Exercises Algorithms for Model Checking

$1 \quad \text{CTL}^*$

Figure 1:

- 1. For each of the CTL^{*} formulae below, indicate whether it is (syntactically) a formula in LTL and/or CTL. Determine for each formula in which states of the Kripke Structure of Fig. 1 it holds.
 - (a) p,
 - (b) $\mathsf{E}[q \mathsf{R} p]$,
 - (c) E F G *p*,
 - (d) AGF p,
 - (e) A G E F p,
 - (f) A G F $(p \land X q)$,
 - (g) A G $(\neg q \lor \mathsf{F} p)$,
 - (h) A ((G p) \lor (F q))
- 2. For each pair of CTL^{*} formulae below, if possible, give a Kripke Structure in which both are valid, a Kripke Structure in which both are not valid, and a Kripke Structure in which only one of them is valid.
 - (a) p and A F p
 - (b) ${\sf A} \; {\sf F} \; {\sf A} \; {\sf G} \; p$ and ${\sf A} \; {\sf G} \; {\sf A} \; {\sf F} \; p$
 - (c) A F A X p and A F X p
 - (d) A X E X p and A X X p
 - (e) A X A X p and A X X p
 - (f) A [p U q] and A [$\neg q$ R $\neg p$]
- 3. Consider LTL, CTL and CTL^{*}. State for each of the claims below whether they hold or not. Motivate your answer by providing counterexamples or a formal justification.

- (a) Every CTL^{*} formula is equivalent to either an LTL formula or a CTL formula.
- (b) The language LTL is more expressive than CTL.
- (c) The language CTL is more expressive than LTL.
- (d) On deterministic Kripke Structures (i.e., Kripke Structures with a single initial state in which each state has exactly one successor), LTL and CTL are equally expressive; that is, every LTL formula has an equivalent CTL formula and vice versa.
- 4. Express that along all paths, proposition p holds infinitely often and $\neg p$ holds infinitely often.
- 5. Express that along all paths, proposition p holds infinitely often and $\neg p$ only holds finitely often.
- 6. Prove using the semantics of $\mathsf{CTL}^*,$ or disprove using a Kripke Structure, the following equivalences:
 - (a) A $[\phi \cup \psi] \equiv \neg (\mathsf{E} [\neg \psi \cup \neg (\phi \lor \psi)] \lor \mathsf{E} \mathsf{G} \neg \psi)$
 - (b) AGAF $p \equiv$ AGFp

2 Model Checking CTL and Fair CTL

Figure 2:

- 1. For each of the CTL formulae below, draw a Kripke Structure in which the formula holds, a Kripke Structure in which it does not hold, but in which it does hold fairly with an appropriate fairness constraint. Also provide this fairness constraint.
 - (a) A G A F $(\neg p \lor q)$
 - (b) $q \wedge \mathsf{A} \mathsf{F} q \wedge \neg(\mathsf{E} [\neg q \mathsf{R} \neg p])$
 - (c) $\neg AF \ p \lor E \ G \ (\neg p \lor q)$
 - (d) $(p \lor \mathsf{A} \mathsf{F} p) \land \neg \mathsf{E} \mathsf{G} p$
- 2. Determine for each of the following CTL formulae in which states of the Kripke Structure of Fig. 1 it holds using the labelling algorithm. Repeat the exercise using the symbolic model checking algorithm for CTL, using explicit set notation to represent sets of states, rather than BDDs.
 - (a) p,
 - (b) $\mathsf{E}[q \mathsf{R} p]$,
 - (c) A G E F p,
 - (d) A G $p \lor \mathsf{A}$ F q
 - (e) A F q
 - (f) A [q R p]
- 3. Extend the Kripke Structure of Fig. 1 with the Fairness constraints $F = \{ \{s_1\}, \{s_2\} \}$. In which states do the formulae of exercise 2 *fairly* hold? Repeat the exercise using fairness constraint $F = \{ \{s_3\} \}$.
- 4. Answer Exercises 2 and 3 for the Kripke Structure in Fig. 2 instead of the Kripke Structure of Fig. 1.
- 5. Prove that $A \in f = \mu Z.f \cup A \times Z.$

3 Counterexamples and Witnesses

Figure 3:

- 1. Consider the Kripke Structure in Fig. 3.
 - (a) Fairness constraint: $\neg r$ and q. Check that $s_1 \models_F \mathsf{E} \mathsf{G} (p \lor q)$.
 - (b) Construct a witness for $s_1 \models_F \mathsf{E} \mathsf{G} (p \lor q)$, using the techniques for symbolic model checking.

4 Equivalences and Pre-Orders

Figure 4:

- 1. Let K_1 and K_2 be arbitrary Kripke Structures. Let f be an arbitrary ACTL^{*} formula such that $K_1 \models f$ and $K_2 \not\models f$. Prove that there must be a formula g in positive form such that $K_1 \not\models g$ and $K_2 \models g$, and all path quantifiers in g are existential path quantifiers.
- 2. For each pair of Kripke Structures K_i, K_j in Fig. 4, prove or disprove $K_i \sqsubseteq K_j$, either by providing a simulation relation, or by providing a distinguishing ACTL-formula f (i.e., $K_i \models f$ and $K_j \not\models f$).
- 3. For each pair of Kripke Structures K_i, K_j in Fig. 4, prove or disprove $K_i \equiv K_j$, either by computing a bisimulation relation, or by providing a distinguishing CTL-formula f (i.e., $K_i \models f \Leftrightarrow K_j \not\models f$).