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Temporal Logics: Fairness

s00

s01

s02

s10 s20

s11 s21

s12

{EP,LP} {EQ,LP} {EA,LP}

{EP,LQ}

{EP,LA}

{EQ,LQ} {EA,LQ}

{EQ,LA}

Atomic Propositions: EP, EQ, EA, LP, LQ, LA

Intended meaning: Linus or Emma is either Playing, posing Questions, getting
Answers

To exclude runs in which one child gets all attention, we want that both ¬EQ as well
as ¬LQ hold infinitely often

fairness constraints ensuring this: F = {{s00 , s01, s02, s20 , s21}, {s00 , s10 , s20 , s02, s12}}
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Temporal Logics: Fairness

Sometimes properties are violated by “unrealistic” paths only, for instance due to a
scheduler. In this case, one may restrict to fair paths.

A Kripke Structure over AP with fairness constraints is a structure M = 〈S ,R ,L,F 〉,
where:

〈S ,R ,L〉 is an “ordinary” Kripke Structure as before

F ⊆ 2S is a set of fairness constraints

A path is fair if it “hits” each fairness constraint infinitely often:

fair(π) iff ∀C ∈ F . {i | π(i) ∈ C} is an infinite set

4/36



Temporal Logics: Fairness

In CTL∗ with fairness semantics (|=F ), only fair paths will be considered.

Given a fixed Kripke Structure with fairness constraints M = 〈S ,R ,L,F 〉, s |=F f means:
formula f holds in state s in the fair CTL∗ semantics.

The definition of |=F coincides with |= except for the following four clauses:

s |=F true iff there is some fair path starting in s
s |=F p iff p ∈ L(s) and there is some fair path starting in s
s |=F A f iff for all fair paths π starting in s, we have π |=F f
s |=F E f iff for some fair path π starting in s, we have π |=F f
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Temporal Logics: Fairness

s0

s2

s1 s3

{p, q}

{q}

{p}

Note that s0 |= E F G p, but s0 6|= A F G p

First, consider as Fairness constraint: F = { {s3} }
then all fair paths contain s3 infinitely often
we have s0 |=F A F G p

Next, consider as Fairness constraint: F = { {s2} }
then all fair paths contain s2 infinitely often
in particular, fair paths cannot contain s3
so s0 6|=F E F G p
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Strongly Connected Components

Given a directed graph G = 〈V ,E〉
let s →∗G t mean that there is a path from node s to t in G

a strongly connected component (SCC) is a maximal subgraph S of G , such that for
all s, t ∈ S , s →∗G t and t →∗G s

an SCC is non-trivial if it contains at least one edge

The SCCs of a graph (e.g. a Kripke Structure) can be computed in O(|V |+ |E |) time
with an algorithm based on depth-first search:

Text book version (see Introduction to Algorithms, Corben et al)

Tarjan’s original algorithm (see SIAM Journal on Computing 1(2), 1972)

The second algorithm is useful in model checking contexts
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Strongly Connected Components

Idea behind Tarjan’s SCC algorithm
Given is a directed graph G = 〈V ,E〉

compute spanning trees by depth-first search; number the nodes in the order they are
visited
the other, non-tree edges are either:

forward edges (can be ignored)
backward edges (to an ancestor)
cross edges (to another subtree)

backward and cross edges lead to nodes with smaller numbers

nodes are kept on a stack; the nodes of a discovered SCC will be popped immediately
from this stack
compute root [v ]: the smallest node which is:

reachable from v by a sequence of tree-edges followed by at most one non-tree edge; and
if root [v ] = v , the root of a new SCC is found, and the whole SCC is popped from the
stack
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Strongly Connected Components

Procedure find_scc applies a repeated depth-first search on yet unprocessed nodes of the
input graph G = 〈V ,E〉
The depth-first search is delegated to the procedure dfs_scc.

procedure find_scc
i := 0 ;
empty the stack;
leave all nodes unnumbered;
for vertices w ∈ V do

if w is not yet numbered then
dfs_scc(w);

end if
end for

end procedure
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Strongly Connected Components

procedure dfs_scc(v)
root [v ] := number [v ] := i := i + 1;
push v on the stack;
for successor w of v do

if w is not yet numbered then {tree edge}
dfs_scc(w);
root [v ] := min(root [v ], root [w ]);

else if number [w ] < number [v ] and w on the stack then {cross/back edge}
root [v ] := min(root [v ], number [w ]);

end if
end for
if root [v ] = number [v ] then {start new SCC}

while top w of stack satisfies number (w) ≥ number (v) do
pop w from stack;

end while
end if

end procedure
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Strongly Connected Components

Example: SCC algorithm

1

2

3 4

5

6
7

8

9

10 [1] 1

[1] 2

[3] 3

[3] 4

[1] 5

6 [5]

7 [5]

8 [5]

[5] 9 10 [7]

A possible run of the SCC algo-
rithm, with DFS node numbers, final
root-values (in square brackets), tree
edges (plain arrow), forward edges
(dotted), back edges (dashed), cross
edges (dash/dot). Two SCCs are
found: number and root value are
equal
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Strongly Connected Components

We analyse the space and time requirements for running find_scc on a graph G = 〈V ,E〉:

for every node:
dfs_scc is called exactly once
all its outgoing edges are explored exactly once

each node is pushed and popped from the stack exactly once

checking whether a node is on the stack can be done in constant time, for instance by
maintaining a Boolean array

Conclusion: Tarjan’s algorithm for finding strongly connected components runs in time
and space O(|V |+ |E |)
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CTL Model Checking Algorithm

Recall that CTL has the following ten temporal operators:

A X and E X : for all/some next state

A F and E F : inevitably and potentially

A G and E G : invariantly and potentially always

A [ U ] and E [ U ]: for all/some paths, until

A [ R ] and E [ R ]: for all/some paths, releases

Besides atomic propositions (AP), the constant true and the Boolean connectives (¬,∨),
the following temporal operators are sufficient: E X ,E G ,E [ U ].

Hence: only algorithms for computing formulae of the above form are needed.
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CTL Model Checking Algorithm

Main loop of model checking CTL: check formula f on a Kripke Structure 〈S ,R ,L〉.

By recursion on f , algorithm mc_ctl(f ) computes label (s) for all states s ∈ S , where
label (s) shall contain those subformulae of f that hold in s.

Algorithm mc_ctl(f ) employs a case distinction on the structure of f :
f = p add p to label (s) for those states s with p ∈ L(s)
f = g0 ∨ g1 mc_ctl(g0 ); mc_ctl(g1); add f to all states labelled with g0 or g1

f = ¬g mc_ctl(g); add f to all states not labelled with g
f = E X g mc_ctl(g); add f to all states with an R -successor labelled by g
f = E [g0 U g1] mc_ctl(g0 ); mc_ctl(g1); check_eu(g0 , g1)
f = E G g mc_ctl(g); check_eg(g)

Upon termination, s |= f if and only if f ∈ label (s)
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CTL Model Checking Algorithm

procedure check_eu(f,g)
T := {s | g ∈ label (s)};
for all s∈T do label (s) := label (s) ∪ {E [f U g ]};
end for
while T 6= ∅ do

choose s ∈ T ;
T := T \ {s};
for all t satisfying t R s do

if E [f U g ] /∈ label (t) and f ∈ label (t) then
label (t) := label (t) ∪ E [f U g ];
T := T ∪ {t};

end if
end for

end while
end procedure

Observations:

label all states where
g holds

search backwards
over states where f
holds
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CTL Model Checking Algorithm

procedure check_eg(f)
S ′ := {s | f ∈ label (s)};
SCC := {C | C is a nontrivial SCC of S ′};
T :=

⋃
C∈SCC {s | s ∈ C};

for all s ∈ T do label (s) := label (s) ∪ {E G f };
end for
while T 6= ∅ do

choose s ∈ T ;
T := T \ {s};
for all t satisfying t ∈ S ′ and t R s do

if E G f /∈ label (t) then
label (t) := label (t) ∪ {E G f };
T := T ∪ {t};

end if
end for

end while
end procedure

Observations:

restrict attention to
subgraph where f
holds

an infinite path in a
finite graph
eventually reaches a
non-trivial SCC
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CTL Model Checking Algorithm

We analyse the time complexity for the standard CTL model checking algorithm of
formula f (with |f | the number of subformulae) on Kripke Structure M = 〈S ,R ,L〉.

There are at most |f | calls to mc_ctl

Backward reachability and detecting strongly connected components can be done in
time linear to the Kripke Structure: O(|S |+ |R |)
Hence, each recursive call takes at most O(|S |+ |R |) time

So, the complexity of this CTL model checking algorithm is O(|f | · (|S |+ |R |)), which is
linear in both the formula and the state space.
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Example: demanding children

s00

s01

s02

s10 s20

s11 s21

s12

{EP,LP} {EQ,LP} {EA,LP}

{EP,LQ}

{EP,LA}

{EQ,LQ} {EA,LQ}

{EQ,LA}

Atomic Propositions: EP, EQ, EA, LP, LQ, LA

Intended meaning: Linus or Emma is either
Playing, posing Questions, getting Answers

Requirement: Whenever Linus asks a question, he eventually gets an answer
Formula: A G (LQ → A F LA)
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Example: demanding children

s00

s01

s02

s10 s20

s11 s21

s12

{EP,LP} {EQ,LP} {EA,LP}

{EP,LQ}

{EP,LA}

{EQ,LQ} {EA,LQ}

{EQ,LA}

Atomic Propositions: EP, EQ, EA, LP, LQ, LA

Intended meaning: Linus or Emma is either
Playing, posing Questions, getting Answers

Step 1: express using basic operators

A G (LQ → A F LA)
≡
¬E [true U ¬(¬LQ ∨ ¬E G ¬LA)]
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Example: demanding children

s00

s01

s02

s10 s20

s11 s21

s12

{EP,LP} {EQ,LP} {EA,LP}

{EP,LQ}

{EP,LA}

{EQ,LQ} {EA,LQ}

{EQ,LA}

Step 2: treat E G ¬LA
Restrict to the subgraph where ¬LA holds
Find non-trivial SCCs
Backward reachability
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Example: demanding children

s00

s01

s10 s20

s11 s21

{EP,LP} {EQ,LP} {EA,LP}

{EP,LQ} {EQ,LQ} {EA,LQ}

Step 2: treat E G ¬LA
Restrict to the subgraph where ¬LA holds
Find non-trivial SCCs
Backward reachability

25/36



Example: demanding children

s00

s01

s10 s20

s11 s21

{EP,LP} {EQ,LP} {EA,LP}

{EP,LQ} {EQ,LQ} {EA,LQ}

Step 2: treat E G ¬LA
Restrict to the subgraph where ¬LA holds
Find non-trivial SCCs
Backward reachability

No new states are found. So, E G ¬LA holds in the states {s00 , s10 , s20 , s01, s11, s21};
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Example: demanding children

s00

s01

s02

s10 s20

s11 s21

s12

{EP,LP} {EQ,LP} {EA,LP}

{EP,LQ}

{EP,LA}

{EQ,LQ} {EA,LQ}

{EQ,LA}

Step 3: treat ¬E G ¬LA
E G ¬LA holds in {s00 , s10 , s20 , s01, s11, s21}, so ¬E G ¬LA holds in {s02 , s12}

Step 4: treat ¬LQ
¬LQ holds in {s00 , s10 , s20 , s02 , s12}

Step 5: treat ¬LQ ∨ ¬E G ¬LA
¬LQ ∨ ¬E G ¬LA holds in {s00 , s10 , s20 , s02 , s12} ∪ {s02 , s12} = {s00 , s10 , s20 , s02 , s12}
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Example: demanding children

s00

s01

s02

s10 s20

s11 s21

s12

{EP,LP} {EQ,LP} {EA,LP}

{EP,LQ}

{EP,LA}

{EQ,LQ} {EA,LQ}

{EQ,LA}

Step 6: treat ¬(¬LQ ∨ ¬E G ¬LA)
¬LQ ∨ ¬E G ¬LA holds in {s00 , s10 , s20 , s02 , s12},
so ¬(¬LQ ∨ ¬E G ¬LA) holds in {s01, s11, s21}

Step 7: compute E [true U ¬(¬LQ ∨ ¬E G ¬LA)]

Start in {s01, s11, s21}
Perform a backward reachability analysis over states for which true holds
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Example: demanding children

Conclusion:

So, E [true U ¬(¬LQ ∨ ¬E G ¬LA)] holds in all states

Hence, its negation A G (LQ → A F LA) holds in no state

The requirement does not hold for the full Kripke Structure

Why? Because in this case, there is a path in which only Emma progresses while
Linus is not being served.

Next, we look at the Kripke Structure with Fairness Constraints
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CTL Model Checking with Fairness

Recall: Kripke Structure M = 〈S ,R ,L,F 〉 with fairness constraints F ⊆ 2S .

A path is fair if it “hits” each fairness constraint infinitely often

A fair SCC is an SCC that contains an element from each constraint C ∈ F

Main idea of fair model checking for CTL:

Special treatment for s |=F E G f : check_fair_eg
Restrict attention to S ′ ⊆ S where f holds
Find a path to a fair non-trivial SCC in S ′

Label states where E G true fairly holds with a new proposition symbol fair

Treat the other operators using the original “unfair” procedures:
s |=F p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s |= p ∧ fair
s |=F E X f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s |= E X (f ∧ fair)
s |=F E [f U g ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s |= E [f U (g ∧ fair)]
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CTL Model Checking with Fairness

s00

s01

s02

s10 s20

s11 s21

s12

{EP,LP} {EQ,LP} {EA,LP}

{EP,LQ}

{EP,LA}

{EQ,LQ} {EA,LQ}

{EQ,LA}

Fair SCC

Unfair SCC

Assume fairness constraints ¬EQ and
¬LQ .

Remark: full graph is one big fair
SCC, so E G true holds everywhere

E G ¬LA:
Restrict to subgraph with ¬LA
Find fair non-trivial SCCs
Do backward reachability

Hence: LQ ∧ E G ¬LA holds fairly in NO state

Hence E F (LQ ∧ E G ¬LA) holds nowhere fairly

Hence, its negation, the requirement A G (LQ → A F LA) fairly holds everywhere!
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Summary

CTL model checking:

SCC algorithm is used

Tarjan’s SCC algorithm runs one depth-first search, computing SCCs on-the-fly. Time
complexity is linear

CTL model checking can be done in time linear in the size of the formula as well as in
the Kripke Structure

Extension with Fairness Constraints is straightforward and is useful in practice

Why not treat fairness in formulae?

A [(G F C1 ∧ G F C2)→ Requirement]

fairness cannot be expressed in CTL
for LTL all known algorithms are exponential in the size of the formula
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Exercise

s0

s1

s2

s3

{p, q}

{q}

{p}

CTL formulae: p, E [q R p], A G E F p,
A G p ∨ A F q

Determine for each formula in which states of the above Kripke Structure it holds;
use both the semantics and use the appropriate algorithms

Extend the Kripke structure with the Fairness constraints F = { {s1}, {s2} }. In
which states do the above formulae fairly hold?

Similarly for the Fairness constraint F = { {s3} }
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