′ := v, s′ := s])ε))]ε(X ′0)(d, s1)

= {Lemma 4.4.5 (Unbound variables remain equal),Definition 1.1.1 (Assignment)}
s2 ∈ σ(λF : D → 2S .(λv : D, s : S.JA/P1(s′)KP2

(JE/P1(s1)KP2
ρ2[Y ′ := F]ε[d′ := v, s′ := s])ε))(d, s1)

51

4. QUOTIENTING 4.4. Soundness

We want to show that this fixpoint is equal to the fixpoint before quotienting. We abbreviate
these fixpoints with m and m′.

s2 ∈ m′(d, s1) = (s1, s2) ∈ m(d), (4.4)

where

m′ = σ(λF : D′ → 2S .(λv : D, s : S.JA/P1(s′)KP2(JE/P1(s1)KP2ρ2[Y ′ := F]ε[d′ := v, s′ := s])ε))

m = σ(λF : D → 2S .(λv : D.JAKP1 ||P2
(JEKP1 ||P2

ρ2[Y := F]ε[d′ := v])ε)).

By Theorem 1.2.6 (Knaster-Tarski’s theorem), these fixpoints m and m′ can be obtained
by transfinite induction (cf. Section 1.3). We show that these two fixpoints are equal by
proving the stronger statement that they are equal at every point in the induction, i.e. we
show the following three statements:

• Base:

s2 ∈ F ′0(d, s1)⇔ (s1, s2) ∈ F 0(d)

• Induction step:

assuming s2 ∈ F ′n(d, s1)⇔ (s1, s2) ∈ Fn(d),

it follows that s2 ∈ F ′n+1(d, s1)⇔ (s1, s2) ∈ Fn+1(d).

• Transfinite case: for any limit ordinal α,

assuming s2 ∈ F ′β(d, s1)⇔ (s1, s2) ∈ F β(d) for all β < α,

it follows that s2 ∈ F ′α(d, s1)⇔ (s1, s2) ∈ Fα(d).

As this induction converges on fixpoint values m and m′, this proves equation (4.4).

1.1. Base. The definition of F 0 depends on the sign of σ. We only show F 0
µ = (λv : D.∅),

the case F 0
ν = (λv : D.S) is dual.

s2 ∈ F 0(d, s1)

= s2 ∈ (λv : D, s : S.∅)(d, s1)

= s2 ∈ ∅
= (s1, s2) ∈ ∅
= (s1, s2) ∈ (λv : D.∅)(d)

= (s1, s2) ∈ F ′0(d)

1.2. Induction step.

Induction Hypothesis:

(s1, s2) ∈ Fn(d) = s2 ∈ F ′n(d, s1) (4.5)

The next step is obtained by applying the monotone function on the previous step:

Fn+1 = (λv : D.JAKP1 ||P2
(JEKP1 ||P2

ρ2[Y ′ := Fn]ε[d′ := v])ε)

F ′n+1 = (λv : D, s : S.JA/P1(s′)KP2
(JE/P1(s1)KP2

ρ2[Y ′ := F ′n]ε[d′ := v, s′ := s])ε)

52

4.4. Soundness 4. QUOTIENTING

These functions are monotone, by Lemma 4.4.3 (Assertions are monotone) and Lemma
4.4.4 (Parameterized modal equation systems are monotone).

s2 ∈ F ′n+1(d, s1)

= {next step}
s2 ∈ (λv : D, s : S.JA/P1(s′)KP2

(JE/P1(s1)KP2
ρ2[Y ′ := F ′n]ε[d′ := v, s′ := s])ε)(d, s1)

= {function application}
s2 ∈ JA/P1(s′)KP2

(JE/P1(s1)KP2
ρ2[Y ′ := F ′n]ε[d′ := d, s′ := s1])ε

† = {Lemma 4.4.1 (Relation between recursion variables for quotienting on assertions)}
(s1, s2) ∈ JAKP1 ||P1

(JEKP1 ||P2
ρ1[Y := Fn]ε[d′ := d])ε

= {function application}
(s1, s2) ∈ (λv : D.JAKP1 ||P1

(JEKP1 ||P2
ρ1[Y := Fn]ε[d′ := v]))ε(d)

= {next step}
(s1, s2) ∈ Fn+1(d)

What remains to show is that the application of Lemma 4.4.1 (Relation between recur-
sion variables for quotienting on assertions) at step † is valid, i.e. its assumption (4.1)
is met.

To show: for all X ∈ occ(E):

s2 ∈ JE/P1(s1)KP2
ρ2[Y ′ := F ′n]ε[d′ := v, s′ := s](X)(d, s1)

⇔ (s1, s2) ∈ JEKP1 ||P2
ρ1[Y := Fn]ε[d′ := v](X)(d, s1)

Take such X ∈ occ(E), call it X1. There are three cases: X1 is bound in the first equa-
tion, in an equation in E , or neither. The first case follows from the Induction Hypothesis
of the transfinite induction (4.5), the second from the Induction Hypothesis of the struc-
tural induction, and the third follows from the assumption on unbound variables.

1.2.1. X1 = Y

s2 ∈ JE/P1(s1)KP2ρ2[Y ′ := F ′n]ε[d′ := v, s′ := s](X1)(d, s1)

= {Lemma 4.4.5 (Unbound variables remain equal)}
s2 ∈ ρ2[Y ′ := F ′n](X1)(d, s1)

= {Definition 1.1.1 (Assignment)}
s2 ∈ F ′n(d, s1)

= {(4.5)}
(s1, s2) ∈ Fn(d)

= {Definition 1.1.1 (Assignment)}
(s1, s2) ∈ ρ1[Y := Fn](X1)(d)

= {Lemma 4.4.5 (Unbound variables remain equal)}
(s1, s2) ∈ JEKP1 ||P2

ρ1[Y := Fn]ε[d′ := v](X1)(d)

1.2.2. X1 ∈ bnd(E)

s2 ∈ JE/P1(s1)KP2
ρ2[Y ′ := F ′n]ε[d′ := v, s′ := s](X1)(d, s1)

‡ = {Induction Hypothesis}
(s1, s2) ∈ JEKP1 ||P2

ρ1[Y := Fn]ε[d′ := v](X1)(d)

53

4. QUOTIENTING 4.4. Soundness

We show that the application of the Induction Hypothesis at ‡ is valid, i.e. that
its assumption is met.

To show: for all X ∈ occ(E),

s2 ∈ ρ2[Y ′ := F ′n](X)(d, s1)⇔ (s1, s2) ∈ ρ1[Y := Fn](X)(d)

Take such X ∈ occ(E), call it X2. There are only two cases:

1.2.2.1. X2 = Y
This case is nearly identical to the case X1 = Y above (case 1.2.1):

s2 ∈ ρ2[Y ′ := F ′n](X2)(d, s1)

= {Definition 1.1.1 (Assignment)}
s2 ∈ F ′n(d, s1)

= {Induction Hypothesis for transfinite induction (4.5)}
(s1, s2) ∈ Fn(d)

= {Definition 1.1.1 (Assignment)}
(s1, s2) ∈ ρ1[Y := Fn](X2)(d)

1.2.2.2. X2 6= Y

s2 ∈ ρ2[Y ′ := F ′n](X ′2)(d, s1)

= {Definition 1.1.1 (Assignment)}
s2 ∈ ρ2(X ′2)(d, s1)

= {assumption on unbound variables (4.2)}
(s1, s2) ∈ ρ1(X2)(d)

= {Definition 1.1.1 (Assignment)}
(s1, s2) ∈ ρ1[Y := Fn](X2)(d)

This means step ‡ is valid and thus concludes the case X1 ∈ bnd(E) (case 1.2.2).

1.2.3. X1 6= Y and X1 6∈ bnd(E)

s2 ∈ JE/P1(s1)KP2
ρ2[Y ′ := F ′n]ε[d′ := v, s′ := s](X1)(d, s1)

= {Lemma 4.4.5 (Unbound variables remain equal)}
s2 ∈ ρ2[Y ′ := F ′n](X1)(d, s1)

= {Definition 1.1.1 (Assignment)}
s2 ∈ ρ2(X1)(d, s1)

= {assumption on unbound variables (4.2)}
(s1, s2) ∈ ρ1(X1)(d)

= {Definition 1.1.1 (Assignment)}
(s1, s2) ∈ ρ1[Y := Fn](X1)(d)

= {Lemma 4.4.5 (Unbound variables remain equal)}
(s1, s2) ∈ JEKP1 ||P2

ρ1[Y := Fn]ε[d′ := v](X1)(d)

This concludes the induction step of the transfinite induction (case 1.2).

1.3. Transfinite case. For limit ordinals α, there are two definitions for Fα, depending on
the sign of σ:

54

4.4. Soundness 4. QUOTIENTING

• Fαµ = sup({F βµ | β < α})
• Fαν = inf({F βν | β < α})

We show only the case for µ, the other case is dual. To show: for any limit ordinal α,

assuming s2 ∈ F ′βµ (d, s1)⇔ (s1, s2) ∈ F βµ (d) for all β < α,

it follows that s2 ∈ F ′αµ (d, s1)⇔ (s1, s2) ∈ Fαµ (d).

s2 ∈ F ′αµ (d, s1)

= {Definition 1.3.3 (σ-approximants)}
s2 ∈ sup({F ′βµ | β < α})(d, s1)

As the formula being iterated over is monotone, all these F ′βµ are comparable. The
supremum is defined as the pointwise supremum of the results of these functions. This
means this supremum of these functions, applied to a value, is the supremum of these
values:

= s2 ∈ sup({F ′βµ (d, s1) | β < α})
= {supremum of sets is their intersection}
s2 ∈

⋂
β<α

F ′βµ (d, s1)

= {set theory}∧
β<α

s2 ∈ F ′βµ (d, s1)

= {Induction Hypothesis}∧
β<α

(s1, s2) ∈ F βµ (d)

= {same steps in reverse}
(s1, s2) ∈ Fαµ (d)

By transfinite induction, equation (4.4) is valid.

55

4. QUOTIENTING 4.4. Soundness

From this, the result for the case X0 = Y (case 1) easily follows:

s2 ∈ J((σY ′(d′ : D) = A)E)/P1(s1)KP2
ρ2ε(X

′
0)(d, s1)

= {Definition 4.2.8 (Quotienting on linear process equations)}
s2 ∈ J(σY ′(d′ : D, s′ : S) = A/P1(s′))(E/P1(s1))KP2

ρ2ε(X
′
0)(d, s1)

= {Definition 3.1.7 (Parameterized modal equation system semantics)}
s2 ∈ JE/P1(s1)KP2ρ2[Y ′ := σ(λF : D′ → 2S .(λv : D, s : S.JA/P1(s′)KP2(JE/P1(s1)KP2ρ2[Y ′ := F]ε[d′ := v, s′ := s])ε))]ε(X ′0)(d, s1)

= {Lemma 4.4.5 (Unbound variables remain equal),Definition 1.1.1 (Assignment)}
s2 ∈ σ(λF : D′ → 2S .(λv : D, s : S.JA/P1(s′)KP2

(JE/P1(s1)KP2
ρ2[Y ′ := F]ε[d′ := v, s′ := s])ε))(d, s1)

= {transfinite induction (4.4)}
(s1, s2) ∈ σ(λF : D → 2S .(λv : D.JAKP1 ||P2

(JEKP1 ||P2
ρ2[Y := F]ε[d′ := v])ε))(d)

={Definition 1.1.1 (Assignment),Lemma 4.4.5 (Unbound variables remain equal)}
(s1, s2) ∈ JEKP1 ||P2

ρ1[Y := σ(λF : D → 2S .(λv : D.JAKP1 ||P2
(JEKP1 ||P2

ρ2[Y := F]ε[d′ := v])ε))]ε(X0)(d)

= {Definition 3.1.7 (Parameterized modal equation system semantics)}
(s1, s2) ∈ J(σY (d′ : D) = A)EKP1 ||P2

ρ1ε(X0)(d)

2. X0 ∈ bnd(E):

s2 ∈ J((σY (d′ : D) = A)E)/P1(s1)KP2
ρ2ε(X

′
0)(d, s1)

= {Definition 4.2.8 (Quotienting on linear process equations)}
s2 ∈ J(σY (d′ : D, s′ : S) = A/P1(s′))(E/P1(s1))KP2

ρ2ε(X
′
0)(d, s1)

= {Definition 3.1.7 (Parameterized modal equation system semantics)}
s2 ∈ JE/P1(s1)KP2ρ2[Y ′ := σ(λF : D′ → 2S .(λv : D, s : S.JA/P1(s′)KP2(JE/P1(s1)KP2ρ2[Y ′ := F]ε[d′ := v, s′ := s])ε))]ε(d, s1)

‡ = {Induction Hypothesis}
(s1, s2) ∈ JEKP1 ||P2

ρ1[Y := σ(λF : D → 2S .(λv : D.JAKP1 ||P2
(JEKP1 ||P2

ρ1[Y := F]ε[d′ := v])ε))]ε(d)

= {Definition 3.1.7 (Parameterized modal equation system semantics)}
(s1, s2) ∈ J(σY (d′ : D) = A)EKP1 ||P2

ρ1ε(X0)(d)

It remains to show that the application of the Induction Hypothesis at step † is valid, i.e.
that the assumption (4.2) is met. To show: for all X ∈ occ(E) \ bnd(E) it holds that

(s1, s2) ∈ ρ1[Y := σ(λF : D → 2S .(λv : D.JAKP1 ||P2
(JEKP1 ||P2

ρ1[Y := F]ε[d′ := v])ε))](X)(d)

⇔ s2 ∈ ρ2[Y ′ := σ(λF : D → 2S .(λv : D, s : S.JA/P1(s′)KP2(JE/P1(s1)KP2ρ2[Y ′ := F]ε[d′ := v, s′ := s])ε))](X ′)(d, s1))

Take such an X ∈ occ(E) \ bnd(E), call it X1. There are two cases: either X1 is bound in
the first equation or it is not bound in (σY (d′ : D) = A)E at all. The first is equal to the
case X0 = Y (case 1), the second follows from the assumption on unbound variables (4.2).

56

4.4. Soundness 4. QUOTIENTING

2.1. X1 = Y
This case is equal to the case X0 = Y above (case 1):

s2 ∈ ρ2[Y ′ := σ(λF : D′ → 2S .(λv : D, s : S.JA/P1(s′)KP2
(JE/P1(s1)KP2

ρ2[Y ′ := F]ε[d′ := v, s′ := s])ε))](X ′1)(d, s1))

= {Definition 1.1.1 (Assignment)}
s2 ∈ σ(λF : D′ → 2S .(λv : D, s : S.JA/P1(s′)KP2

(JE/P1(s1)KP2
ρ2[Y ′ := F]ε[d′ := v, s′ := s])ε))(d, s1)

{equal to case X0 = Y (case 1)}
(s1, s2) ∈ σ(λF : D → 2S .(λv : D.JAKP1 ||P2

(JEKP1 ||P2
ρ1[Y := F]ε[d′ :=])ε))](X1)(d))

= {Definition 1.1.1 (Assignment)}
(s1, s2) ∈ ρ1[Y := σ(λF : D → 2S .(λv : D.JAKP1 ||P2

(JEKP1 ||P2
ρ1[Y := F]ε[d′ := v])ε))](X)(d)

2.2. X1 6= Y and X1 6∈ bnd(E)

s2 ∈ ρ2[Y ′ := σ(λF : D → 2S .(λv : D, s : S.JA/P1(s′)KP2
(JE/P1(s1)KP2

ρ2[Y ′ := F]ε[d′ := v, s′ := s])ε))](X ′1)(d, s1)

={Definition 1.1.1 (Assignment)}
s2 ∈ ρ2(X ′1)(d, s1)

= {assumption on unbound variables (4.2)}
(s1, s2) ∈ ρ1(X1)(d)

= {Definition 1.1.1 (Assignment)}
(s1, s2) ∈ σ(λF : D → 2S .(λv : D.JAKP1 ||P2

(JEKP1 ||P2
ρ1[Y := F]ε[d′ := v])ε))(d)

From this it follows that using the Induction Hypothesis at step † is valid and thus concludes
the case X ∈ bnd(E) (case 2).

3. X0 6= Y and X0 6∈ bnd(E)

s2 ∈ J((σY (d′ : D) = A)E)/P1(s1)KP2
ρ2ε(X

′
0)(d, s1)

= {Lemma 4.4.5 (Unbound variables remain equal)}
s2 ∈ ρ2(X ′0)(d, s1)

={assumption on unbound variables (4.2)}
(s1, s2) ∈ ρ1(X0)(d)

= {Lemma 4.4.5 (Unbound variables remain equal)}
(s1, s2) ∈ J(σY (d′ : D) = A)EKP1 ||P2

ρ1ε(X0)(d)

These three cases prove the induction step. The lemma follows by structural induction on E .

57

4. QUOTIENTING 4.4. Soundness

Soundness of quotienting on top assertions

Finally, we prove soundness of quotienting on top assertions, which follows easily from Lemma
4.4.6 (Relating E and E/P):

Theorem 4.4.7 (Quotienting on linear process equations is sound). Quotienting on linear pro-
cess equations is sound with respect to satisfaction. For any closed parameterized modal equa-
tion system E and any X ∈ bnd(E), it holds that

P1(si1) ||P2(si2) |= E ↓ X(d), if and only if, P2(si2) |= (E ↓ X(d))/P1(si1)

Proof. Since E is closed, the assumption of Lemma 4.4.6 (Relating E and E/P) trivially holds.

P2(si2) |= (E ↓ X(d))/P1(si1)

= {Definition 4.2.9 (Quotienting on top assertions)}
P2(si2) |= (E/P1(si1)) ↓ X ′(d, si1)

= {Definition 3.1.11 (Top assertion semantics)}
si2 ∈ JE/P1(si1)KP2ρε(X

′)(d, si1) for arbitrary ρ, ε

= {Lemma 4.4.6 (Relating E and E/P)}
(si1, si2) ∈ JEKP1 ||P2

ρε(X)(d) for arbitrary ρ, ε

= {Definition 3.1.11 (Top assertion semantics)}
P1(si1) ||P2(si2) |= E ↓ X(d)

58

5. QUOTIENTING EXTENSIONS

5 Quotienting extensions

In this section, we extend quotienting to process operators. What we are quotienting, is the
actual operators themselves. For example, we define E/ΓC , such that ΓC(Q) |= E , if and only if,
Q |= E/ΓC . Similarly for ∇V , ρC and τH . This enabled decomposition of process description to
their atomic linear process equations.

However, those definitions would not be complete. For example, quotienting the communication
operators from the process ΓC1

(P1) ||ΓC2
(P2) would not be possible with this definition. We

generalize the problem to finding a quotienting rule with the following specification:

ΓC(Q1) ||Q2 |= E , if and only if, Q1 || ρ(Q1) |= E/ΓC

The rationale behind this, we explain in Section 5.1.

Then, for each process operator, we derive the quotienting rule from this specification. Ideally, we
would like this quotienting to be completely independent from Q, but it turns out that this is not
possible.

The proof that quotienting is sound on parameterized modal equation system, follows from their
soundness on assertions, as with quotienting on parallel linear process equations (cf. Section 4.4).
We need to derive the definitions of quotienting on assertions. Because these operators only act
on the labels of transitions or restrict what transitions can be taken, the only interesting cases are
〈af〉A and [af]A. We derive the quotienting step for 〈af〉A; the case [af]A is dual.

5.1 Quotienting process descriptions

We transform Grammar 2.6.1 (Process descriptions) to the following equivalent grammar, noting
that the deadlock process Pδ is the unit element of parallel composition (cf. Corollary 2.7.6 (Par-
allel composition properties on linear process equations)):

Grammar 5.1.1 (Process descriptions, alternative grammar). Let Q be a process description
and let P be a linear process equation.

Q ::= Pδ(iPδ) (1)

| P (s) ||Q (2)

| (Q ||Q) ||Q (3)

| ΓC(Q) ||Q (4)

| ∇V (Q) ||Q (5)

| ρC(Q) ||Q (6)

| τH(Q) ||Q (7)

Here, C is a set of substitutions (cf. Definition 2.8.1 (Substitution function)) and V and I are
sets of multi-action names.

By quotienting, we aim to reduce the complexity of the process description, which will increase the
complexity of the property to be checked on it. A complete set of rules would enable the reduction
of any process description to the base case, the deadlock process. So, we derive a quotienting
rule for each of the other production rules in Grammar 5.1.1 (Process descriptions, alternative
grammar). In Section 4.2, we already established quotienting for production rule (2). By the
associativity of the parallel operator, Corollary 2.7.6 (Parallel composition properties on linear
process equations), the quotienting rule for production rule (3) is trivial. In the following sections,
we derive the quotienting rules for production rules (4) through (7).

59

5. QUOTIENTING EXTENSIONS 5.1. Quotienting process descriptions

The general pattern for these quotienting rules is as follows: let O ∈ {ΓC ,∇V , ρC , τH} be a unary
operator, with corresponding production rule O(Q1) ||Q2. When quotienting the operator O, we
need to ignore the parts of the multi-actions that come from Q2, as they are not affected by that
operator. To do this, we rename all action names in Q2 to fresh action names. We remove this
rename operator later. This leads to the following pattern:

O(Q1) ||Q2 |= E ↓ X(d) ⇔ Q1 || ρ(Q2) |= (E ↓ X(d))/O

Before we define the quotient operator / for each of the operators ΓC ,∇V , ρC and τH , we prove
that a set of quotienting rules that follow this specification is sound and complete.

The soundness of quotienting on process descriptions is a direct consequence of the specification.
In the following sections, we derive a quotienting rule from a different specification:

s ∈ JAKO(Q1) ||Q2
ρε ⇔ s ∈ JA/OKQ1 || ρ(Q2)ρε

That quotienting rules which follow this specification, also obey the previous specification on
satisfaction, can be shown very similarly to the soundness proof given in Section 4.4, using this
specification instead of Lemma 4.4.1 (Relation between recursion variables for quotienting on
assertions). Therefore, we omit the full proof here.

Theorem 5.1.2 (Quotienting on process descriptions is sound). Let E ↓ X(d) be a top assertion
and O(Q1) ||Q2 a process description, where O ∈ {ΓC ,∇V , ρC , τH}. Then,

O(Q1) ||Q2 |= E ↓ X(d), if and only if, Q1 || ρ(Q2) |= (E ↓ X(d))/O.

Proof. Similar to the soundness proof given in Section 4.4, using soundness of quotienting the
process operators, to be shown in Sections 5.2 through 5.5.

We now show the completeness of quotienting on process descriptions:

Theorem 5.1.3 (Quotienting on process descriptions is complete). Any model checking problem
with process description Q and some property, can be rewritten to an equivalent problem with
process description Pδ and some new property, in finitely many quotienting steps.

Proof. By induction on the number of operators and linear process equations in the left process of
parallel composition. The process description can be one of the following forms, given by Grammar
5.1.1 (Process descriptions, alternative grammar):

• Base. Pδ: trivial, no rewriting steps necessary.

• Induction step. There are several induction steps:

– P (s) ||Q: quotienting P (s) leads to one less linear process equation on the left process
of this parallel composition.

– (Q1 ||Q2) ||Q3: by associativity of parallel composition, Corollary 2.7.6 (Parallel com-
position properties on linear process equations), this can be rewritten to Q1 || (Q2 ||Q3).
This leads to strictly fewer operators and linear process equations in the left process of
this parallel composition, namely the operators and linear process equations of Q2.

– O(Q1) ||Q2 for O ∈ {ΓC ,∇V , ρC , τH}. Quotienting O yields a property to be checked
on Q1 || ρ(Q2). The left process of this parallel composition contains one less operator,
namely the operator O.

By induction, there are no operators or linear process equations in the left process of a parallel
composition, meaning there is no meaningful parallelism at all. The process that remains, is of
the form ρ(. . . (ρ(Pδ))), which equals the deadlock process Pδ itself.

We now define the quotient operator / for each of the operators ΓC ,∇V , ρC and τH .

60

5.2. Quotienting the communication operator 5. QUOTIENTING EXTENSIONS

5.2 Quotienting the communication operator

We derive a quotient step for the communication operator from the following specification:

s ∈ JAKΓC(P1) ||P2
ρε⇔ s ∈ JA/ΓCKP1 || ρ(P2)ρε

The derivation is by structural induction on the assertion A.

The interesting case is that of the modal operator 〈·〉. For the other cases, the derivation is rather
similar to the derivation of Definition 4.2.7 (Quotienting on assertions).

• X(e)

s ∈ JX(e)KΓC(P1) ||P2
ρε

= {Definition 3.1.3 (Assertion semantics)}
s ∈ ρ(X)(JeKε)

= {Definition 3.1.3 (Assertion semantics)}
s ∈ JX(e)/ΓCKP1 || ρ(P2)ρε

• b

s ∈ JbKΓC(P1) ||P2
ρε

= {Definition 3.1.3 (Assertion semantics)}JbKε
= {Definition 3.1.3 (Assertion semantics)}
s ∈ Jb/ΓCKP1 || ρ(P2)ρε

• A1 ∨ A2

s ∈ JA1 ∨ A2KΓC(P1) ||P2
ρε

= {Definition 3.1.3 (Assertion semantics)}
s ∈ JA1KΓC(P1) ||P2

ρε ∪ JA1KΓC(P1) ||P2
ρε

= {Induction Hypothesis, twice}
s ∈ JA1/ΓCKP1 || ρ(P2)ρε ∪ JA2/ΓCKP1 || ρ(P2)ρε

= {Definition 3.1.3 (Assertion semantics)}
s ∈ J(A1/ΓC) ∨ (A2/ΓC)KP1 || ρ(P2)ρε

• (∃d : D.A)

s ∈ J(∃d : D . A)KΓC(P1) ||P2
ρε

= {Definition 3.1.3 (Assertion semantics)}
s ∈

⋃
v:D

JAKΓC(P1) ||P2
ρε[d := v]

= {Induction Hypothesis, set theory}
s ∈

⋃
v:D

JA/ΓCKP1 || ρ(P2)ρε[d := v]

= {Definition 3.1.3 (Assertion semantics)}
s ∈ J(∃d : D . A/ΓC)KP1 || ρ(P2)ρε

61

5. QUOTIENTING EXTENSIONS 5.2. Quotienting the communication operator

• 〈af〉A
This is the interesting case. The communication operator applies the corresponding substitution
operator to all transition labels. So, we try to find an action formula such that when the sub-
stitution operator is applied to all elements in its semantics, we get the semantics of the original
action formula af . Formally, we define an action formula af/ΓC such that

γC(α) ∈ JafKΓC(P1) ||P2
ε ⇔ α ∈ Jaf/ΓCKP1 || ρ(P2)ε.

Quotienting for 〈af〉A is then as follows:

(〈af〉A)/ΓC = 〈af/ΓC〉(A/ΓC)

Assume C contains a single substitution β → β′. This can always be established using the rule
that ΓC1∪C2

(P) = ΓC1
(ΓC2

(P)). We derive quotienting the communication operator on action
formulae, by structural induction on the action formula af :

• true

γC(α) ∈ JtrueKΓC(P1) ||P2
ε

= {Definition 2.2.13 (Action formulae semantics)}
true

= {Definition 2.2.13 (Action formulae semantics)}
α ∈ JtrueKP1 || ρ(P2)ε

• af ∧ b
γC(α) ∈ Jaf ∧ bKΓC(P1) ||P2

ε

= {Definition 2.2.13 (Action formulae semantics)}
γC(α) ∈ JafKΓC(P1) ||P2

ε ∩ JbKΓC(P1) ||P2
ε

= {Definition 2.2.13 (Action formulae semantics)}

γC(α) ∈ JafKΓC(P1) ||P2
ε ∩
{
Act if JbKε
∅ otherwise

= {Induction Hypothesis,Definition 2.2.13 (Action formulae semantics)}
α ∈ Jaf/ΓCKP1 || ρ(P2)ε ∩ JbKP1 || ρ(P2)ε

= {Definition 2.2.13 (Action formulae semantics)}
α ∈ J(af/ΓC) ∧ bKP1 || ρ(P2)ε

• af ∧ α
For this case, we first construct an action formula that matches the multi-action α before
the communication. This function is built up similarly to the function CAE in Definition
4.2.7 (Quotienting on assertions). For the multi-action α-action to be present in a process
Γ{β→β′}(P), we distinguish the case where an α-transition was already present in P and
zero substitutions occurred, and the recursive case where α is the result of one or more
substitutions occurring on some other transition in P .

For the case where there were no transitions, the α-transition must have been left untouched
by the substitution operator. Using the function choose from Definition 4.2.7 (Quotienting
on assertions), this can be expressed as the following action formula:∧

(a1(e1)|...|a|β|(e|β|),α
′)∈choose|β|(α)

a1|...|a|β|=β

¬(e1 ≈ . . . ≈ e|β|)

62

5.2. Quotienting the communication operator 5. QUOTIENTING EXTENSIONS

For the recursive case, the substitution must have a resulting β′ with matching parameters
contained in α. This can be expressed as∨

(a1(e1)|...|a|β′|(e|β′|),α
′)∈choose|β′|(α)

a1|...|a|β′|=β′

e1 ≈ . . . ≈ e|β′|

This is the recursive case, because in the remainder α′ there can again be a substitution
result. No recursion is performed on β(e1), the part of the transition label before the
substitution, because it cannot be the result of another substitution: substitution results
cannot be substituted again.

So, we recursively define the function AF as follows:

AFβ,β′(α, γ) =


 ∧

(a1(e1)|...|a|β|(e|β|),α
′)∈choose|β|(α)

a1|...|a|β|=β

¬(e1 ≈ . . . ≈ e|β|)

 ∧ γ|α


∨
∨

(a1(e1)|...|a|β′|(e|β′|),α
′)∈choose|β′|(α)

a1|...|a|β′|=β′

(
e1 ≈ . . . ≈ e|β′| ∧ AFβ,β′(α′, γ|β(e1))

)

Initially, γ is the empty multi-action τ and α is the α of the original action formula af ∧ α.

Using this function, we can now define the quotienting operator for af ∧ α as follows:

γC(ξ) ∈ Jaf ∧ αKΓC(P1) ||P2
ε

= {Definition 2.2.13 (Action formulae semantics)}
γC(ξ) ∈ JafKΓC(P1) ||P2

ε ∩ JαKΓC(P1) ||P2
ε

Part of α was performed by ΓC(P1), part by P2. These are ζ and η, respectively. We create
a disjunction over all these possibilities. Since we rename all actions in P2, we also need to
rename η. Conveniently, as AF only passes its γ parameter on, we can use ρ(η) as the initial
value for γ.

= {Induction Hypothesis, splitting α into ζ and η}

ξ ∈ Jaf/ΓCKP1 || ρ(P2)ε ∩

uv ∨
ζ|η=α

AF(ζ, ρ(η))

}~
P1 || ρ(P2)

ε

= {Definition 2.2.13 (Action formulae semantics)}

ξ ∈

uv(af/ΓC) ∧
∨

ζ|η=α

AFβ,β′(ζ, ρ(η))

}~
P1 || ρ(P2)

ε

• af ∧ ¬α
This case is similar to the case af ∧ α:

γC(ξ) ∈ Jaf ∧ ¬αKΓC(P1) ||P2
ε

= {similar to the case for af ∧ α}
ξ ∈ J(af/ΓC) ∧ ¬

∨
ζ|η=α

AFβ,β′(ζ, ρ(η))KP1 || ρ(P2)ε

63

5. QUOTIENTING EXTENSIONS 5.2. Quotienting the communication operator

So, we define quotienting the communication operator as follows:

Definition 5.2.1 (Quotienting the communication operator). Let A be an assertion and let C
be a set of substitutions. Then, quotienting out the operator ΓC from assertion A, denoted
A/ΓC , is defined as follows:

If C is not a singleton:

A/ΓC1∪C2
= A/ΓC1

/ΓC2

If C is a singleton β → β′:

X(e)/ΓC = X(e)

b/ΓC = b

(A1 ∨ A2)/ΓC = (A1/ΓC) ∨ (A2/ΓC)

(∃d : D.A)/ΓC = (∃d : D.A/ΓC)

(〈af〉A)/ΓC = 〈af/ΓC〉(A/ΓC)

Here, quotienting the communication operator on modal operators is defined as follows:

true/ΓC = true

(af ∧ b)/ΓC = af/ΓC ∧ b
(af ∧ α)/ΓC = af/ΓC ∧

∨
ζ|η=α

AFβ,β′(ζ, ρ(η))

(af ∧ ¬α)/ΓC = af/ΓC ∧ ¬
∨

ζ|η=α

AFβ,β′(ζ, ρ(η)),

where the action formula AF is defined as:

AFβ,β′(α, γ) =


 ∧

(a1(e1)|...|a|β|(e|β|),α
′)∈choose|β|(α)

a1|...|a|β|=β

¬(e1 ≈ . . . ≈ e|β|)

 ∧ γ|α


∨
∨

(a1(e1)|...|a|β′|(e|β′|),α
′)∈choose|β′|(α)

a1|...|a|β′|=β′

(
e1 ≈ . . . ≈ e|β′| ∧ AFβ,β′(α′, γ|β(e1))

)

Theorem 5.2.2 (Quotienting the communication operator is sound). Quotienting the commu-
nication operator is sound, i.e. for any assertion A, processes P1 and P2, set of substitutions C,
environment ρ, data environment ε and state s, it holds that

s ∈ JAKΓC(P1) ||P2
ρε⇔ s ∈ JA/ΓCKP1 || ρ(P2)ρε.

Proof. By derivation of Definition 5.2.1 (Quotienting the communication operator).

Example 5.2.3 (Quotienting the communication operator). Consider the process R of Example
2.8.6 (Communication operator on linear process equations), and the assertion “a transfer(message)
action is enabled”: 〈transfer(message)〉true. This model checking problem can be expressed as s ∈J〈transfer(message)〉trueKΓ{send|receive→transfer}(P ||Q)ρε, for some environment ρ and data environment ε.

We rewrite this problem slightly, so that it fits the quotienting rule in Theorem 5.2.2 (Quotienting
the communication operator is sound):

s ∈ J〈transfer(message)〉trueKΓ{send|receive→transfer}(P ||Q)ρε

= {deadlock is unit element of parallel composition}
s ∈ J〈transfer(message)〉trueKΓ{send|receive→transfer}(P ||Q) ||Pδρε

64

5.2. Quotienting the communication operator 5. QUOTIENTING EXTENSIONS

Now, we apply Theorem 5.2.2 (Quotienting the communication operator is sound) and obtain:

= s ∈ J(〈transfer(message)〉true)/Γ{send|receive→transfer}K(P ||Q) || ρ(Pδ)ρε

= {deadlock is unit element of parallel composition}
s ∈ J(〈transfer(message)〉true)/Γ{send|receive→transfer}KP ||Qρε

We apply Definition 5.2.1 (Quotienting the communication operator):

(〈transfer(message)〉true)/Γ{send|receive→transfer}
= 〈transfer(message)/Γ{send|receive→transfer}〉true/Γ{send|receive→transfer}
= 〈(true ∧ transfer(message))/Γ{send|receive→transfer}〉true
= 〈true/Γ{send|receive→transfer} ∧

∨
ζ|η=transfer(message)

AFsend|receive,(ζ|ρ(η))〉true

= 〈true ∧ (AFsend|receive,transfer(transfer(message), τ)∨
(AFsend|receive,transfer(τ, transfer

′(message))))〉true
= 〈transfer(message) ∨ AFsend|receive,transfer(τ, send(message)|receive(message))∨

transfer′(message)〉true
= 〈transfer(message) ∨ send(message)|receive(message) ∨ transfer′(message)〉true

These disjuncts correspond neatly to the case where

• transfer(message) was already enabled in P ||Q,

• send(message)|receive(message) was enabled and communicated to transfer(message) (this can
also be satisfied by some transition send(e1)|receive(e2) and e1 ≈ e2 ≈ message),

• transfer(message) was already enabled in Pδ.

Even though it is obvious that this last scenario cannot occur, we must keep this option open, as
we wanted to avoid inspecting the underlying processes.

Finally, we reach the following equivalent model checking problem:

s ∈ J〈transfer(message) ∨ send(message)|receive(message) ∨ transfer′(message)〉trueKP ||Qρε
Another interesting example is the following:

Consider the same process R, with the assertion 〈send(message1)|receive(message2)〉true, yields the
following after quotienting:

s ∈ J〈(message1 6≈ message2 ∧ send(message1)|receive(message2))∨
send(message1)|receive′(message2)∨
send′(message1)|receive(message2)∨
send′(message1)|receive′(message2)〉trueKP ||Qρε

The condition message1 6≈ message2 is necessary, as otherwise the label send(message1)|receive(message2)
would have communicated to a transfer(message1) action and hence not satisfied the original as-
sertion 〈send(message1)|receive(message2)〉true.

65

5. QUOTIENTING EXTENSIONS 5.3. Quotienting the allow operator

5.3 Quotienting the allow operator

The interesting case is the one for the modal operator. For all other assertions, the derivation
is identical to the derivation of Definition 5.2.1 (Quotienting the communication operator). The
specification for this case is as follows:

s ∈ J(〈af〉A)/∇V KP1 || ρ(P2)ρε⇔ s ∈ J〈af〉AK∇V (P1) ||P2
ρε

The case 〈true〉A

The base case, where af equals true, is different from quotienting the other operators. As the allow
operator actually prevents transitions from occurring, the set of actions that can occur after the
allow operator, is only the actions in the allow set. So when we quotient out the allow operator, we
only look at the actions that are allowed. For example, for the problem ∇{a}(P) |= 〈true〉true, it
is not sufficient for P to be able to do a b-action, as it is blocked by the allow operator. Therefore,
we restrict true in the modal operator to actions that are allowed. Because these multi-actions
have parameters, we need a quantifier over the parameter sort of each action.

Moreover, these actions can occur simultaneously with actions from P2. Consider

∇{a}(P1) ||P2 |= 〈true〉A.

It is not only sufficient for A to hold after some a action, but it may also hold after some a|α,
where α is an action of P2. To distinguish between this α of P2 and α’s from P1 that would
be blocked, we use the renaming of multi-actions in P2. Unfortunately, all this implies we have
to enumerate all such possible multi-actions α that P2 can perform, thus we need to inspect P2.
Small comfort is that we do not need to know precisely what actions P2 can perform, we can do
with an overapproximation.

Construct the set Act(Q) of possible actions of Q. This is an overapproximation of the actual ac-
tions which can be performed by Q. These actions can be open expressions in the data parameters,
e.g. read(d).

Definition 5.3.1 (Overapproximation of multi-actions of a process description). Let Q be a
process description. The set Act(Q) is an overapproximation of the multi-actions Q can perform.

Act(P (s)) = {τ} ∪
∨
i∈I

αi

Act(Q1 ||Q2) = Act(Q1) ∪Act(Q2) ∪ {α|β | α ∈ Act(Q1), β ∈ Act(Q2)}

Act(ΓC(Q)) =

{
Act(ΓC1

(ΓC2
(Q)) if C is not a singleton, C = C1 ∪ C2

{ΓActβ,β′(α, τ) | α ∈ Act(Q)} if C is a singleton β → β′

Act(∇V (Q)) = {α ∈ Act(Q) | α ∈ V ∪ {τ}}
Act(τH(Q)) = {τH(α) | α ∈ Act(Q)},

For the communication operator, we define the set ΓAct as follows:

ΓActβ,β′(α, γ) = {α|γ} ∪
⋃

(a1(e1)|...|a|β|(e|β|),α
′)∈choose|β|(α)

a1|...|a|β|=β

ΓActβ,β′(α′, γ|β′(e1))

The set Act(Q) is clearly finite and all multi-actions that are enabled in any state in Q, are also
present in Act(Q).

66

5.3. Quotienting the allow operator 5. QUOTIENTING EXTENSIONS

We now have all the ingredients to quotient the allow operator for the assertion 〈true〉A:

• In the quotienting rule

s ∈ J(〈af〉A)/Act(P2)∇V KP1 || ρ(P2)ρε⇔ s ∈ J〈af〉AK∇V (P1) ||P2
ρε,

we calculate the set Act(P2) and pass it as a parameter to the quotient operator.

• In quotienting the assertion 〈true〉A, we use quantifiers over the possible parameters of the
multi-action names in the allow set:

(〈af〉A)/A∇V = (∃dv1 : Dv1 , . . . , dvn : Dvn . 〈af/A∇V 〉(A/A∇V)),

where Dv denotes the data parameter sort of the multi-action v for each v ∈ V .

• In quotienting the action formula true, we use a disjunction over all these multi-action names
in the allow set, with the data parameter variables of the surrounding quantifier. These
multi-actions can occur simultaneously with the actions of P2, which we identified in the set
Act(P2):

true/A∇V =
∨
v∈V

∨
α∈A

v(dv)|ρ(α)

This concludes the case 〈true〉A.

The case 〈af ∧ b〉A

The case af ∧ b, is equal to the case of the communication operator:

(af ∧ b)/A∇V = af/A∇V ∧ b

The case 〈af ∧ α〉A

A more interesting case is af ∧ α. As with the communication operator, we construct an action
formula that matches the multi-action α before the allow operator. This is simply α itself if α is
in the allow set V ∪ {τ}, or false otherwise. This is a simple case distinction, as we can determine
whether α is allowed immediately. We also create a disjunction of splitting α in a part ζ and η,
as with the communication operator. This means that for the case af ∧ α, the quotient rule is
simply

(af ∧ α)/∇V =
∨

ζ|η=α

{
af/∇V ∧ ζ|ρ(η) if ζ ∈ V ∪ {τ}
false otherwise

The case 〈af ∧ ¬α〉A

For the case af ∧ ¬α, we apply the same case distinction. In the case where α is in the allow
set, the action formula ¬α simply remains ¬α. In the case where α is not in the allow set, the
requirement ¬α is already enforced by the allow operator and can be removed.

67

5. QUOTIENTING EXTENSIONS 5.3. Quotienting the allow operator

Conclusion

This leads to the following definition of quotienting the allow operator:

Definition 5.3.2 (Quotienting the allow operator). Let A be an assertion and let V be a set of
multi-action names. Then, quotienting out the operator ∇V from assertion A, denoted A/∇V ,
is defined as follows:

(〈af〉A)/A∇V = (∃dv1 : Dv1 , . . . , dvn : Dvn . 〈af/A∇V 〉(A/A∇V)),

where Dv denotes the data parameter sort of the multi-action v for each v ∈ V , and quotienting
the allow operator on action formulae is defined as:

true/A∇V =
∨
v∈V

∨
α∈A

v(dv)|ρ(α)

(af ∧ b)/A∇V = af/A∇V ∧ b

(af ∧ α)/A∇V =
∨

ζ|η=α

{
af/A∇V ∧ ζ|ρ(η) if ζ ∈ V ∪ {τ}
false otherwise

(af ∧ ¬α)/A∇V =
∨

ζ|η=α

{
af ∧ ζ|ρ(η) if ζ ∈ V ∪ {τ}
af/A∇V otherwise

Theorem 5.3.3 (Quotienting the allow operator is sound). Quotienting the allow operator is
sound, i.e. for any assertion A, processes P1 and P2, set of multi-action names V , environment
ρ, data environment ε and state s, it holds that

s ∈ JAK∇V (P1) ||P2
ρε⇔ s ∈ JA/Act(P2)∇V KP1 || ρ(P2)ρε.

Proof. By derivation of Definition 5.3.2 (Quotienting the allow operator).

We explore an example:

Example 5.3.4 (Quotienting the allow operator). Consider the process ∇{transfer}(R) of Example
2.9.5 (Allow operator on linear process equations) and the assertion 〈transfer(message)〉true. The
model checking problem is expressed as:

s ∈ J〈transfer(message)〉trueK∇{transfer}(R)ρε,

where ρ is some environment and ε a data environment.

We rewrite this to match the quotienting rule in Theorem 5.3.3 (Quotienting the allow operator
is sound):

s ∈ J〈transfer(message)〉trueK∇{transfer}(R)ρε

= {deadlock is unit element of parallel composition}
s ∈ J〈transfer(message)〉trueK∇{transfer}(R) ||Pδρε

We calculate Act(Pδ), which is {τ}. Now, we apply Theorem 5.3.3 (Quotienting the allow operator
is sound) and obtain:

= s ∈ J(〈transfer(message)〉true)/{τ}∇{transfer}KR || ρ(Pδ)ρε
= {rename on deadlock process has no effect, deadlock is unit element of parallel composition}
s ∈ J(〈transfer(message)〉true)/{τ}∇{transfer}KRρε

68

5.4. Quotienting the rename operator 5. QUOTIENTING EXTENSIONS

Quotienting the allow operator from the assertion is as follows:

(〈transfer(message)〉true)/{τ}∇{transfer}
= (∃d : D . 〈(true ∧ transfer(message))/{τ}∇{transfer}〉true/{τ}∇{transfer})

= (∃d : D .

〈 ∨
ζ|η=transfer(message)

{
true/{τ}∇{transfer} ∧ ζ|ρ(η) if ζ ∈ {transfer, τ}
false otherwise

〉
true)

There are two possibilities for ζ and η: either ζ = transfer(message) and η = τ , or vice-versa. As
transfer(message) = transfer is in the allow set, we obtain:

= (∃d : D . 〈(true ∧ transfer(message)) ∨ (true ∧ transfer′(message))〉true)
= (∃d : D . 〈(transfer(d) ∧ transfer(message)) ∨ (transfer(d) ∧ transfer′(message))〉true

Note that transfer(d) and transfer′(message) cannot both be true, and that we can apply a one-point
rule to the existential quantifier for d ≈ message. This yields:

= 〈transfer(message)〉true

So, after quotienting the allow operator, we get the following equivalent model checking problem:

s ∈ J〈transfer(message)〉trueKRρε
Another interesting case is when transfer would not be in the allow set:

〈transfer(message)true〉/{τ}∇{move}

=

〈 ∨
ζ|η=transfer(message)

{
true/{τ}∇{move} ∧ ζ|ρ(η) if ζ ∈ {move, τ}
false otherwise

〉
true/{τ}∇{move}

= 〈false〉true
= false

The case where transfer(message) was enabled in R, is no longer available, as this would be blocked
by the allow operator.

5.4 Quotienting the rename operator

Quotienting of the rename operator is the same as quotienting of the communication operator.
However, is with the definition of the rename operator, the expressions can be simplified, noting
that there is no need for parameter matching when there is only on parameter. This yields the
following definition of quotienting the rename operator:

Definition 5.4.1 (Quotienting the rename operator). Let A be an assertion and let C be a set
of single substitutions. Then, quotienting out the operator ρC from assertion A, denoted A/ρC ,
is defined as follows:

If C is not a singleton:

A/ρC1∪C2 = A/ρC1/ρC2

If C is a singleton a→ β′:

(〈af〉A)/ρC = 〈af/ρC〉(A/ρ{b→β′}),

69

5. QUOTIENTING EXTENSIONS 5.4. Quotienting the rename operator

where renameing on action formulae is defined as

true/ρC = true

(af ∧ b)/ρC = af/ρC ∧ b
(af ∧ α)/ρC = af/ρC ∧

∨
ζ|η=α

AF(ζ, ρ(η))

(af ∧ ¬α)/ρC = af/ρC ∧ ¬
∨

ζ|η=α

AF(ζ, ρ(η)),

and the action formula AF is defined as:

AF(α, γ) =

{
γ|α if a 6v α
false otherwise

∨
∨

(a1(e1)|...|a|β′|(e|β′|),α
′)∈choose|β′|(α)

a1|...|a|β′|=β′

(
e1 ≈ . . . ≈ e|β′| ∧ AF(α′, γ|a)

)

The soundness of quotienting of the rename operator, follows from this derivation.

Theorem 5.4.2 (Quotienting the rename operator is sound). Quotienting the rename operator
is sound, i.e. for any assertion A, processes P1 and P2, set of single substitutions C, environment
ρ, data environment ε and state s, it holds that

s ∈ JAKρC(P1) ||P2
ρε⇔ s ∈ JA/ρCKP1 || ρ(P2)ρε.

Proof. By derivation of Definition 5.4.1 (Quotienting the rename operator).

Example 5.4.3 (Quotienting the rename operator). In Example 2.10.4 (Rename operator), we
rename the send action to an out action in the process R of Definition 2.8.4 (Communication oper-
ator on linear process equations). This is the process ρ{send→out}(R). Suppose we were interested
in whether this process can perform an out(1)-action, expressed as the assertion 〈out(1)〉true. The
model checking problem is as follows:

s ∈ J〈out(1)〉trueKρ{send→out}(R)ρε

By quotienting the rename operator, we can rewrite this to the following model checking problem:

s ∈ J(〈out(1)〉true)/ρ{send→out}KR || ρ(Pδ)ρε
Now, we calculate the assertion (〈out(1)〉true)/ρ{send→out}.

(〈out(1)〉true)/ρ{send→out}
= 〈true/ρ{send→out} ∧ out(1)/ρ{send→out}〉true/ρ{send→out}

= 〈true ∧
∨

ζ|η=out(1)

AF(ζ, ρ(η))〉true

There are two possibilities for ζ and η: one equals out(1) and the other τ , and vice-versa.

= 〈AF(out(1), ρ(τ)) ∨ AF(τ, ρ(out(1)))〉true

We expand the definition of AF. For the first one, as out(1) can be the result of a substitution, we
do a recursive step. In the second, there is no recursive step.

= 〈(out(1)|ρ(τ) ∨ AF(τ,move(1)|ρ(τ))) ∨ out′(1)〉true
= 〈out(1) ∨move(1) ∨ out′(1)〉true

70

5.5. Quotienting the abstraction operator 5. QUOTIENTING EXTENSIONS

So, we obtain the following model checking problem:

s ∈ J〈move(1) ∨ out′(1)〉trueKR || ρ(Pδ)ρε
These three disjuncts neatly correspond to

• the out(1) action was already enabled and the rename had no effect on it,

• a move(1) action was enabled and it was renamed to out(1), and

• the out(1) action was enabled in the remainder process ρ(Pδ) and R stays idle.

5.5 Quotienting the abstraction operator

The interesting case is the one for the modal operator. For the other assertions, the derivation
is again identical to the derivation of Definition 5.2.1 (Quotienting the communication operator).
The specification for this case is as follows:

s ∈ J(〈af〉A)/τHKP1 || ρ(P2)ρε⇔ s ∈ J〈af〉AKτH(P1) ||P2
ρε

We construct an action formula that matches a given multi-action α before the abstraction operator
was applied. However, the set {β | τH(β) = α} turns out to infinitely large, which can be easily
seen by an example: suppose α = a and H is the singleton b. Then, a should be in this set, as
does a|b, a|b|b, etcetera. There is no finite action formula that can describe this set. We solve
this problem by overapproximating what possible actions are actually present in the process the
abstraction operator was applied to. We use the overapproximation Act we defined for the allow
operator, Definition 5.3.1 (Overapproximation of multi-actions of a process description).

Now we can simply enumerate the possibilities, i.e. we create a disjunction over all β in a set
A, where τβ = α. Finally, we create a disjunction of splitting α in a part ζ and η, as with
the other process operators. This leads to the following definition of quotienting the abstraction
operator:

Definition 5.5.1 (Quotienting the abstraction operator). Let A be an assertion, H a set of
multi-action names and A a set of multi-actions. Then, quotienting out the operator τH from
assertion A, where A is the overapproximation of actions that are enabled, denoted A/AτH , is
defined as follows:

〈af〉A/AτH = 〈af/AτH〉(A/AτH),

where quotienting the abstraction operator from a action formulae is defined as follows:

true/AτH = true

(af ∧ b)/AτH = af/AτH ∧ b

(af ∧ α)/AτH = af/AτH ∧

 ∨
ζ|η=α

∨
β∈A

τH(β)=ζ

β|ρ(η)



(af ∧ ¬α)/AτH = af/AτH ∧ ¬

 ∨
ζ|η=α

∨
β∈A

τH(β)=α

¬β|ρ(η)



71

5. QUOTIENTING EXTENSIONS 5.5. Quotienting the abstraction operator

The use of Act(Q2) can be seen in the following quotienting rule:

Theorem 5.5.2 (Quotienting the abstraction operator is sound). Quotienting the abstraction
operator is sound, i.e. for any assertion A, processes P1 and P2, set of multi-action names H,
environment ρ, data environment ε and state s, it holds that

s ∈ JAKτH(P1) ||P2
ρε⇔ s ∈ JA/Act(P1)τHKP1 || ρ(P2)ρε.

Proof. By derivation of Definition 5.5.1 (Quotienting the abstraction operator).

Example 5.5.3 (Quotienting the abstraction operator). In Example 2.11.6 (Abstraction operator
on linear process equations), we applied abstraction to the process R of Example 2.8.6 (Commu-
nication operator on linear process equations). We consider the process τ{send,receive}(R), where R
is defined as:

R =
∑
d:D

true→ send(d) . R

+
∑
d:D

true→ receive(d) . R

+
∑
d:D

∑
d′:D

d 6≈ d′ → send(d)|receive(d′) . R

+
∑
d:D

true→ transfer(d) . R

Suppose that we are interested in whether τ{send,receive}(R) satisfies the property that a transfer(1)-
action is possible: 〈transfer(1)〉true. The model checking problem is:

s ∈ J〈transfer(1)〉trueKτ{send,receive}(R) ||P ρε

By quotienting out the abstraction operator, we can express this as a property on only R and P :

s ∈ J(〈transfer(1)〉true)/Aτ{send,receive}KR || ρ(P)ρε

Unfortunately, we do need to inspect R to see what multi-actions are possible, or at least obtain
a finite overapproximation of those possible multi-actions. This is the set of multi-actions A. We
calculate it to be A = {send(d), receive(d), send(d)|receive(d′), transfer(d)}.
We calculate (〈transfer〉true)/Aτ{send,receive}:

(〈transfer(1)〉true)/Aτ{send,receive}
= 〈transfer(1)/Aτ{send,receive}〉(true/Aτ{send,receive})
= 〈true/Aτ{send,receive} ∧

∨
η|ζ=transfer(1)

∨
β∈A

τ{send,receive}(β)=ζ

β|ρ(η)〉true

We expand the possibilities for η and ζ: one equals transfer(1) and the other is τ , and vice-versa.

=

〈
∨
β∈A

τ{send,receive}(β)=τ

β|ρ(transfer(1))

∨
∨
β∈A

τ{send,receive}(β)=transfer(1)

β|ρ(τ)

〉
true

72

5.6. Buffer example (5) 5. QUOTIENTING EXTENSIONS

There are three possibilities for β in the first disjunction, and only one in the second. To have
β equal transfer(1), we require that the parameter d in transfer(d), matches the parameter 1. We
expand the possibilities for β and apply the renaming to fresh action names. We obtain the
following model checking problem:

s ∈ J〈send(d)|transfer′(1)

∨ receive(d)|transfer′(1)

∨ send′(d)|receive′(d′)|transfer′(1)

∨ transfer(1)〉trueKR || ρ(P)ρε

These four possibilities correspond to three possible ways in which R does a transition that is
hidden by the abstraction and P does a transfer(1) transition, and the one possibility where R
does the transfer(1) transition.

5.6 Buffer example (5)

We revisit the example with an n-place buffer constructed of n one-place buffers. Using quotient-
ing, we can remove one of the parallel one-place buffers from the model side of the model checking
equation, to the property side. In other words, we express the property that we would like to
check against the n + 1-place buffer, as a property we still have to check on the n-place buffer,
by quotienting out one of the parallel one-place buffers. Of course, as these one-place buffers are
linked together with process operators, this means we need to quotient out these process operators
as well.

The n + 1-place buffer is constructed from a one-place buffer B1 and an n-place buffer Bn as
follows (cf. Section 4.3):

τ{move}(∇{in,out,move}(Γ{out′|in′→move}(ρ{out→out′}(B1) || ρ{in→in′}(Bn))))

The property we would like to check on this process, is the property that every data element that
goes in the buffer, eventually comes out (cf. Section 3.2):

E ↓ X =

(
νX = [true]X ∧ (∀m : D . [in(m)]Y (m))

µY (m : D) = [¬out(m)]Y (m) ∧ 〈true〉true

)
↓ X

Intuitively, this should be true.

Using quotienting, we can rewrite the question of whether the n + 1-place buffer satisfies this
property, to whether the one-place buffer and the n-place buffer satisfy it. We quotient the
process operators from this top assertion, one by one. The original model checking problem is as
follows:

τ{move}(∇{in,out,move}(Γ{out′|in′→move}(ρ{out→out′}(B1) || ρ{in→in′}(Bn)))) |= E ↓ X

To fit this to the definition of Definition 5.5.1 (Quotienting the abstraction operator), we use the
fact that the deadlock process is the unit of parallel composition:

τ{move}(∇{in,out,move}(Γ{out′|in′→move}(ρ{out→out′}(B1) || ρ{in→in′}(Bn)))) ||Pδ |= E ↓ X

Quotienting abstraction

From this equation, we can quotient the abstraction operator. The first step is to build the
overapproximation of the set of actions that are enabled:

A = Act(∇{in,out,move}(Γ{out′|in′→move}(ρ{out→out′}(B1) || ρ{in→in′}(Bn))))

73

5. QUOTIENTING EXTENSIONS 5.6. Buffer example (5)

Fortunately, because of the allow operator, we can easily see that A only contains in, out and
move actions, as well as the τ action which the allow operator never blocks. We do not explicitly
build Act in this example, as the intermediate expressions are quite large. Also, we cannot inspect
Bn in this example, nor do we need to.

∇{in,out,move}(Γ{out′|in′→move}(ρ{out→out′}(B1) || ρ{in→in′}(Bn))) || ρ(Pδ) |= (E ↓ X)/Aτ{move}

We calculate (E ↓ X)/Aτ{move}. First, we distribute the quotienting operation over equations and
boolean connectives:

E/Aτ{move}

=

(
νX = [true/Aτ{move}]X/Aτ{move} ∧ (∀m : D . [in(m)/Aτ{move}]Y (m)/Aτ{move})

µY (m : D) = [(¬out(m))/Aτ{move}]Y (m)/Aτ{move} ∧ 〈true/Aτ{move}〉true/Aτ{move}

)

We can immediately reduce most of it, as true/AτH = true for both assertions and action formulae,
and recursion variables such as X are also not affected:

=

(
νX = [true]X ∧ (∀m : D . [in(m)/Aτ{move}]Y (m))

µY (m : D) = [(¬out(m))/Aτ{move}]Y (m) ∧ 〈true〉true

)

The two quotienting expressions on action formulae are the interesting cases. We immediately
expand the large disjunctions in their definition: for each, ζ and η have two possibilites: one is the
entire action and the other is τ , and vice-versa. Since A only contains in, out, move and τ actions,
the requirement that τ{move}(β) equals in(m) or out(m) is simply that β equals it directly. For
the case τ{move}(β) = τ , the multi-action β can equal τ directly or equal move which is abstracted
to τ .

=

(
νX = [true]X ∧ (∀m : D . [in(m) ∨ in′(m) ∨move|in′(m)]Y (m))

µY (m : D) = [¬(out(m) ∨ out′(m) ∨move|out′(m))]Y (m) ∧ 〈true〉true

)

Note that the deadlock process keeps collecting rename operators which have no effect, as the
deadlock process has no transitions to rename. This is common. From now on, we keep the
deadlock process implicit.

Because we would like to keep our intermediate results small, we immediately try to reduce
this property. We already noted that the deadlock process cannot do any actions and that it
accumulates rename operators which have no effect. From this, we can also see that actions which
are renamed in the property, e.g. in′(m) or the out′ action in move|out′(m), are never performed
by this deadlocked process. Therefore, we can remove these actions. Perhaps not very surprisingly,
this takes us back to the starting point E . We conclude that in for particular process and this
particular property, the abstraction operator had no effect on the property’s validity.

We have calculated that (E ↓ X)/Aτ{move} = E ↓ X.

Quotienting allow

Next, we quotient out the allow operator, to obtain:

Γ{out′|in′→move}(ρ{out→out′}(B1) || ρ{in→in′}(Bn)) |= (E ↓ X)/Aτ{move}/Act(Pδ)∇{in,out,move}

The set Act(Pδ) is simply {τ}. We calculate (E ↓ X)/Aτ{move}/{τ}∇{in,out,move}:

E/Aτ{move}/{τ}∇{in,out,move}
= E/{τ}∇{in,out,move}

74

5.6. Buffer example (5) 5. QUOTIENTING EXTENSIONS

The in, out and move actions take a parameter of type D, which we quantify over:

=



νX =

(∀d : D . [in(d) ∨ out(d) ∨move(d) ∨ τ]X/{τ}∇{in,out,move})

∧ (∀m : D . (∀d : D .

[(in(d) ∨ out(d) ∨move(d) ∨ τ) ∧ in(m)/{τ}∇{in,out,move}]

Y (m)/{τ}∇{in,out,move})

)

µY (m : D) =

(∀d : D .

[(in(d) ∨ out(d) ∨move(d) ∨ τ) ∧ (¬out(m))/{τ}∇{in,out,move}]

Y (m)/{τ}∇{in,out,move}
)

∧ (∃d : D . 〈in(d) ∨ out(d) ∨move(d) ∨ τ〉true/{τ}∇{in,out,move})


The recursion variables X and Y (m) are left unchanged by quotienting the allow operator. Because
in(m) = in is in the allow set, it is also unchanged. Similarly, ¬out(m) is unchanged. We also
note that the action formula (in(d)∨ out(d)∨move(d)∨ τ)∧ in(m) is equal to in(m) because there
are no further restrictions on d.

=



νX =

(∀d : D . [in(d) ∨ out(d) ∨move(d) ∨ τ]X)

∧ (∀m : D . [in(m)]Y (m))

µY (m : D) =

(∀d : D . [(in(d) ∨ out(d) ∨move(d) ∨ τ) ∧ ¬out(m)]Y (m))

∧ (∃d : D . 〈in(d) ∨ out(d) ∨move(d) ∨ τ〉true



Quotienting communication

So far, we have calculated E/Aτ{move}/{τ}∇{in,out,move} and found that the original model checking
problem is equivalent to the following problem:

Γ{out′|in′→move}(ρ{out→out′}(B1) || ρ{in→in′}(Bn)) |= (E ↓ X)/Aτ{move}/{τ}∇{in,out,move},

where

(E ↓ X)/Aτ{move}/{τ}∇{in,out,move}

=



νX =

(∀d : D . [in(d) ∨ out(d) ∨move(d) ∨ τ]X)

∧ (∀m : D . [in(m)]Y (m))

µY (m : D) =

(∀d : D . [(in(d) ∨ out(d) ∨move(d) ∨ τ) ∧ ¬out(m)]Y (m))

∧ (∃d : D . 〈in(d) ∨ out(d) ∨move(d) ∨ τ〉true


↓ X.

The next step is to quotient the communication operator. This is more straightforward. Note that
move can be the result of a substitution, so we account for two possibilities: either move indeed
is the result of a substitution, or there was already a move transition.

75

5. QUOTIENTING EXTENSIONS 5.6. Buffer example (5)

We calculate E/Aτ{move}/{τ}∇{in,out,move}/Γ{out′|in′→move}.

E/Aτ{move}/{τ}∇{in,out,move}/Γ{out′|in′→move}

=



νX =

(∀d : D . [in(d) ∨ out(d) ∨move(d) ∨ τ]X)

∧ (∀m : D . [in(m)]Y (m))

µY (m : D) =

(∀d : D . [(in(d) ∨ out(d) ∨move(d) ∨ τ) ∧ ¬out(m)]Y (m))

∧ (∃d : D . 〈in(d) ∨ out(d) ∨move(d) ∨ τ〉true)


/Γ{out′|in′→move}

We do the usual disjunction over ζ and η, again noting that for these single actions, one equals
the entire action and the other is τ , and vice-versa. For each of these possibilities, there is an
action formula AF :

=



νX =

(∀d : D .


(AFin′|out′,move(in(d), τ ′) ∨AFin′|out′,move(τ, in

′′(d))

∨AFin′|out′,move(out(d), τ ′) ∨AFin′|out′,move(τ, out
′(d))

∨AFin′|out′,move(move(d), τ ′) ∨AFin′|out′,move(τ,move
′(d))

∨AFin′|out′,move(τ, τ
′) ∨AFin′|out′,move(τ, τ

′)

X)

∧ (∀m : D . [AFin′|out′,move(in(m), τ ′) ∨AFin′|out′,move(τ, in
′(m))]Y (m))

µY (m : D) =

(∀d : D .


(AFin′|out′,move(in(d), τ ′) ∨AFin′|out′,move(τ, in

′′(d))

∨AFin′|out′,move(out(d), τ ′) ∨AFin′|out′,move(τ, out
′(d))

∨AFin′|out′,move(move(d), τ ′) ∨AFin′|out′,move(τ,move
′(d))

∨AFin′|out′,move(τ, τ
′) ∨AFin′|out′,move(τ, τ

′)

) ∧ ¬(AFin′|out′,move(out(m), τ ′) ∨AFin′|out′,move(τ, out
′(m)))

Y (m))

∧ (∃d : D .


(AFin′|out′,move(in(d), τ ′) ∨AFin′|out′,move(τ, in

′′(d))

∨AFin′|out′,move(out(d), τ ′) ∨AFin′|out′,move(τ, out
′(d))

∨AFin′|out′,move(move(d), τ ′) ∨AFin′|out′,move(τ,move
′(d))

∨AFin′|out′,move(τ, τ
′) ∨AFin′|out′,move(τ, τ

′)

 true)



76

5.6. Buffer example (5) 5. QUOTIENTING EXTENSIONS

Expanding the definition of AF is simple:

=



νX =

(∀d : D .


in(d) ∨ in′′(d)

∨ out(d) ∨ out′(d)

∨ (move(d) ∨AFin′|out′,move(τ, in
′(d)|out′(d)|τ ′)) ∨move′(d)

∨ τ

X)

∧ (∀m : D . [in(m) ∨ in′(m)]Y (m))

µY (m : D) =

(∀d : D .


(in(d) ∨ in′′(d)

∨ out(d) ∨ out′(d)

∨ (move(d) ∨AFin′|out′,move(τ, in
′(d)|out′(d)|τ ′)) ∨move′(d)

∨ τ
) ∧ ¬(out(m) ∨ out′(m))

Y (m))

∧ (∃d : D .


in(d) ∨ in′′(d)

∨ out(d) ∨ out′(d)

∨ (move(d) ∨AFin′|out′,move(τ, in
′(d)|out′(d)|τ ′)) ∨move′(d)

∨ τ

 true)


Finally, we expand the recursive step of AF . Without knowledge of the second parallel process,
in this case Pδ, the calculation would end there. We would keep open all possibilities of parts of
the original actions being performed by this parallel process. However, we can go a bit further
and use this information anyway. Since we know the parallel process is the deadlock process and
thus does not do any actions, we can remove all those possibilities where the parallel process takes
a transition. What remains is very similar to before quotienting the communication operator,
with an additional possibility for move(d) to occur: it was the result of a communication of
in′(d)|out′(d).

=



νX =

(∀d : D . [in(d) ∨ out(d) ∨ (move(d) ∨ in′(d)|out′(d)) ∨ τ]X)

∧ (∀m : D . [in(m)]Y (m))

µY (m : D) =

(∀d : D . [(in(d) ∨ out(d) ∨ (move(d) ∨ in′(d)|out′(d)) ∨ τ) ∧ ¬out(m)]Y (m))

∧ (∃d : D . [in(d) ∨ out(d) ∨ (move(d) ∨ in′(d)|out′(d)) ∨ τ]true)


This is the property E/Aτ{move}/{τ}∇{in,out,move}/Γ{out′|in′→move}. Thus far, we have the following
model checking problem, which is equivalent to the original model checking problem:

ρ{out→out′}(B1) || ρ{in→in′}(Bn) |= (E ↓ X)/Aτ{move}/{τ}∇{in,out,move}/Γ{out′|in′→move}

Continuing quotienting

From here, we can continue quotienting down to Bn. These steps are all similar to ones we have
seen previously. Quotienting the rename operator is very similar to quotienting the communication
operator. We do not go into details for this example, only show the quotienting steps without
calculating the expression on the property side of the model checking equation.

When we quotient out the rename of B1, we put another a rename over the Bn part. We remove
this later.

B1 || ρ(ρ{in→in′}(Bn)) |= (E ↓ X)/Aτ{move}/{τ}∇{in,out,move}/Γ{out′|in′→move}/ρ{out→out′}

77

5. QUOTIENTING EXTENSIONS 5.6. Buffer example (5)

We quotient the linear process equation B1. We have already seen an example of quotienting a
linear process equation in Section 4.3.

ρ(ρ{in→in′}(Bn)) |= (E ↓ X)/Aτ{move}/{τ}∇{in,out,move}/Γ{out′|in′→move}/ρ{out→out′}/B1

The rename to Bn that was the byproduct of quotienting the rename operator around B1, can now
be quotiented out. Again, we use an implicit deadlock parallel process that accumulates rename
operators that have no effect:

ρ(ρ{in→in′}(Bn) |= (E ↓ X)/Aτ{move}/{τ}∇{in,out,move}/Γ{out′|in′→move}/ρ{out→out′}/B1

Finally, we quotient the rename operator around Bn.

ρ{in→in′}(Bn) |= (E ↓ X)/Aτ{move}/{τ}∇{in,out,move}/Γ{out′|in′→move}/ρ{out→out′}/B1/ρ

We can simply forget about the implicit deadlock process with all the renames, as the renames
do not do anything and the deadlock process is the unit element of parallel composition. The
model checking problem we eventually obtain, which is equivalent to the original model checking
problem, is:

Bn |= (E ↓ X)/Aτ{move}/{τ}∇{in,out,move}/Γ{out′|in′→move}/ρ{out→out′}/B1/ρ/ρ{in→in′}

78

6. PROPERTY MINIMIZATION

6 Property minimization

In this section, we explore some techniques to reduce the complexity of the parameterized modal
equation systems obtained through quotienting. The quotienting step only moved part of the
problem’s complexity from the model side of the satisfaction equation to the property side. In this
section, we reduce the property’s complexity and actually make the satisfaction problem easier to
solve.

Because parameterized modal equation systems are equally expressive as the modal µ-calculus, we
know that it is EXPTIME-hard to solve (Schneider, [10]). Therefore, we resort to heuristic reduc-
tions: there are no guarantees that a given parameterized modal equation system can be reduced
in complexity. Some of these techniques can be rather expensive operations; sometimes it is more
efficient to not reduce the property than to calculate if it can be reduced. Nonetheless, reducing
the property’s complexity means reducing the overall model checking problem’s complexity, which
is the aim of the compositional model checking approach.

Admittedly, the reductions we discuss in this section are a rather arbitrary selection of the many
heuristic reduction schemes that can be devised to reduce the complexity of parameterized modal
equation systems. Nonetheless, this set of reductions should form a good starting point. It incorpo-
rates the reductions from Andersen, which were powerful enough in his experiments to dramatically
decrease the complexity of the model checking problem. Further research can focus on designing
better heuristics to reduce the complexity of parameterized modal equation systems.

The reduction techniques we discuss in this section are:

1. Simple evaluation
Simplification of assertions, e.g. false ∧X(true) = X(true).

2. Reachability analysis
Removes equations of variables on which the top variable does not depend, e.g. (µX =
X) (νY = X) ↓ X reduces to (µX = X) ↓ X, as X does not depend on Y .

3. Constant propagation
Replaces occurrences of a variable by its defining assertion, when that defining assertion is
a constant, e.g. (µX = Y) (νY = true) reduces to (µX = true) (νY = true).

4. Unguardedness removal
Replaces occurrences of a variable with its defining assertion in assertions where it appears
unguarded and which appear before its defining equation, e.g. (µX = Y) (νY = X) reduces
to (µX = X) (νY = X).

5. Trivial equation elimination
Solves trivial equations, such as (µX = 〈af〉X) reduces to (µX = false).

6. Action formulae simplification
Simplification of action formulae, e.g. in(message) ∧ true = in(message).

7. Parameter elimination
Removes parameters that do not occur in the defining equation, e.g. (µX(b : Bool, n : Nat) =
b) reduces to (µX(b : Bool) = b).

The naming and definitions of reductions 1 through 5 are taken from Andersen [1]. The equiv-
alence reduction and implication reduction from Andersen are not discussed in detail, as these
pertain to reducing the number of equations. Since, contrary to quotienting on labeled transition
systems, quotienting on process descriptions does not introduce any new equations, we expect
equivalence reduction and implication reduction to have little or no impact. We do discuss pa-
rameter elimination, as laid out on parameterized boolean equation systems by Orzan et al. [9].
Also, we discuss reducing the complexity of action formulae.

79

6. PROPERTY MINIMIZATION 6.1. Simple evaluation

We do not go into details about the soundness of these reductions. Most of these proofs would
be rather similar to the proof in Section 4.4. We do provide an argument why we believe these
reductions are valid.

6.1 Simple evaluation

Simple evaluation (Andersen [1]) is the simplest of the reductions. It is essentially boolean simpli-
fication on the right-hand sides of the equations in a parameterized modal equation system. We
rewrite some assertion A to some equivalent A′, i.e. JAKtρε = JA′Ktρε holds. An example could be
reducing true ∧X to simply X. From Definition 3.1.3 (Assertion semantics), we can immediately
infer the following reductions:

false ∧ A reduces to false

true ∧ A reduces to A
〈α〉false reduces to false

(∃d : D.A) reduces to e , provided d 6∈ FV (A)

And similar for ∨, [·] and ∀. Here, FV (A) is the set of free data variables in A.

This is slightly different from the definition of Andersen, in that the reductions are applied re-
cursively to the assertions, i.e. not only can we reduce X ∨ false to X, but also X ∨ (Y ∨ true)
to X ∨ Y . This is rather straightforward and we believe recursive application is what Andersen
intended.

The definition of simple evaluation is as follows:

Definition 6.1.1 (Simple evaluation). Let E ↓ X(d) be a top assertion. Simple evaluation,
applied to this top assertion, denoted SE(E ↓ X(d)), is defined as follows:

SE(E ↓ X(d)) = SE(E) ↓ X(d),

where simple evaluation on parameterized modal equation systems is defined as

SE(ε) = ε

SE((σX(d : D) = A) E) = (σX(d : D) = SE(A)) SE(E),

and simple evaluation on assertions is defined as

SE(false ∧ A) = false

SE(false ∨ A) = SE(A)

SE(true ∧ A) = SE(A)

SE(true ∨ A) = true

SE(〈af〉false) = false

SE([af]true) = true

SE((∃d : D.A)) = SE(A) if d 6∈ FV (A)

SE((∀d : D.A)) = SE(A) if d 6∈ FV (A)

SE(A) = A in all other cases.

Here, FV (A) denotes the set of free variables occurring in A.

80

6.2. Reachability analysis 6. PROPERTY MINIMIZATION

6.2 Reachability analysis

The reachability analysis reduction (Andersen [1]) aims to remove parts of parameterized modal
equation systems that do not influence the recursion variable we are interested in. For a top
assertion E ↓ X(d), if a variable Y is bound in E but is seen not to influence the value of X, we
can remove its defining equation from E . We approximate “influence” by a dependency graph: a
variable Y can influence a variable X, if Y occurs in X’s defining equation, or if Y can influence
a variable Z which can influence X (transitivity).

The dependency graph of a parameterized modal equation system is a graph with the recursion
variables as vertices and there is an edge from X to Y if Y occurs in the defining equation for
X.

Definition 6.2.1 (Dependency graph). Let (σ1X1(d1 : D1) = A1) . . . (σnXn(dn : Dn) = An)
be a parameterized modal equation system E . The dependency graph of E is a graph (V,E),
where V = {X1, . . . , Xn} and (Xi, Xj) ∈ E, if and only if, Xj ∈ occ(Ai).

A variable’s value can depend on the values of the variables in its defining equation. In turn,
those may depend on the variables in their defining equations, and so on. These form a path in
the dependency graph. Observe that variables to which there is no path from a given variable
X, cannot influence X’s value. So, we can reduce a parameterized modal equation system when
variables in its dependency graph are unreachable from the top variable. These parts can be
removed from the parameterized modal equation system without influencing the top variable’s
value.

Definition 6.2.2 (Reachability analysis). Let E ↓ X(d) be a top assertion. Let (V,E) be the
dependency graph of E and let U be the unreachable variables in that graph: the set of vertices
for which there is no path from X to that variable. Applying the reachability analysis reduction
on E ↓ X(d), denoted RA(E ↓ X(d)), is defined as rm(U, E) ↓ X(d), where the function rm(U, E)
removes the defining equations for a set of variables U from a parameterized modal equation
system E . It is defined as follows:

rm(U, ε) = ε

rm(U, (σX(d : D) = A) E) =

{
rm(U, E) if X ∈ U
(σX(d : D) = A) rm(U, E) otherwise

6.3 Constant propagation

Constant propagation (Andersen [1]) replaces all occurrences of a variable with that variable’s
definition, if that definition is a constant. Since the definition is a constant, the variable and the
definition are always equal and thus we may replace one with the other.

We expand this principle to include all assertions with no recursion variables in them, as these
assertions are independent of the recursion variable environment ρ.

Constant propagation is formally defined as follows:

Definition 6.3.1 (Constant propagation). Let (σX(d : D) = A) be an equation in parameter-
ized modal equation system E , where no recursion variables occur in A: occ(A) = ∅ holds. The
application of constant propagation for this equation to E , denoted CP(X(d),A, E), is defined
as follows:

CP(X(d),A, ε) = ε

CP(X(d),A, (σ′Y (e : E) = A′) E) = (σ′Y (e : E) = CP(X(d),A,A′) CP(X(d),A, E),

81

6. PROPERTY MINIMIZATION 6.4. Unguardedness removal

where constant propagation on assertions is defined as:

CP(X(d),A, Y (e)) =

{
A[e/d] if X = Y

Y (e) otherwise

CP(X(d),A, b) = b

CP(X(d),A,A1 ∨ A2) = CP(X(d),A,A1) ∨ CP(X(d),A,A2)

CP(X(d),A, 〈af〉A′) = 〈af〉CP(X(d),A,A′)
CP(X(d),A, (∃e : E . A′)) = (∃e : E . CP(X(d),A,A′))

6.4 Unguardedness removal

Unguardedness removal (Andersen [1]) is similar to constant propagation, in that it replaces
occurrences of a variable with its definition. The main difference is that the defining equation
of that variable can be anything and there is a restriction on which assertions it may be replaced
in. In constant propagation, one may replace every occurrence of some variable X once it is
established that X’s defining assertion is constant. In unguardedness removal, one may replace
occurrences of any X by its defining assertion, but only in assertions in which X does not occur
after a modal operator, and only in equations before the defining equation of X.

We call the set of variables occurring after a modal operator, the “guarded variables”.

Definition 6.4.1 (Guarded variables). Let A be an assertion. The set of guarded variables of
A, denoted guarded(A), is defined as follows:

guarded(X(d)) = ∅
guarded(b) = ∅

guarded(A1 ∨ A2) = guarded(A1) ∪ guarded(A2)

guarded(∃d : D . A) = guarded(A)

guarded(〈af〉A) = occ(A)

Now, the unguardedness removal reduction replaces unguarded variables with their definitions:

Definition 6.4.2 (Unguardedness removal). Let (σX(d : D) = A) and (σ′Y (e : E) = A′)
be equations in parameterized modal equation system E , where X’s defining equation occurs
after Y ’s, and X does not occur guarded in A′: X 6∈ guarded(A′) holds. The application of
unguardedness removal for the defining equation of X to the defining equation for Y in E ,
denoted UR(X(d),A, Y, E), is defined as follows:

UR(X(d),A, Y, ε) = ε

UR(X(d),A, Y, (σ′′Z(f : F) = A′′) E) =

{
(σ′Y (e : E) = UR(X(d),A,A′)) E if Y = Z

(σ′′Z(f : F) = A′′) UR(X(d),A, Y) otherwise,

where unguardedness removal on assertions is defined as:

UR(X(d),A, Y (e)) =

{
A[e/d] if X = Y

Y (e) otherwise

UR(X(d),A, b) = b

UR(X(d),A,A1 ∨ A2) = UR(X(d),A,A1) ∨ UR(X(d),A,A2)

UR(X(d),A, 〈af〉A′) = 〈af〉A′
UR(X(d),A, (∃e : E . A′)) = (∃e : E . UR(X(d),A,A′))

82

6.5. Trivial equation elimination 6. PROPERTY MINIMIZATION

This is rather similar to Definition 6.3.1 (Constant propagation). A notable difference is that we do
not automatically replace all occurrences of X in every assertion where X does not occur guarded
– we leave some control to some higher decision procedure, as A may be rather complex.

Note that it is possible for infinitely many unfoldings to occur, when the variables being replaced
occur in each other’s definitions in a cyclical manner. A trivial example is a parameterized modal
equation system containing an equation (σX(d : D) = X(d)), where X may be replaced by itself.
We use the dependency graph we introduced in section 6.2 and maintain the set of edges E′ ⊆ E
where (Xi, Xj) ∈ E′ if Xj occurs in the defining assertion of Xi and also Xj does not occur
guarded in the defining equation of Xi. When E′ contains a cycle, we must take care not to
do infinite unfoldings. Detection of a cycle in a graph can be done by any Strongly Connected
Component (SCC) algorithm.

In the paper by Andersen, the condition that substitution is only allowed backwards, is not explic-
itly stated. This is no small detail, as forward substitution is not generally sound. We show this
using an example:

Example 6.4.3 (Unguardedness removal, forward substitution counterexample). Let (µX =
Y) (νY = X) be the modal equation system E . The semantics of E for any environment ρ
and linear process equation P , is the environment ρ[X := false][Y := false]. Using forward
substitution, however, we could rewrite E to (µX = Y) (νY = Y), the semantics of which is
ρ[X := true][Y := true]. This reduction is therefore unsound.

Note that with backwards substitution, the semantics of the reduced modal equation system is
indeed invariant: E reduces to (µX = X) (νY = X), which has equal semantics.

This reduction is similar to the substitution step in Gauss elimination on boolean equation systems
(Mader [8]).

6.5 Trivial equation elimination

Trivial equation elimination (Andersen [1]) reduces equations which do not depend on other re-
cursion variables than the one it binds and thus can be solved by themselves. For example, the
equation (µX = X) can be reduced to (µX = false). There are four such rules that Andersen
notes on modal equation systems, leading to the following reduction rules on parameterized modal
equation systems:

(µX(d : D) = X(e)) reduces to (µX(d : D) = false)

(µX(d : D) = 〈af〉X(e)) reduces to (µX(d : D) = false)

(νX(d : D) = X(e)) reduces to (µX(d : D) = true)

(νX(d : D) = [af]X(e)) reduces to (µX(d : D) = true)

This yields equations with constant defining assertions, enabling constant propagation reduction
(cf. Section 6.3). Also, the defining assertions do not depend on the data parameter, enabling
parameter elimination (cf. Section 6.6).

6.6 Parameter elimination

Parameter elimination for parameterized modal equation systems is inspired by parameter elim-
ination on parameterized boolean equation systems (Orzan et al. [9]). It aims to remove a data
parameter from a recursion variable that does not occur in its defining equation, e.g. (µX(b :

83

6. PROPERTY MINIMIZATION 6.7. Action formulae simplification

Bool, n : Nat) = b) can be reduced to (µX(b : Bool) = b), as the parameter n does not influence
the assertion b.

Formally, we define the parameter elimination reduction as follows:

Definition 6.6.1 (Parameter elimination). Let (σX(d : D, d′ : D′) = A) be an equation in the
parameterized modal equation system E , where d 6∈ FV (A). Here, FV (A) denotes the set of
free data variables occurring in assertion A.

The parameter elimination reduction of X’s d parameter applied to E , denoted PE(X, d, E), is
defined as:

PE(X, d, ε) = ε

PE(X, d, (σ′Y (e : E) = A′) E) =

{
(σX(d′ : D′) = A) E if X = Y

(σ′Y (e : E) = A′) PE(X, d, E) otherwise

6.7 Action formulae simplification

The action formulae simplification is essentially boolean simplification. Because of the large simi-
larity between action formulae and boolean expressions, we can apply common boolean reductions
to action formulae, treating multi-actions and boolean expressions on user-defined data as vari-
ables. Most notably, the quotienting technique requires action formulae to be in disjunctive normal
form (cf. Definition 2.2.14 (Action formulae disjunctive normal form)). To rewrite assertions to
disjunctive normal form, we can use algorithms designed for boolean expressions, which usually
also employ some boolean reduction techniques.

84

CONCLUSION

Conclusion

We conclude that we have successfully overcome the limitation of earlier compositional model
checking procedures, that the processes at hand have enumerable state spaces. Not only did we
generalize assertions to include quantifiers and modal operators with action formulae instead of
single actions, we most importantly extended the quotienting procedure to linear process equations,
including infinite state spaces.

The heart of this thesis is in quotienting linear process equations and process operators, which is
to move part of the model checking problem from the model side of the model checking equation
to the property side. This was successful: we have defined how to calculate quotienting a linear
process equation or process operator from a property. This yields a new model checking problem,
where the linear process equation or process operator has been removed from the model side of the
model checking equation. We defined how to calculate this new model checking equation.

A very important part is to show that the quotienting procedure is sound: the model checking
problem we obtain by quotienting out a process operator or a linear process equation, has the
same solution as the original model checking problem. In Section 4.4, we show this is indeed
true.

We have not yet quantified how good our compositional model checking procedure is at reducing
the complexity of model checking problems. We recommend further research be done to provide a
working implementation, more research on reducing the properties it produces, and experiments
to the effectiveness of the compositional model checking procedure.

85

FUTURE WORK

Future research

The most important areas for future research are to implement the technique we described, and
to improve the property reduction step of compositional model checking.

Building an efficient implementation is not only the first step to quantify how useful this com-
positional model checking technique is in the real world, it should also serve as an inspiration to
property reduction techniques. The compositional model checking technique is only as useful as
the reductions it can perform on the property side of the model checking equations. The quoti-
enting procedure merely moves the problem from the model side of the equation to the property
side, where property reductions do the actual work of making the model checking problem smaller
and thus easier to solve. Properties obtained by quotienting components of real-life systems from
real-life properties, should provide a good indication what reductions are useful.

We also found that quotienting the allow operator and the abstraction operator, requires building
a set of actions that can be performed by the process P2 which runs independently from the
process description the process operator surrounds. This was something we wanted to avoid, but
we were unable to express this in action formulae otherwise. We wanted to express that, say, some
action a occurs simultaneously with any action α, where a is performed by one parallel process
and α by the other. We did this by renaming the actions in α, but in the case of the allow and
abstraction operators, this meant we had to enumerate all these possible α’s, and thus inspect P2.
Some way of expressing these actions without inspecting P2 would be more true to the spirit of
compositional model checking, where we only inspect one component at a time.

Finally, the quotienting procedure could be expanded to work on the full range of action formulae,
including quantifiers over data. Though it proved very convenient to require action formulae to
be in disjunctive normal form, we hope future research will enable the quotienting procedure to
work with arbitrary action formulae.

86

REFERENCES

References

[1] H. R. Andersen, Partial model checking (extended abstract), In Proceedings, Tenth An-
nual IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press, 1995,
pp. 398–407.

[2] J. F. Groote, A. H. J. Mathijssen, M. A. Reniers, Y. S. Usenko, and M. J. Van Weerdenburg,
The formal specification language mCRL2, In Proceedings of the Dagstuhl Seminar, MIT
Press, 2007.

[3] J. F. Groote and M. A. Reniers, Modelling and analysis of communicating systems, rev. 2601,
Eindhoven University of Technology, Eindhoven, The Netherlands, 2009.

[4] J. F. Groote and T. A. C. Willemse, Parameterised boolean equation systems, In Theoretical
Computer Science, Elsevier, 2004, pp. 332–369.

[5] , Model-checking processes with data, In Science of Computer Programming, Elsevier,
2005, pp. 251–273.

[6] F. Lang and R. Mateescu, Partial Model Checking using Networks of Labelled Transition
Systems and Boolean Equation Systems, Tools and Algorithms for the Construction and
Analysis of Systems, Springer, 2012.

[7] J.-L. Lassez, V. L. Nguyen, and E. A. Sonenberg, Fixed point theorems and semantics: A folk
tale, Inf. Process. Lett. 14 (1982), no. 3, 112–116.

[8] A. Mader, Verification of modal properties using boolean equation systems, Edition versal 8,
Bertz Verlag, Berlin, Germany, 1997.

[9] S. Orzan, W. Wesselink, and T. A. C. Willemse, Static analysis techniques for parameterised
boolean equation systems, Proceedings of the 15th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (Berlin, Heidelberg), TACAS ’09,
Springer-Verlag, 2009, pp. 230–245.

[10] K. Schneider, Verification of reactive systems: Formal methods and algorithms, SpringerVer-
lag, 2004.

[11] A. Tarski, A Lattice-Theoretical Fixpoint Theorem and its Applications, Pacific J. Math. 5
(1955), no. 2, 285–309.

[12] K. van der Pol, Adapting the partial model checking technique for use in the mCRL2 toolkit,
2012.

87

A. BUFFER EXAMPLE (4) CALCULATIONS

A Buffer example (4) calculations

This section shows the calculation of quotienting on the running example of the buffer.

(E ↓ X)/B1(empty)

The first steps are quote simple. The state parameter of the process we are quotienting out,
becomes a parameter of each equation of E . The quotienting simply distributes over boolean
connectives and quantifiers.

νX(s : D ∪ {empty}) = ([true]X)/B1(s)

∧ (∀m : D . ([in(m)]Y (m))/B1(s))

µY (m : D, s : D ∪ {empty}) = ([¬out(m)]Y (m))/B1(s)

∧ (〈true〉true)/B1(s)

 ↓ X(empty)

The box modalities give rise to the box variant of Quotient2, denoted Quotient2[].

νX(s : D ∪ {empty}) =∧
(b1,b2,b3,af2)∈split2(in(d),true)

Quotient2[](b1, b2, b3, af2, X,B1(s), 1)

∧
∧

(b1,b2,b3,af2)∈split2(out(s),true)

Quotient2[](b1, b2, b3, af2, X,B1(s), 2)

∧ (∀m : D . ∧
(b1,b2,b3,af2)∈split2(in(s),in(m))

Quotient2[](b1, b2, b3, af2, Y (m), B1(s), 1)

∧
∧

(b1,b2,b3,af2)∈split2(out(s),in(m))

Quotient2[](b1, b2, b3, af2, Y (m), B1(s), 2)

)

µY (m : D, s : D ∪ {empty}) =∧
(b1,b2,b3,af2)∈split2(in(d),¬out(m))

Quotient2[](b1, b2, b3, af2, Y (m), B1(s), 1)

∧
∧

(b1,b2,b3,af2)∈split2(out(s),¬out(m))

Quotient2[](b1, b2, b3, af2, Y (m), B1(s), 2)

∧ (
∨

(b1,b2,b3,af2)∈split2(in(d),true)

Quotient2(b1, b2, b3, af2, true, B1(s), 1)

∨
∨

(b1,b2,b3,af2)∈split2(out(s),true)

Quotient2(b1, b2, b3, af2, true, B1(s), 2)

)


↓ X(empty)

88

A. BUFFER EXAMPLE (4) CALCULATIONS

We calculate these sets split2, Definition 4.2.5 (split2). For single actions, there are two cases: one
process does the action and the remainder does τ or nothing, and vice-versa. This will become
apparent when we expand the definition of Quotient2, Definition 4.2.6 (Quotient2).

νX(s : D ∪ {empty}) =

Quotient2[](true, true, true, true, X,B1(s), 1)

∧ Quotient2[](true, true, true, true, X,B1(s), 2)

∧ (∀m : D .

Quotient2[](τ = in(d), τ = in(m), τ = τ, in(m), Y (m), B1(s), 1)

∧ Quotient2[](in(m) = in(d), in(m) = in(m), in(m) = τ, τ, Y (m), B1(s), 1)

∧ Quotient2[](τ = out(s), τ = in(m), τ = τ, in(m), Y (m), B1(s), 2)

∧ Quotient2[](in(m) = out(s), in(m) = in(m), in(m) = τ, τ, Y (m), B1(s), 2)

)

µY (m : D, s : D ∪ {empty}) =

Quotient2[](in(d) 6v out(m), true, false, true, Y (m), B1(s), 1)

∧ Quotient2[](τ = in(d), τ 6= out(m), τ = τ,¬out(m), Y (m), B1(s), 1)

∧ Quotient2[](out(m) = in(d), out(m) 6= out(m), out(m) = τ,¬τ, Y (m), B1(s), 1)

∧ Quotient2[](out(s) 6v out(m), true, false, true, Y (m), B1(s), 2)

∧ Quotient2[](τ = out(s), τ = τ, τ 6= out(m),¬out(m), Y (m), B1(s), 2)

∧ Quotient2[](out(m) = out(s), out(m) 6= out(m), out(m) = τ,¬τ, Y (m), B1(s), 2)

∧ (Quotient2(true, true, true, true, true, B1(s), 1)

∨ Quotient2(true, true, true, true, true, B1(s), 2))

)


↓ X(empty)

We expand these Quotient2 expressions. Each gives rise to three disjuncts or conjuncts: one for
when B1 does part of the transition and the reaminder process does the rest, one for when B1

does the entire transition and the remainder process stays idle, and one when B1 itself stays idle
and the remainder process does the entire transition.

89

A. BUFFER EXAMPLE (4) CALCULATIONS

νX(s : D ∪ {empty}) =

(∀d : D.s ≈ empty ∧ true ⇒ [true](X/B1(d)))

∧ (∀d : D.s ≈ empty ∧ true ∧ true ⇒ (X/B1(d)))

∧ (true ⇒ [true](X/B1(s)))

∧ (s 6≈ empty ∧ true ⇒ [true](X/B1(empty)))

∧ (s 6≈ empty ∧ true ∧ true ⇒ (X/B1(empty)))

∧ (true ⇒ [true](X/B1(s)))

∧ (∀m : D .

(∀d : D.s ≈ empty ∧ τ = in(d) ⇒ [in(m)](Y (m)/B1(d)))

∧ (∀d : D.s ≈ empty ∧ τ = in(d) ∧ τ = in(m) ⇒ (Y (m)/B1(d)))

∧ (τ = τ ⇒ [in(m)](Y (m)/B1(s)))

∧ (∀d : D.s ≈ empty ∧ in(m) = in(d) ⇒ [τ](Y (m)/B1(d)))

∧ (∀d : D.s ≈ empty ∧ in(m) = in(d) ∧ in(m) = in(m) ⇒ (Y (m)/B1(d)))

∧ (in(m) = τ ⇒ [τ](Y (m)/B1(s)))

∧ (s 6≈ empty ∧ τ = out(s) ⇒ [in(m)](Y (m)/B1(empty)))

∧ (s 6≈ empty ∧ τ = out(s) ∧ τ = in(m) ⇒ (Y (m)/B1(empty)))

∧ (τ = τ ⇒ [in(m)](Y (m)/B1(s)))

∧ (s 6≈ empty ∧ in(m) = out(s) ⇒ [τ](Y (m)/B1(empty)))

∧ (s 6≈ empty ∧ in(m) = out(s) ∧ in(m) = in(m) ⇒ (Y (m)/B1(empty)))

∧ (in(m) = τ ⇒ [τ](Y (m)/B1(s)))

)

µY (m : D, s : D ∪ {empty}) =

(∀d : D.s ≈ empty ∧ in(d) 6v out(m) ⇒ [true](Y (m)/B1(d)))

∧ (∀d : D.s ≈ empty ∧ in(d) 6v out(m) ∧ true ⇒ (Y (m)/B1(d)))

∧ (false ⇒ [true](Y (m)/B1(s)))

∧ (∀d : D.s ≈ empty ∧ τ = in(d) ⇒ [¬out(m)](Y (m)/B1(d)))

∧ (∀d : D.s ≈ empty ∧ τ = in(d) ∧ τ 6= out(m) ⇒ (Y (m)/B1(d)))

∧ (τ = τ ⇒ [¬out(m)](Y (m)/B1(s)))

∧ (∀d : D.s ≈ empty ∧ out(m) = in(d) ⇒ [¬τ](Y (m)/B1(d)))

∧ (∀d : D.s ≈ empty ∧ out(m) = in(d) ∧ out(m) 6= out(m) ⇒ (Y (m)/B1(d)))

∧ (out(m) = τ ⇒ [¬τ](Y (m)/B1(s)))

∧ (s 6≈ empty ∧ out(s) 6v out(m) ⇒ [true](Y (m)/B1(empty)))

∧ (s 6≈ empty ∧ out(s) 6v out(m) ∧ true ⇒ (Y (m)/B1(empty)))

∧ (false ⇒ [true](Y (m)/B1(s)))

∧ (s 6≈ empty ∧ τ = out(s) ⇒ [¬out(m)](Y (m)/B1(empty)))

∧ (s 6≈ empty ∧ τ = out(s) ∧ τ 6= out(m) ⇒ (Y (m)/B1(empty)))

∧ (τ = τ ⇒ [¬out(m)](Y (m)/B1(s)))

∧ (s 6≈ empty ∧ out(m) = out(s) ⇒ [¬τ](Y (m)/B1(empty)))

∧ (s 6≈ empty ∧ out(m) = out(s) ∧ out(m) 6= out(m) ⇒ (Y (m)/B1(empty)))

∧ (out(m) = τ ⇒ [¬τ](Y (m)/B1(s)))

∧ ((∃d : D.s ≈ empty ∧ true ∧ 〈true〉(true/B1(d)))

∨ (∃d : D.s ≈ empty ∧ true ∧ true ∧ (true/B1(d)))

∨ (true ∧ 〈true〉(true/B1(s)))

∨ (s 6≈ empty ∧ true ∧ 〈true〉(true/B1(empty)))

∨ (s 6≈ empty ∧ true ∧ true ∧ (true/B1(empty)))

∨ (true ∧ 〈true〉(true/B1(s)))

)


↓ X(empty)

90

A. BUFFER EXAMPLE (4) CALCULATIONS

We reduce this by some simple boolean simplification. In the previous expression, all expressions
which are obviously equal to false, are highlighted in red. We remove conjuncts which equal true
(especially the many occurrences of expressions similar to (∀d : D.false ⇒ . . .)) and we remove
duplicate expressions. We reduce the multi-action equality a(d) = a(d′) to d ≈ d′, by unfolding
the definition of multi-action equality.

νX(s : D ∪ {empty}) =

(∀d : D.s ≈ empty ⇒ [true]X(d))

∧ (∀d : D.s ≈ empty ⇒ X(d))

∧ [true]X(s)

∧ (s 6≈ empty ⇒ [true]X(empty))

∧ (s 6≈ empty ⇒ X(empty))

∧ (∀m : D .

[in(m)]Y (m, s)

∧ (∀d : D.s ≈ empty ∧m ≈ d ⇒ [τ]Y (m, d))

∧ (∀d : D.s ≈ empty ∧m ≈ d ⇒ Y (m, d))

)

µY (m : D, s : D ∪ {empty}) =

(∀d : D.s ≈ empty ⇒ [true]Y (m, d))

∧ (∀d : D.s ≈ empty⇒ Y (m, d))

∧ [¬out(m)]Y (m, s)

∧ (s 6≈ empty ∧ s 6≈ m ⇒ [true]Y (m, empty))

∧ (s 6≈ empty ∧ s 6≈ m ⇒ Y (m, empty))

∧ (s 6≈ empty ∧m ≈ s ⇒ [¬τ]Y (m, empty))

∧ ((∃d : D.s ≈ empty ∧ 〈true〉true)
∨ (∃d : D.s ≈ empty)

∨ 〈true〉true
∨ (s 6≈ empty)

∨ (s 6≈ empty)

∨ 〈true〉true
)



↓ X(empty)

With a little more insight, we can reduce this even more.

νX(s : D ∪ {empty}) =

(∀s′ : D ∪ {empty}.[true]X(s′) ∧X(s′))

∧ (∀m : D .

[in(m)]Y (m, s)

∧ (s ≈ empty⇒ [τ]Y (m,m) ∧ Y (m,m))

)

µY (m : D, s : D ∪ {empty}) =

[¬out(m)]Y (m, s)

∧ (∀d : D.s ≈ empty ⇒ [true]Y (m, d) ∧ Y (m, d))

∧ (s 6≈ empty ∧ s 6≈ m ⇒ [true]Y (m, empty) ∧ Y (m, empty))

∧ (s 6≈ empty ∧ s ≈ m ⇒ [¬τ]Y (m, empty))



↓ X(empty)

91

A. BUFFER EXAMPLE (4) CALCULATIONS

Interestingly, the part that correspond to not being deadlocked, has reduces to true. This was to
be expected, as the process B1 we have quotiented out, contains no deadlocks. Also, we see some
expected case distinction: the buffer can be empty or full, and if it is full, it can be filled with the
element m or not. In this last case, the step where B1 performs the out(m) transition is hidden
from view. What remains is that the remainder process does not do any steps simultaneously, or
at most only τ -steps, so as not to interfere with the out(m) action occurring.

92

	Introduction
	Preliminaries
	Notation
	Knaster-Tarski's theorem
	Transfinite induction
	Previous work

	Models
	Data
	Actions
	Labeled transition systems
	Linear process equations
	Buffer example (1)
	Process descriptions
	Parallel composition
	Communication operator
	Allow operator
	Rename operator
	Abstraction operator
	Buffer example (2)

	Specifications
	Parameterized modal equation systems
	Buffer example (3)

	Quotienting
	Quotienting on labeled transition systems
	Quotienting on linear process equations
	Buffer example (4)
	Soundness

	Quotienting extensions
	Quotienting process descriptions
	Quotienting the communication operator
	Quotienting the allow operator
	Quotienting the rename operator
	Quotienting the abstraction operator
	Buffer example (5)

	Property minimization
	Simple evaluation
	Reachability analysis
	Constant propagation
	Unguardedness removal
	Trivial equation elimination
	Parameter elimination
	Action formulae simplification

	Conclusion
	Future research
	References
	Buffer example (4) calculations

