# Exercises Algorithms for Model Checking 

## 1 CTL*



Figure 1:

1. For each of the CTL* formulae below, indicate whether it is (syntactically) a formula in LTL and/or CTL. Determine for each formula in which states of the Kripke Structure of Fig. 1 it holds.
(a) $p$,
(b) $\mathrm{E}[q \mathrm{R} p]$,
(c) $\mathrm{EF} \mathrm{G} p$,
(d) A G F $p$,
(e) A G EF $p$,
(f) A G F $(p \wedge X q)$,
(g) A G $(\neg q \vee \mathrm{~F} p)$,
(h) $\mathrm{A}((\mathrm{G} p) \vee(\mathrm{F} q))$
2. For each pair of CTL* formulae below, if possible, give a Kripke Structure in which both are valid, a Kripke Structure in which both are not valid, and a Kripke Structure in which only one of them is valid.
(a) $p$ and A F $p$
(b) A F A G $p$ and A G A F $p$
(c) AFAXp and AFXp
(d) $A X E X p$ and $A X X p$
(e) $\mathrm{A} \times \mathrm{A} \times p$ and $\mathrm{A} \times \times p$
(f) $\mathrm{A}[p \mathrm{U} q]$ and $\mathrm{A}[\neg q \mathrm{R} \neg p]$
3. Consider LTL, CTL and CTL*. State for each of the claims below whether they hold or not. Motivate your answer by providing counterexamples or a formal justification.
(a) Every CTL* formula is equivalent to either an LTL formula or a CTL formula.
(b) The language LTL is more expressive than CTL.
(c) The language CTL is more expressive than LTL.
(d) On deterministic Kripke Structures (i.e., Kripke Structures with a single initial state in which each state has exactly one successor), LTL and CTL are equally expressive; that is, every LTL formula has an equivalent CTL formula and vice versa.
4. Express that along all paths, proposition $p$ holds infinitely often and $\neg p$ holds infinitely often.
5. Express that along all paths, proposition $p$ holds infinitely often and $\neg p$ only holds finitely often.
6. Prove using the semantics of $\mathrm{CTL}^{*}$, or disprove using a Kripke Structure, the following equivalences:
(a) $\mathrm{A}[\phi \mathrm{U} \psi] \equiv \neg(\mathrm{E}[\neg \psi \mathrm{U} \neg(\phi \vee \psi)] \vee \mathrm{E} G \neg \psi)$
(b) A G A F $p \equiv \mathrm{~A}$ G F $p$

## 2 Model Checking CTL and Fair CTL



Figure 2:

1. For each of the CTL formulae below, draw a Kripke Structure in which the formula holds, a Kripke Structure in which it does not hold, but in which it does hold fairly with an appropriate fairness constraint. Also provide this fairness constraint.
(a) A G A F $(\neg p \vee q)$
(b) $q \wedge \mathrm{AF} q \wedge \neg(\mathrm{E}[\neg q \mathrm{R} \neg p])$
(c) $\neg A \mathrm{~F} p \vee \mathrm{E}$ G $(\neg p \vee q)$
(d) $(p \vee \mathrm{~A} \mathrm{~F} p) \wedge \neg \mathrm{E}$ G $p$
2. Determine for each of the following CTL formulae in which states of the Kripke Structure of Fig. 1 it holds using the labelling algorithm. Repeat the exercise using the symbolic model checking algorithm for CTL, using explicit set notation to represent sets of states, rather than BDDs.
(a) $p$,
(b) $\mathrm{E}[q \mathrm{R} p]$,
(c) A G E F $p$,
(d) A G $p \vee \mathrm{AF} q$
(e) $\mathrm{AF} q$
(f) $\mathrm{A}[q \mathrm{R} p]$
3. Extend the Kripke Structure of Fig. 1 with the Fairness constraints $F=\left\{\left\{s_{1}\right\},\left\{s_{2}\right\}\right\}$. In which states do the formulae of exercise 2 fairly hold? Repeat the exercise using fairness constraint $F=\left\{\left\{s_{3}\right\}\right\}$.
4. Answer Exercises 2 and 3 for the Kripke Structure in Fig. 2 instead of the Kripke Structure of Fig. 1.
5. Prove that A F $f=\mu Z . f \cup \mathrm{~A} \times Z$.

## 3 Counterexamples and Witnesses



Figure 3:

1. Consider the Kripke Structure in Fig. 3.
(a) Fairness constraint: $\neg r$ and $q$. Check that $s_{1} \models_{F} \mathrm{E} G(p \vee q)$.
(b) Construct a witness for $s_{1} \models_{F} \mathrm{E} G(p \vee q)$, using the techniques for symbolic model checking.

## 4 Equivalences and Pre-Orders



Figure 4:

1. Let $K_{1}$ and $K_{2}$ be arbitrary Kripke Structures. Let $f$ be an arbitrary ACTL* formula such that $K_{1} \models f$ and $K_{2} \not \models f$. Prove that there must be a formula $g$ in positive form such that $K_{1} \not \models g$ and $K_{2} \vDash g$, and all path quantifiers in $g$ are existential path quantifiers.
2. For each pair of Kripke Structures $K_{i}, K_{j}$ in Fig. 4, prove or disprove $K_{i} \sqsubseteq K_{j}$, either by providing a simulation relation, or by providing a distinguishing ACTL-formula $f$ (i.e., $K_{i} \models f$ and $\left.K_{j} \not \models f\right)$.
3. For each pair of Kripke Structures $K_{i}, K_{j}$ in Fig. 4, prove or disprove $K_{i} \equiv K_{j}$, either by computing a bisimulation relation, or by providing a distinguishing CTL-formula $f$ (i.e., $\left.K_{i} \models f \Leftrightarrow K_{j} \not \vDash f\right)$.
