
Liveness analysis in process algebras
simpler techniques to model mutex algorithms

M.S. Bouwman

m.s.bouwman@student.tue.nl

Eindhoven University of Technology

January 31, 2018

Abstract

It has been established that standard process algebras are not able to correctly model the
liveness properties of mutual exclusion protocols. It is necessary to either make a strong fair-
ness assumption, which may not be realistic, or to adapt the (interpretation of) the language.
In this paper we will analyze an earlier proposed extension to the semantics called signals
and present a novel approach to solve the problem of correctly rendering liveness properties
in process algebras that does not change the structural operational semantics.

1 Introduction

Rob van Glabbeek & Peter Höfner have shown that mutual exclusion protocols cannot be cor-
rectly implemented in CCS-like languages [1]. This goes against the widespread belief that any
distributed system can be modeled in CCS-like languages. The authors have shown that mutual ex-
clusion protocols cannot be modeled correctly without making strong fairness assumptions, which
is unrealistic for the underlying memory model. In particular, liveness is not preserved when trans-
lating these protocols to process algebras. An assumption of justness should be enough to �lter out
paths that are unrealistic (and violate liveness properties), but this is not the case. So extensions
are necessary to make it possible to correctly model mutual exclusion (mutex) protocols. Dyseryn,
Höfner and van Glabbeek propose an extension with signals to solve the issues they discovered [2].
Their conclusions are based on their de�nition of justness.

In this work we will carefully analyze the argument for the necessity of a construct as for
instance signals and see how signals solve the problem. We will particularly look at the Calculus
of Communicating Systems (CCS), which is a process algebraic speci�cation language. In CCS,
Peterson's algorithm, a mutex protocol, will be analyzed as an example. The di�erent types of
fairness will be explained and it will be explained why paths that violate liveness are not excluded
under the assumption of justness in CCS. After this has all been introduced, it will be examined
how signals help to exclude the paths that lead to a liveness violation and the novel concept of
signal actions will be introduced and analyzed. Signal actions are another way to address the same
problems that signals address without the need of extra operators. These signal actions go against
the conclusion of van Glabbeek and Höfner that CCS is not su�cient to model mutex algorithms
correctly. A discussion on why these di�erent conclusions are reached can be found in Section 11.
We will also consider how signal actions could be integrated in existing toolsets for process algebras
in Section 10.

1

mailto:m.s.bouwman@student.tue.nl

2 Preliminaries - Calculus of Communicating Systems

α.P α
−−→ P

Pj
α
−−→ P′∑

i∈I Pi
α
−−→ P′

(j ∈ I)

P α
−−→ P′

P |Q α
−−→ P′ |Q

P a
−−→ P′, Q ā

−−→ Q′

P |Q τ
−−→ P′ |Q′

Q α
−−→ Q′

P |Q α
−−→ P |Q′

P α
−−→ P′

P\L α
−−→ P′\L

(α, ᾱ < L)
P α
−−→ P′

P[f] f (α)
−−−→ P′[f]

P α
−−→ P′

A α
−−→ P′

(A
def
= P)

Table 1: Structural operational semantics of CCS

The Calculus of Communicating Systems was introduced by Robin Milner [3] and can be used to
model the behavior of concurrent systems using a simple but powerful syntax. It uses the sets A
and K of names and agent identi�ers, where names are used for actions and agent identi�ers refer
to processes. The set of handshake actions is de�ned to be H := A ∪ Ā , where Ā := {ā | a ∈ A }
is the set of co-names and where ¯̄a = a. The complementary actions allow parallel processes to
synchronize. Finally, Act :=H ∪ {τ} is the set of actions, where τ is a special internal action. A
central concept is that these actions may be performed resulting in a change of state, denoted by
P α
−−→ P′, where P and P′ are states and α is some action. The syntax is de�ned by the following

BNF grammar:

P ::= 0 | α.P1 | A |
∑
i∈I

Pi | P1 |P2 | P1[f] | P1\L,

in order of occurrence:

• inactive process - 0 denotes the inactive process that is incapable of performing an action

• pre�xes - the process α . P1 can perform an action α and continue as P1;

• agent identi�ers - A
def
= P1 speci�es that the identi�er A can be used to refer to process P1,

which may contain a reference to A again;

• choice -
∑

i∈I Pi lets a process continue as some process Pj , where j ∈ I;

• parallel composition - P1 |P2 denotes that P1 and P2 are executed in parallel;

• relabeling - P1[f] is the process P1 where the actions are renamed by the function f : H −−→

H , where f (ā) = f (a);

• restriction - P1\L, L ⊆ H , is the process P1 where execution of the actions in L is pro-
hibited. The actions in L are only possible in the form of a synchronization of two parallel
subprocesses, which only show up as τ's in the path over the entire process.

The usual notation for �nite choices is using a +, the process P1 + P2 continues as either P1 or P2.
The shorthand (α + β) . P can be used for (α . P) + (β . P). The structural operational semantics
can be found in Table 1.

3 Preliminaries - Peterson's algorithm

To make things more concrete, we will analyze a speci�c well known mutual exclusion protocol:
Peterson's algorithm. The correctness of this algorithm has been well established and the algorithm
is easy to understand. The algorithm is given below in pseudocode. Intuitively, the two processes
cannot both be in the critical section at the same time since the requirements to enter the critical
section in the await statement cannot be satis�ed at the same time. Intuitively, a process that
wishes to enter the critical section will eventually be able to do so as it can independently move
from its noncritical section to the await statement at which point the other process can do at most
one more loop after which it is also stuck in the await statement and has set the turn to the other
process.

2

Process A

repeat forever

`1 noncritical section
`2 readyA := true
`3 turn := B
`4 await (readyB = false ∨ turn = A)
`5 critical section
`6 readyA := false

Process B

repeat forever

m1 noncritical section
m2 readyB := true
m3 turn := A
m4 await (readyA = f alse ∨ turn = B)
m5 critical section
m6 readyB := false

Figure 1: Peterson's algorithm (pseudocode)

Here `6 is interpreted as process A entering the non-critical section and executing `1 is inter-
preted as process A leaving its non-critical section. Similarly for process B. This interpretation
allows us to adopt the assumption that "atomic actions always terminate"[4] while allowing a pro-
cess to stay in its non-critical section inde�nitely.

A natural way to model Peterson's algorithm in CCS is to de�ne process A and B as,

A
def
= noncritA . asgn true

readyA
. asgn B

turn . (n
false
readyB

+ n A
turn) . critA . asgn false

readyA
. A ,

B
def
= noncritB . asgn true

readyB
. asgn A

turn . (n
false
readyA

+ n B
turn) . critB . asgn false

readyB
. B ,

and to use the following paradigm to model the two-valued shared variables turn, readyA and
readyB by CCS processes using x as the placeholder for the name of a variable:

xtrue
def
= asgn true

x . xtrue + asgn false
x . xfalse + n true

x . xtrue ,

xfalse
def
= asgn true

x . xtrue + asgn false
x . xfalse + n false

x . xfalse .

In these processes asgn val
x represents a write action and n x

val
represents a read action. Peterson's

algorithm is then described by the parallel composition:

(A | B |ReadyA false |ReadyB false |TurnA)\L ,

where L denotes the set of all action names except noncritA, noncritB, critA and critB.

The transition system contains actions τ, noncritA, noncritB, critA and critB. A distinction is
made between blocking and non-blocking actions. Non-blocking actions are not dependent on input
from the environment, whereas blocking actions are dependent on an external environment or syn-
chronization with other processes. Actions τ, critA and critB are considered to be non-blocking.
Actions noncritA, noncritB are considered to be blocking, a process may choose to never leave
its non-critical section. These notions of blocking and non-blocking are critical in the analysis of
liveness as will be shown in subsequent sections.

The two most important types of properties of any mutual exclusion protocol are safety and
liveness. The safety property is that the processes competing for the critical section will never
be in their critical section at the same time. The liveness property is that if a process wants to
enter the critical section it will eventually be allowed to do so. In the case of Peterson's algorithm
liveness is de�ned to be: each time process A performs noncritA it will execute critA within a
�nite number of steps, and, similarly for process B.

4 Progress, justness and fairness

There are di�erent notions that describe levels of how fair a scheduler is. Progress means that
a sequential process that can do some action will eventually do it. It ensures that the process

A
def
= a.0 will eventually do an a. Justness intuitively ensures the same for parallel processes that

do not depend on each other. It ensures A|B, with A
def
= a.A and B

def
= b.0, will eventually perform

a b. Fairness on the other hand is a much stronger assumption, it ensures that A
def
= a.A+ b.0 will

eventually perform a b. In general it is realistic to assume progress and justness but not fairness.
Thus we want that all desirable properties of some system can be proven assuming only progress

3

and justness.

The properties progress, justness and fairness are de�ned on paths. A path is a sequence
of alternating states and transitions: P α1−−→ P1

α2−−→ ...
αn−−→ Pn

αn+1−−−→ A path is deemed to
be incomplete and therefore unrealistic if the path is not considered to be just. Paths can be
decomposed to paths along subprocesses. By the operational semantics of CCS (see Table 1) there
are three cases possible for the decomposition of a transition P |Q α

−−→ R:

• a transition P α
−−→ P′ and a state Q, where R = P′ |Q ,

• two transitions P a
−−→ P′ and Q ā

−−→ Q′, where R = P′ |Q′ and α = τ ,

• or from a state P and a transition Q α
−−→ Q′, where R = P |Q′.

A path π of a process P |Q can then be decomposed into paths πP and πQ along P and Q, re-
spectively, consisting of the concatenation of all actions stemming from P in πP and all actions
stemming from Q in πQ. Similarly, any transition P[f] α

−−→ R can be decomposed as P β
−−→ P′,

where R = P′[f] and α = f (β). By decomposing each transition of a path of P[f] the path of P is
obtained. A decomposition of a path of P\L is de�ned likewise.

To be able to properly reason with the concept of justness we need a more formal de�nition
that we can check on a given path. The following is the formal de�nition of justness as presented
in [1].

De�nition 1 The class of Y-just paths, for Y ⊆H , is the largest class of paths in TCCS such that

1. a �nite Y-just path ends in a state that admits actions from Y only;

2. a Y-just path of a process P |Q can be decomposed into an X-just path of P and a Z-just path
of Q such that Y ⊇ X∪Z and X∩Z̄ = ∅�here Z̄ := {c̄ | c ∈ Z};

3. a Y-just path of P\L can be decomposed into a Y∪L ∪ L̄-just path of P;

4. a Y-just path of P[f] can be decomposed into an f −1(Y)-just path of P;

5. and each su�x of a Y-just path is Y-just.

A path π is just if it is Y -just for some set of blocking actions Y ⊆ H . A just path π is a-enabled
for an action a ∈ H if a ∈ Y for all Y such that π is Y-just.

This de�nition also captures progress as a �nite path that can do a non-blocking action in its �nal
state is not just.

5 Analysis Y-justness

5.1 When is a path Y-just?

The de�nition of Y -justness can be di�cult to understand. We will therefore look at the intuition
behind the clauses of the de�nition and explore a few simple examples.

The �rst clause states that a process that gets `stuck' in some state after some �nite path is
Y -just with the actions that it can do in its �nal state in Y . If the process can do actions a and
b in its �nal state, then it is {a, b}-just with the requirement that a and b are blocking. If a or
b is non-blocking, the path is not just as it could have performed an action on its own. If a and
b are blocking however, the path is just. An in�nite path does not force us to put actions in Y .
An in�nite path along a process that does not contain parallel compositions is therefore ∅-just as
there are no �nite subprocesses.

Intuitively the second clause states that parallel processes that are both `stuck' in some �nal
state should not be able to communicate in their �nal states. Otherwise, this communication

should be performed. Consider for example the processes A|B with A
def
= c.A and B

def
= c.B and

the path of �nitely many τ's. By clause 1, the paths along processes A and B are X-just, c ∈ X,

4

and Z-just, c ∈ Z, respectively. This violates the second clause as X∩Z̄ , ∅ and thus the path is
not just. On the other hand, if one of the processes has other options than communicating then

the communication may not happen. If A
def
= c.A+ a.A and we consider the path of in�nite a's and

�nitely many τ's then we will see that this path is just. The path along A is in�nite and ∅-just
and the path along B is {c}-just. Now X∩Z̄ = ∅ and since clause 2 also has the requirement that
Y ⊇ X∪Z the path over the entire process A|B is {c}-just.

The third clause makes sure that actions in the restriction L do not show up in the Y -justness

of the entire process. If we consider (A|B)\{c} with A
def
= c.A + a.A and B

def
= c.B and the path of

in�nite a's and �nitely many τ's, we will see that it is ∅-just. The decomposition is Y∪L ∪ L̄-just
which satis�es the requirement of the second clause that Y ⊇ X∪Z.

The fourth clause simply ensures that renamings are dealt with. If we have a process P[f],
where f renames a to b, and a path that is {b}-just then that path is {a}-just along P.

The �fth and last clause reduces the justness of paths to the justness after on or more actions
are taken. For example a path of the process a.(A|B) is Y -just if it is Y -just along A|B considering
the su�x of the path without the leading a.

According to the de�nition a path π is a-enabled for an action a ∈ H if a ∈ Y for all Y such
that π is Y-just. Here it is important to realize that there are usually many sets Y that satisfy the
requirements for Y -justness. In fact, the next subsection proves that it is monotonic. If, however,
we are forced to put some action a in Y , then the path is a-enabled. Intuitively this means that
from some point on the action a is enabled in every state but never performed without breaking
justness. In two situations this can be the case: actions dependent on the environment may never
happen (in Peterson's algorithm a process may choose to stay in its non-critical section) or there
is some process that wants to perform a but it needs to synchronize with a while no other process
ends in a �nal state in which it can do a.

5.2 Monotonicity Y-justness

We prove that if some path π is Y -just then it is also Y ′ just if Y ⊆ Y ′ ⊆ H . We show that this
path is Y ′-just by showing it satis�es all clauses of De�nition 1 where we note that by de�nition
of π being Y -just, the set Y satis�es all clauses.

Clause 1 only applies if π is �nite. If it is in�nite, then clause 1 cannot contradict our claim. If
π is �nite the clause requires that all actions possible in the �nal state are in Y for it to be Y -just.
Since Y ⊆ Y ′ we conclude that all these actions are also in Y ′. If the path has been generated by a
process of the shape P |Q, clause 2 applies. It requires that Y⊇X∪Z and X∩Z̄=∅. Trivially Y ′⊇X∪Z.
The requirement of X∩Z̄ = ∅ does not in�uence Y or Y ′. Furthermore X and Z do not need to be
di�erent and thus the decompositions are still X-just and Z-just respectively. If the path has been
generated by a process of the shape P\L, clause 3 applies. It cannot directly contradict our claim
but requires that its decomposition is Y∪L ∪ L̄-just. Since Y∪L ∪ L̄ ⊆ Y ′∪L ∪ L̄, our arguments can
simply be applied on the decomposition. If the path has been generated by a process of the shape
P[f], clause 4 applies. Again there is no direct requirement that can contradict our claim but it
does require that the decomposition is f −1(Y)-just. Since f −1(Y) ⊆ f −1(Y ′) our arguments can be
applied on the decomposition. Clause 5 requires that each su�x of a Y-just path is Y-just. Since
each su�x of the path is Y -just (by our assumption that π is Y -just) and clause 5 can only cause a
problem if some other clause later down the path is violated, clause 5 cannot contradict our claim
in itself. Hence, none of the clauses can contradict that π is Y ′-just and we conclude that if a path
is Y -just then it is also Y ′ just if Y ⊆ Y ′ ⊆ H .

Note that we cannot just put anything in Y if we are looking at the element of a decomposition
of a process. In particular if we are looking at processes that are in a parallel composition we need
to be careful that the requirement X∩Z̄ = ∅ of clause 2 is not violated.
Furthermore we note that it makes sense to try to prove a path Y -just for some Y that is as small
as possible (remember that a path π is a-enabled for an action a ∈ H if a ∈ Y for all Y such that π
is Y-just) in order to exclude that it is enabled for some actions. It is not certain if there is always

5

a unique minimal set for Y .

6 Problems in CCS: Liveness violation

In this section we will analyze why the rendering of Peterson's algorithm is not satisfactory. In
particular it will be demonstrated that there exists a path that violates the required liveness prop-
erty but is considered to be just according to De�nition 1.

Consider the path ρ where process A executes `1 and wants to perform asgn readyA
true . However,

process B executes m1 to m4. At m4 it forces readyA f alse to perform n readyA
f alse

, brie�y disabling the

action asgn readyA
true . After this, process A still needs to write but process B is quicker and performs

m5 to m3 in a �ash and sets the variable readyA f alse to false. This continues ad in�nitum and
process A never gets the chance to indicate that it wants to enter the critical section. Surely this
path violates the liveness property.

We will show that ρ is an ∅-just path. If ρ is to be an ∅-just path of (A |B |ReadyA false |ReadyB false

|TurnA)\L then it follows from clause 3 of De�nition 1 that it su�ces to show that ρ is a L∪ L̄-just
path along (A |B |ReadyA false |ReadyB false |TurnA). According to clause 2 it then su�ces to show
that it is possible to decompose it into a S-just path along A, a T-just path along B, etc. with a
requirement that Y ⊇ S∪T∪U∪V∪W and a requirement that X∩Z̄ = ∅, where Z̄ := {c̄ | c ∈ Z} for

all X, Z ∈ {S,T,U,V,W}, X , Z. The path along A is �nite and is {asgn readyA
true }-just because of

clause 1 of our de�nition of Y -justness. The paths along B,ReadyA false,ReadyB false and TurnA

are in�nite and cannot be decomposed further so they are ∅-just. This satis�es the requirements
on the composition so ρ is ∅-just and thus ρ is just.

Hence, justness is not enough to exclude paths that violate the liveness property in CCS.

7 Signals

7.1 Introducing signals

(P ŝ)ys P α
−−→ P′

P ŝ α
−−→ P′

Pys

(P t̂)ys

Pj
ys

(
∑

i∈I Pi)
ys
(j ∈ I)

Pys

(P |Q)ys

Pys, Q s
−−→ Q′

P |Q τ
−−→ P |Q′

P s
−−→ P′, Qys

P |Q τ
−−→ P′ |Q

Qys

(P |Q)ys

Pys

(P\L)ys
(s < L)

Pys

P[f]y f (s)

Pys

Ays
(A

def
= P)

Table 2: Structural operational semantics for signals

As mentioned in the introduction, the use of signals is proposed to rule out paths violating the
liveness property. The resulting language is dubbed CCS with signals or in short CCSS. A signaling
operator P ŝ is introduced to indicate that a process emits a signal. The predicate Pys is used to
indicate that some process P emits a signal which may cause some process Q to receive the signal
and change state as a result: Q s

−−→ Q′. The set S contains the names of all signals. The semantics
of this new operator can be found in Table 2. For a more complete explanation of the reasoning
behind signals and the properties of the operator we refer to the original paper [2]. In this paper
we will simply look at the modi�ed de�nition of Y -justness and how it rules out paths that violate
the liveness property as they are considered unrealistic.

The following de�nition of Y -signalling paths gives an upper bound on the signals emitted in a
path[2].

6

De�nition 2 The class of Y-signalling paths, for Y ⊆ S , is the largest class of paths in TCCSS

such that

1. a �nite Y-signalling path ends in a state that admits signals from Y only;

2. a Y-signalling path of a process P |Q can be decomposed into an X-signalling path of P and
a Z-signalling path of Q such that Y ⊇ X∪Z;

3. a Y-signalling path of P\L can be decomposed into a Y∪LS -signalling path of P�here LS :=
L ∩S restricts the set L to signals;

4. a Y-signalling path of P[f] can be decomposed into an f −1(Y)-signalling path of P;

5. and each su�x of a Y-signalling path is Y-signalling.

The notion of a just path is adapted to accommodate signals [2]:

De�nition 3 The class of Y-just paths, for Y ⊆H ∪S, is the largest class of paths in TCCSS such
that

1. a �nite Y-just path ends in a state that admits actions from Y only;

2. a Y-just path of a process P |Q can be decomposed into a path of P that is X-just and X ′-
signalling, and a path of Q that is Z-just and Z ′-signalling, such that Y ⊇ X∪Z, X ∩ Z̄H = ∅,
X ∩ Z ′ = ∅ and X ′ ∩ Z = ∅�here Z̄H := {ā | a ∈ Z ∩H };

3. a Y -just path of P\L can be decomposed into a Y ∪ L ∪ L̄H -just path of P;

4. a Y-just path of P[f] can be decomposed into an f −1(Y)-just path of P;

5. and each su�x of a Y-just path is Y-just.

As before, a path π is just if it is Y -just for some set of blocking actions and signals Y ⊆ H ∪S.
A just path π is a-enabled for a ∈ H ∪S if a ∈ Y for all Y such that π is Y-just.

7.2 Signals and Peterson's algorithm

To translate Peterson's algorithm to accommodate signals the following is done: process A and B
remain exactly the same and the processes of the variables in our model are changed to �t the
following template:

xtrue
def
= (asgn true

x . xtrue + asgn false
x . xfalse) n̂ true

x

Let us de�ne ρ′ to be a path similar to ρ where process A does not get the chance to write to
readyA. We will see how we can prove ρ′ is not just. Like before, the decomposition along A is

�nite and X-just, for some set X, and asgn readyA
true must be in X. Since A is now the only process

interacting with readyA f alse, the path along readyA f alse is �nite and by clause 1 of the de�nition
of justness the path is Z-just, for some set Z, with asgn readyA

true ∈ Z. However, the composition now
violates clause 2 of the de�nition since X ∩ Z̄H , ∅. Intuitively, since the variable readyA is no
longer interrupted by reads, the interaction between readyA f alse and A in the path violating the
liveness property is continuously enabled and thus must eventually take place, assuming justness.

8 Signal actions

8.1 Introducing signal actions

Ideally, we would like to have a smaller change to the process-algebraic formalism than extending
it with signals to be able to model mutex algorithms correctly. The challenge, it seems, is to
exclude paths at which reading some shared variable prevents writing it. In systems were mutex
algorithms are generally employed the central memory allows simultaneous reads and writes. It is
desired that reads do not make a variable busy. This is exactly what the e�ect of signals is. If a
variable is written �nitely often but read in�nitely often, then the path along the process of the

7

variable is �nite as reads are modeled as signals that are only emitted �nitely many times.
To achieve this result more directly a set of special signal actions, denoted by R, is introduced. This

set contains the sending read actions modeling processes of variables, {n readyA
f alse

, n readyA
true , n readyB

f alse
,

n readyB
true , n turn

A
, n turn

B } ∈ R for our model of Peterson's algorithm. We now change the �rst clause
of De�nition 1 which leads us to our new de�nition of justness:

De�nition 4 The class of Y-just paths, for Y ⊆H , is the largest class of paths in TCCS such that

1. a Y-just path that within �nite steps reaches a state after which only actions from R or no
actions at all take place, admits actions from Y only from all states after this state;

2. a Y-just path of a process P |Q can be decomposed into an X-just path of P and a Z-just path
of Q such that Y ⊇ X∪Z and X∩Z̄ = ∅�here Z̄ := {c̄ | c ∈ Z};

3. a Y-just path of P\L can be decomposed into a Y∪L ∪ L̄-just path of P;

4. a Y-just path of P[f] can be decomposed into an f −1(Y)-just path of P;

5. and each su�x of a Y-just path is Y-just.

A path π is just if it is Y -just for some set of blocking actions Y ⊆ H . A just path π is a-enabled
for an action a ∈ H if a ∈ Y for all Y such that π is Y-just.

8.2 Restrictions on R

Just changing the de�nition however is dangerous as we might break our concept of justness. Con-
sider for example the following:

A
def
= a . A, B

def
= b . B,

C
def
= a . D + b . C,

D
def
= a . C,

(A|B |C)\L, a ∈ R,

where L contains all actions.

The path over the entire process consisting of in�nitely many τ's stemming from synchroniza-
tions on a and a and no τ's stemming from synchronizations on b and b is obviously just as no
action is continuously enabled but never taken as the action b is only sometimes enabled. Our
new de�nition of Y -justness however, does not consider it just as the path along C, which consists
of in�nitely many a's, reaches a state (the initial state) after which only signal actions are per-

formed and is thus {b}-just and the path along B is {b}-just which violates clause 2 of Y -justness
as X∩Z̄ , ∅. Hence we are restricting the possible traces too much, not considering all possible
behavior.

We repair this by requiring that for every transition P α
−−→ P′, α ∈ R, P is equal to P′ oth-

erwise α is not allowed to be in R. In particular the actions in R may only occur in the shape

A
def
= P + α . A. In our example we see that for P a

−−→ P′, P is not equal to P′ as we lose the
ability to perform b. Intuitively, our signal actions only make sense if they do not alter the state.

When modeling a system using signal actions it important to be cautious in declaring an action
a signal action because signal actions may not block other actions from happening (such as writ-
ing). This is an essential requirement when modeling a system as the model must represent the
conditions in which the actual system operates. If reading would actually block another process
from writing then it would be perfectly just if a variable is kept busy signalling its value. This
requirement is not speci�c to signal actions (it is the same for signals) but a general warning to be
cautious in the modeling phase to ensure that the assumptions on the memory model correspond
to the environment in which the system will run.

8

8.3 Bene�ts signal actions

This approach has many similarities with the use of signals in that it targets the same actions in
the original rendering of Peterson's algorithm in CCS and transforms them in some way such that
they do not busy the process of the variable. Our extension only demands the speci�cation of a set,
containing actions that are already in the model, much like the sets of blocking and non-blocking
actions. Furthermore the semantics of the language are not changed and existing models can be
easily transformed.

8.4 Unjustness liveness violation

If we look back at the path that violates the liveness property we will see we get a similar situation as
was achieved by using signals. The process is the same as in the original rendering in CCS with the

addition of the de�nition of the signal actions R, {n readyA
f alse

, n readyA
true , n readyB

f alse
, n readyB

true , n turn
A

, n turn
B } ∈

R. The path under consideration is ρ as introduced in Section 6, where process A executes noncritA

but does not get the chance to execute asgn readyA
true as process B loops through its code and writes

to readyA.

The path along process A is �nite and is thus X-just with the requirement that asgn readyA
true ∈ X

according to the �rst clause of De�nition 4. The path along readyAtrue reaches a state after which
only actions from R occur and thus the path is Z-just with asgn readyA

true ∈ Z by the �rst clause. The
composition of the two processes violates clause 2 of De�nition 4 since X∩Z̄,∅ and thus ρ is not just.

The outcome of justness is the same for this path violating justness when using signals or signal
actions. The paths are actually slightly di�erent but very similar. The internal communications
show up as τ's over the entire process for both methods. In the decompositions, however, there
is a di�erence: using signals the signalling process does not contain an action (the path is empty)
whereas when using signal actions, the signal action is in the path of the decomposition. The
receiving end of a signal (action) has the same decomposition. The rest of the path and its decom-
positions are exactly the same.

We can go one step further and prove that in the rendering of Peterson's algorithm with
signal actions, the desired liveness property is obtained: assuming justness, each occurrence of
noncritA is eventually followed by critA (similarly for B).
Since noncritA and noncritB are the only possible blocking actions in the path over the entire
process, any just path π is also {noncritA, noncritB}-just so it su�ces to show that π is not
{noncritA, noncritB}-just. By decomposing the restriction we derive that it is to be proven that
π is {noncritA, noncritB} ∪ L ∪ L-just along A | B |ReadyA false |ReadyB false |TurnA. We examine
how we can derive a contradiction if process A is able to execute noncritA but not critA. Due
to the symmetry of A and B we only need to evaluate one of them. Suppose process A ends after
noncritA and before (n false

readyB
+ n A

turn), the only case that would violate liveness of A. The path
along readyA would then reach some state after which only signal actions happen since the path
along A is �nite and A is the only process that can cause readyA to perform an action that is not a
signal action. By the second clause of De�nition 4 the path along A must be X-just, for some set X,
and the path along readyA must be Z-just, for some set Z, where Y ⊇X∪Z and X∩Z̄=∅. By the �rst
clause asgntrue

readyA
∈ Z. Hence asgntrue

readyA
< X and process A cannot end right before asgntrue

readyA
. It

must then be the case that it is stuck just before asgnB
turn or just before (n

false
readyB

+ n A
turn). In both

cases process B cannot pass the test to enter the critical section more than once since readyA is
already set to true and it can only use n turn

B to pass the test once, after which it sets turn to A. It
will at some point get stuck, either because it no longer leaves the non-critical section or because
it cannot pass the test to enter the critical section. When both process A and B are stuck then the
path π would be �nite and an action τ would be enabled stemming from asgntrue

readyA
or asgnB

turn,
which through the �rst clause of De�nition 4 contradicts that π is a just path as τ is non-blocking.

9 Comparison signals and signal actions

Since the two approaches are so similar we might wonder how they compare and how they relate
to each other. In essence, signals and signal actions are just di�erent ways of modeling the same

9

phenomenon as there is a direct correspondence between them. In the following subsections it will
be sketched how paths and processes can be translated from signals to signal actions and the other
way around. It will also be argued that justness is preserved in these translations: the two ways
of modeling coincide. These arguments are not formal enough to be considered a proof but do
show how a proof might be constructed. Note that we cannot just prove that justness is preserved
by proving that two processes using signals are bisimilar if and only if they are bisimilar after the
translating the processes to signal actions, as justness is not preserved under bisimilarity.
We assume processes containing signals emit signals only at the base of the process, it has the

shape A
def
= P ŝ. If a signal is emitted in some process B at some other point than at the base then

the part Pˆs can be replaced with A. Since this can always be done and the resulting processes
are equivalent we can assume all processes containing signals emit their signal at the base of the
process without loss of generality.

9.1 Translating paths and processes

If we have a process containing signals then we can transform the process such that it no longer
contains signals by introducing signal actions in the following way. It can be done by replacing

each de�nition of a process of the shape A
def
= P ˆs with A

def
= P + (s . A). The function g(S)

applies this transformation to the process S and all processes invoked by S. Translating a process
containing signal actions to a process using signals can be done in an inverted way. Each de�nition

of a process of the shape A
def
= P + (s . A), s ∈ R, is replaced with A

def
= P ŝ. The function g′(S)

applies this transformation to the process S and all processes invoked by S. Note that for any
process S containing only signals and no signal actions, g′(g(S)) = S.

The translation of the path also needs to be considered. The function f (π) translates a path
π belonging to a process S containing signals to a path in g(S). The function f ′(π) translates a
path π belonging to a process S containing signal actions to a path in g′(S). When translating
between the two paradigms the path over the entire process stays the same as signals and signal
actions only show up as τ's. We only need to consider the di�erence in decomposition. Table 3
shows the di�erence between handshakes and signals. The de�nitions are quite similar. For each
occurrence of P |Q τ

−−→ P′ |Q′ in π caused by a signal or signal action, the decomposition needs
to be considered. The receiving process has the same decomposition in both paradigms. When
translating from signals to signal actions, the signalling process is empty for the decomposition of
this action, so the signal action P s

−−→ P (if P is the signalling process) needs to be introduced,

which is done by f . When translating from signal actions to signals the signal action P s
−−→ P

needs to be eliminated from the path of the signalling process, which is done by f ′.

P a
−−→ P′, Q ā

−−→ Q′

P |Q τ
−−→ P′ |Q′

Pys, Q s
−−→ Q′

P |Q τ
−−→ P |Q′

P s
−−→ P′, Qys

P |Q τ
−−→ P′ |Q

Table 3: Comparison of structural operational semantics signals and handshakes

9.2 Justness preservation signals to signal actions

We will examine whether a just path π in a process S in the rendering using signals implies that
the path f (π) is just in g(S).

We will not prove that justness is preserved in the general case but we will consider processes
with a certain shape as this makes the proof much easier. We assume our process has the shape

S
def
= (A|B |C...)\L, where L contains all handshake actions and signals and where A, B,C... (and the

processes that they may invoke) do not contain parallel compositions, renamings or restrictions.
Note that Peterson's algorithm has this shape. Let π be some just path for S which means that
it is Y -just for some set Y . By clause 3 of De�nition 3, the decomposition along A|B |C... is then
V-just with V = Y ∪ L ∪ L̄H . If f (π) is to be just then it must be Y ′-just for some set Y ′ and the
decomposition of the restriction must be V ′-just with V ′ = Y ′ ∪ L ∪ L̄ by clause 3 of De�nition 4.

10

It now su�ces to prove that V-justness implies V ′-justness.

If a path along a sequential process P in the parallel composition is �nite in π then the path
along P, πP, is X-signalling and X ′-just for some sets X and X ′. The path f (πP) is then X ′′-just
with X ′′ = X ∪ X ′. This is the case because if πP is in�nite it does not have an end state in f (πP)
and is thus ∅-just/signalling in both paradigms (by the �rst clause of De�nition 2, De�nition 3 and
De�nition 4). In the case the path is �nite in π then it has an end state in f (π) as the added signal
actions may still happen in the end state. Since they end up in the same state (as signals and
signal actions do not change the state) and all regular actions that are enabled in one paradigm
are also enabled in the other paradigm and the signals that are enabled imply there is a signal
action enabled it holds that X ′′ = X ∪ X ′.

What is left is to bridge the gap between the sequential processes and the V/V ′-just processes
by considering the parallel composition. For every pair of processes P and Q in the parallel com-
position we know that πP is X-just and X ′-signalling, and πQ is Z-just and Z ′-signalling and
V ⊇ X∪Z, X ∩ Z̄H = ∅, X ∩ Z ′ = ∅ and X ′ ∩ Z = ∅ by the assumption that π is just and clause
2 of De�nition 3. We know that f (πP) is X ′′-just and f (πQ) is Z ′′-just. Since X ′′ = X ∪ X ′ and
Z ′′ = Z ∪ Z ′ we conclude that using signal actions the second requirement of clause 2 of De�ni-
tion 4 is met: X ′′∩Z ′′ = ∅. Furthermore V ′ ⊇ X ′′∪Z ′′ as V ⊇ X∪Z and the extra signal actions
that might be in X ′ or Z ′ are also in L which is a subset of V ′ so the �rst requirement is also satis�ed.

This shows that a path that is just using signals is still just after translating the process and path
to use signal actions.

9.3 Justness preservation signal actions to signals

This time we assume that we have a just path π in process S using signal actions and we will
examine whether f ′(π) is just in g′(S). We make the same assumption on the shape of the process
as before.

By assumption π is Y -just for some set Y and it is therefore V-just, V = Y ∪ L ∪ L along A|B |C...
(after decomposing the restriction) by clause 3 of De�nition 4. It is then to prove that the path
containing signals is V ′-just for some set V ′, V ′ = Y ′∪L∪LH along the decomposition of the restric-
tion, which would imply that the process is Y ′-just over the entire process by clause 3 of De�nition 3.

If the path πP along a sequential process P in the parallel composition has an end state then
πP is X-just for some set X and ends in state after which only signal actions take place (clause 1 of
De�nition 4). The path f ′(πP) is then �nite as in the end state only some signal may be admitted.
The path f ′(πP) is then X ′-just where X ′ = X\R as the signal action is no longer possible and it
is X ′′-signalling, where X ′′ = X ∩ R as any signal action in X is converted to a signal (clause 1
of De�nition 3). Thus X = X ′ ∪ X ′′. If πP does not have an end state then f ′(πP) is in�nite and
X = X ′ = X ′′ = ∅.

Again what is left is to bridge the gap between the sequential processes and the V/V ′-just pro-
cesses by considering the parallel composition. For every pair of processes P and Q in the parallel
composition, we know that the path πP is X-just and the path πQ is Z-just. By the assumption of
π being just and clause 2 of De�nition 4: V ⊇ X∪Z and X∩Z̄=∅. Since X = X ′∪X ′′ and Z = Z ′∪Z ′′

we can conclude X ′ ∩ Z̄ ′H = ∅, X ′ ∩ Z ′′ = ∅ and X ′′ ∩ Z ′ = ∅. Furthermore, V ′ ⊇ X ′∪Z ′ as V ⊇ X∪Z
and V\V ′ = L\LH ⊆ R, which are not in X ′ or Z ′. The requirements of clause 2 of De�nition 3
are then satis�ed.

This shows that a path that is just using signal actions is still just after translating the process
and path to use signals.

9.4 Conclusion of comparison

The previous sections reason that, assuming some shape for our process, any path in one paradigm
is just if and only if that path is just after translating to the other paradigm.

11

10 Challenges in implementing liveness analysis

As has been shown mutex protocols modeled in typical process algebras do not have some desirable
liveness properties, which can be �xed with some extension like signal actions or signals. The
question remains how to analyze liveness properties and how to �lter out paths that are not just
or that do not make progress. Furthermore, there might be some restrictions on what kind of
conversion/preprocessing steps a tool can use.

10.1 Manual analysis

Although it is not ideal, it is for smaller processes very feasible to do liveness analysis by hand. As
seen by the example of Peterson's algorithm it is rather straightforward to identify all the paths
that would violate liveness and it is not hard to prove whether these paths are just or not. For
larger processes this might be more tedious and ideally we would not like to burden a system
modeler with the concept of Y -justness if it would also be possible with a simple tool that does the
analysis.

10.2 Specifying liveness properties

There are countless languages that can be used to specify properties of the behavior of a system.
These properties can then be checked for a model in for example CCS or other process algebras.
Most of these languages that specify properties of the behavior are able to describe liveness prop-
erties by asserting that eventually something good will happen. In the case of Peterson's algorithm
we would have the requirement that after executing noncritA, critA will be executed within a �nite
number of steps (and a similar requirement for B). These languages already exist and are able
to express what we desire so there is no issue with the current speci�cation languages. The issue
is that current tools evaluate all possible paths, including paths that are not just (paths without
progress are generally not evaluated).

10.3 Checking requirement on R

Since we have a syntactic requirement for the signal actions, a tool that incorporates signal actions
should check this requirement. It could easily do a syntactical analysis of a model to verify that
a signal action is only performed in a choice at the base of a process and immediately recurses to

the same process, in other words that it has the shape A
def
= P + (α . A), α ∈ R.

10.4 Preprocessing in tools

Tools usually convert the process speci�cation to some intermediate format before checking a
behavioral property. This intermediate format may be a linear process speci�cation, a labeled
transition system or some other format. In this intermediate format it is usually the case that any
parallelism is removed, there is no distinction between di�erent processes. This is problematic if
the goal is to �lter out unjust paths but not unfair paths. This is the case because, as seen in

Section 4, behaviorally equivalent processes may have di�erent just paths. Process P
def
= a . P+b . P

need not ever perform a b assuming justness but not fairness where Q
def
= A|B, with A

def
= a . A and

B
def
= b . B, is guaranteed to perform a b. This means that removing the notion of independent

processes gives rise to problems in the analysis.

10.5 Filtering unjust paths

The big question is how unjust paths can be �ltered out. Given some path it should be straight-
forward to determine whether that path is just. An approach to do this would be to construct a
tree of the process, where the root is the entire process which in turn has children representing
the decomposition of it. This can be done recursively. In this tree we could then determine the
existence of end states in all the nodes and check the conditions for all the parent-child pairs. An
approach to �lter unjust paths would then be to compute all paths violating a speci�ed liveness
property and determine for each one whether it is just or not. It is unclear whether all paths

12

violating liveness can be computed in an e�cient manner.

Another possibility might be to determine whether a liveness property holds by considering the
shape of the labeled transition system (or other low level representation), where the transitions are
annotated with knowledge about the process in which they occur and whether it concerns a signal
action. Any path that is not just either ends in a state that admits a non-blocking action or is a
loop in the LTS, in which in every state some non-blocking action (for example a synchronization
between processes) is possible and where the process(es) that can perform this non-blocking action
only perform signal actions in the loop. The liveness property is then violated if there is a �nite
path to some state in which no non-blocking action is possible or if there is a path to some just
loop. If the process cannot get stuck in such a state or loop then, assuming the LTS has �nitely
many states, it must eventually come in the desired state. Other strategies might also be possible
in LTS's and other low level representations as long as some annotation is added to preserve the
information that an action stems from some process. This is all very speculative and should be
further investigated.

It is a possibility that the labeled transition system and many other traditional representations
of the behavior of systems are simply not well suited for liveness analysis.

11 Conclusions and future work

This paper shows an alternative for the analysis of liveness in process algebras, using a justness
assumption only. The bene�ts of the signal actions are clear, they provide an easy way for a
modeler to analyze liveness and have a smaller impact on existing process algebras, in particular
the structural operational semantics remain unchanged.

It is curious that signal actions allow correct renderings of mutex algorithms without fairness
assumptions considering the conclusions of van Glabbeek and Höfner in [1]. It is to be stressed that
their conclusion is valid: assuming their de�nition of justness, it is impossible. What is remarkable
is that they did not discuss how they arrived at their de�nition of justness or discuss alternatives.
It is possible that they considered other de�nitions but had reasons to not use them. It is espe-
cially remarkable that they did not discuss constructs in which read actions are treated in some
special way in the de�nition of justness (as is the case with signal actions) considering that they
do make a distinction in blocking and non-blocking actions and incorporate this in the de�nition.
Their work is still valuable as they show the importance of (non)-blocking actions, introduce a
formal de�nition of justness for process algebras and prove that read actions can cause problems
in liveness analysis. This paper simply shows that to address these problems it is also possible to
incorporate read/signal actions in the de�nition of justness itself.

There is still much work to do before liveness analysis in process algebras can be widely adopted.
At this point in time, analysis can already be done by hand but automated analysis via toolsets
would be ideal. Research needs to be done on algorithms that are able to do the analysis (in
an e�cient way). There is also legwork needed to prove certain properties of our signal actions.
In particular the reasoning in Section 9 needs to be converted to a formal proof with inductive
de�nitions of the functions that convert the processes and paths. It also remains to be investigated
whether our requirements on the actions in R can be relaxed so that a signal action is also allowed
if the state is changed to a bisimilar state. Lastly, the de�nitions of justness and signal actions
need to be translated to other process algebras than CCS that may have richer concepts like data
and multi-actions.

We conclude that many steps are still necessary to make liveness analysis in process algebras
a mature �eld. This makes it an exciting research �eld as many discoveries might be made. We
hope that this paper has made a contribution to the further advancement of this �eld.

13

References

[1] Rob J van Glabbeek and Peter Höfner. CCS: It's not fair! Acta Informatica, 52(2-3):175�205,
2015.

[2] Victor Dyseryn, Rob van Glabbeek, and Peter Höfner. Analysing mutual exclusion using
process algebra with signals. arXiv preprint arXiv:1709.00826, 2017.

[3] Robin Milner. Communication and concurrency, volume 84. Prentice hall New York etc., 1989.

[4] Susan Owicki and Leslie Lamport. Proving liveness properties of concurrent programs.
TOPLAS. 4:455�495, 07 1982.

14

	Introduction
	Preliminaries - Calculus of Communicating Systems
	Preliminaries - Peterson's algorithm
	Progress, justness and fairness
	Analysis Y-justness
	When is a path Y-just?
	Monotonicity Y-justness

	Problems in CCS: Liveness violation
	Signals
	Introducing signals
	Signals and Peterson's algorithm

	Signal actions
	Introducing signal actions
	Restrictions on
	Benefits signal actions
	Unjustness liveness violation

	Comparison signals and signal actions
	Translating paths and processes
	Justness preservation signals to signal actions
	Justness preservation signal actions to signals
	Conclusion of comparison

	Challenges in implementing liveness analysis
	Manual analysis
	Specifying liveness properties
	Checking requirement on
	Preprocessing in tools
	Filtering unjust paths

	Conclusions and future work

