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Abstract

Variability parity games are a recently proposed extension to well-known parity games
that allow for verification of software product lines (SPLs). We propose new algo-
rithms for solving variability parity games based on the existing priority promotion
and SCC decomposition, and provide new heuristics for VPGs. We implemented these
proposed algorithms, as well as an algorithm based on Jurdziński’s small progress
measures We compare existing algorithms for solving VPGs and the impact of differ-
ent pre-processing steps and propose a method to generate random variability parity
games.
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Chapter 1

Introduction
Formal model verification techniques are used to verify whether a model adheres to
a set of formal requirements. This verification is used to improve the quality of the
modelled system, often software. Verifying the requirements can help understand and
prove the correctness of the system, something which is getting more important as a
lot of critical software is getting significantly more complex.

In verifying software, labelled transition systems are often used to model the behaviour
of a system. Using temporal logics, such as LTL, CTL and µ-calculus, we can for-
mally describe the requirements of the system. Using labelled transition systems,
we can check whether a requirement holds for our model. The problem of finding
whether such a requirement holds for a given model has been shown to be reducible
(in polynomial time) to solving a parity game, and vice versa.

The topic of parity games is well-established in research [2, 19, 18]. Multiple algo-
rithms exist – and are still being proposed – for solving parity games. It has been
shown that parity games are in the complexity class of UP and co-UP and it is still an
open question whether they can be solved in polynomial time [18]. Recent algorithms
have been shown to solve parity games in quasi-polynomial time[3, 13].

When developing software, we often have multiple similar products we want to verify.
Software product lines (SPLs) refer to methods and techniques to describe and reason
about multiple software products that are very similar and share most of their be-
haviour and features. Featured transition systems [5] have been proposed to describe
these SPLs and are a generalisation of labelled transitions systems. Verifying whether
a set of requirements hold for multiple products can be done by solving variability
parity games, a generalisation of a parity game, as shown in [1].

Variability parity games (VPGs) have been first described in [20] and can be used
to verify products in a SPL with a “family based” approach, in which we verify
multiple products simultaneously, instead of each individual product in the “product
based” approach. Using VPGs we can verify multiple products whilst exploiting the
commonalities between them. A few algorithms already exist and have been proposed
for solving VPGs and it has been shown to be more efficient than solving the different
parity games separately.

In this thesis we will propose new algorithms for solving VPGs by extending priority
promotion [2], an existing algorithm for parity games to the setting of VPGs and we
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show its correctness. Furthermore, we propose the concept of SCC-families, which
describe the strongly connected components in a VPG, and implement an SCC de-
composition algorithm with tight integration into Zielonka’s algorithm, as proposed
in [1]. Furthermore, we consider a recently proposed algorithm based on Jurdzinski’s
small progress measures [12] and provide its implementation details.

Pre-processing parity games is a method to adapt or partially solve parts of a parity
game with the intention to reduce its complexity. We will propose some adaptations
of the pre-processing steps from [14] and measure their effectiveness when solving
VPGs. The algorithms and pre-processing steps we propose have been implemented
using C++.

Lastly we compare the existing and new algorithms and pre-processing steps against
each other on the existing dataset of VPGs, as well as the newly generated VPGs, to
compare the solving times of the different algorithms. We found that the recursive al-
gorithm has the best performance overall. We also found that all three algorithms that
depend on the attractor-set calculation (Priority Promotion, Zielonka, Zielonka with
SCC decomposition) spend most of their solving time on computing the attractor-set.

The thesis is structured as follows. In Chapter 2 we expand on the related work
and the context of this thesis. Next, in Chapter 3 we introduce the preliminary
concept of variability parity games. In Chapter 4 we introduce SCC-families and
apply them to Zielonka’s algorithm with SCC decomposition. Next, in Chapter 5 we
briefly introduce the concepts of small progress measures and provide implementation
details for the VPG adaptation. We introduce Priority Promotion and show how to
adapt its concepts to apply to VPGs and provide an algorithm for Priority Promotion
on VPGs in Chapter 6 and in Chapter 7 we adapt self-loop elimination for VPGs.
Lastly, in Chapter 8 we discuss our experimental results.
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Chapter 2

Related work
In the previous section we already mentioned some previous work on variability parity
games and algorithms to solve them, and work related to parity games. We will now
discuss some of the most relevant contributions related to the topic.

Multiple algorithms for solving parity games exist, for instance the priority promotion
algorithm, as proposed in [2] in 2016, to solve parity games with a time complexity

of O(|E| · (3 |V |−2
d−2

)d−1) where |E| is the number of edges, |V | is the number of vertices
and d is the number of priorities in the parity game. In 1998 Zielonka’s algorithm
[23] was proposed to solve parity games with O(|V |d) worst case time complexity, and
in 2000 Jurdziński small progress measures algorithm [19] has been showed to solve
parity games in roughly O(|E| · (|V |/d)d). Although Zielonka’s algorithm has the
worst complexity of the aforementioned algorithms, it often outperforms the other
algorithms in practice. Recent algorithms have been shown to solve parity games in
quasi-polynomial time [17, 4].

A Software Product Line (SPL) contains multiple products with requirements we want
to verify for each one. SNIP [6] is one of the first implementations of an SPL model
checker, based on the model checker SPIN [16], and allows for checking LTL formulas
for multiple products. ProVeLines [7] contains multiple tools for verifying SPLs and is
an extension of SNIP. It allows for verifying discrete and real-timed models, checking
the equivalence between SPLs and checking different types of features.

Besides the SPL specification used in this thesis, different specifications and verifica-
tion techniques have been put forward, such as variability abstractions [11]. Where
instead of featured transition systems and µ-calculus so-called feature models are
used, which described the set of valid configurations.
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Chapter 3

Preliminaries
We now introduce variability parity games, attractor sets and Zielonka’s algorithm.

A variability parity game (VPG) is a generalisation of a parity game, which is played
by players even and odd, denoted by 0 and 1 respectively. The game is played on a
finite directed graph, with the vertices of the graph labelled with a priority, which is
a natural number, and an owner, which is either the even or odd player. An edge in
a VPG has a set of configurations associated with it for which it is enabled, which
we call its edge guard. Each VPG has a set of configurations and is played/solved for
one of them.

Definition 3.0.1. (Variability Parity Game). A variability parity game is a tuple
G = (V,E,Ω,P ,C, θ) where,

� V is a finite set of vertices,

� E ⊆ V × V is the total edge relation,

� Ω : V → N is the priority function, assigning a priority to each vertex,

� P : V → {0, 1} is the owner function that assigns an owner to each vertex,

� C is a non-empty set of configurations,

� The guard function θ : E → 2C \ {∅} is a total function mapping every edge to
a set of configurations for which that edge is enabled. Furthermore, we require
that for all v ∈ V

⋃
(v,w)∈E

θ(v, w) = C.

We can partition V into vertices owned by player 0 and player 1. Let α ∈ {0, 1} be
an arbitrary player, and ᾱ their opponent. We define the set of vertices owned by
player α as Vα = {v ∈ V | P(v) = α}. We denote the successors and predecessors
of a vertex v as vE and Ev respectively, where vE = {w ∈ V | (v, w) ∈ E} and
Ev = {w ∈ V | (w, v) ∈ E}.
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Figure 3.1: A VPG, with in red the infinite play π = (v4, v6, v7)ω with pr↓(π) = 1.

When displaying a VPG we use the following conventions, as can be seen in Figure
3.1:

� A vertex owned by the odd player is denoted by a box, such as vertex v1,

� A vertex owned by the even player is denoted by a diamond, such as vertex v2,

� The priority of a vertex is denoted by the number within the box or diamond,

� Direct edges are denoted using arrows between vertices,

� Edges are decorated with a set of configurations, which is the set θ(e) for an
edge e ∈ E, for example for the edge from v6 to v5 in Figure 3.1 we have that
θ((v6, v5)) = {c2, c3}.

A play of a VPG starts by placing a token on a vertex v ∈ V in the VPG for a
configuration c ∈ C. The token can then be moved by the owner of the vertex along
one of the outgoing edges, with the requirement that c is enabled for the outgoing
edge e, i.e. c ∈ θ(e). The owner of the new vertex can then move the token along
again according to the same rules. Since we require that the graph is total, and the
guard function to have at least one edge (v, w) such that c ∈ θ(v, w) for all v ∈ V
and c ∈ C, we will always be able to move the token, resulting in an infinite path π.
With πi we denote the ith vertex along the path, with i ∈ N, and the prefix of a path
we denote with π<i = π0π1 . . . πi−1, or π≤i, which includes the last vertex πi.

The winner of a play is determined by the lowest priority that occurs infinitely often
along its resulting path π, where the priority of a vertex πi is given by Ω(πi) for i ∈ N.
We denote the lowest priority occuring infinitely often in π with pr↓(π). The play is
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won by player even if pr↓(π) is even, and won by player odd if pr↓(π) is odd. With
pr↑(π) we denote the highest parity occuring infinitely often along π. Similarly, we
define pr↓(G) and pr↑(G) as the lowest and highest priority occuring in the game G. In
Figure 3.1 we can see an example of a play with starting vertex v4 and configuration
c1 consisting of π = (v4, v6, v7)ω, where ω denotes infinite repetition.

Note that in our definition the lowest parity decides the winner of a play, this is
also called a min-game. We could have also defined a max -game, where the highest
priority decides the winner of a play. Both types of games can easily be turned into
its alternative, but for consistency we will be considering min-games.

A player’s moves are determined by their strategy. As the enabled edges depend on
the configuration c ∈ C, we define the strategy for each c ∈ C. Let α be an arbitrary
player and c ∈ C be a configuration, we define the strategy for player α as a partial
function σcα

∗ : V ∗ → V where the function is defined for paths ending with a vertex
which is owned by player α. We say a path π and configuration c conform to a given
strategy σcα

∗ iff for all prefixes π≤i, for which σcα
∗ is defined, we have πi+1 = σcα

∗(π≤i)
for all i ∈ N. A strategy σcα

∗ is winning from a vertex v ∈ V iff α is the winner of
every play starting in v that conforms to σcα

∗. We say a vertex v is won by player α
and configuration c if player α has a winning strategy from vertex v.

VPGs are, like parity games, positionally determined. This means that if a vertex
is won by player α, player α has a strategy that does not depend on the history
of the vertices that the play has previously visited, i.e. we have a partial function
σcα : V → V that determines the next move, which we call the memoryless strategy.
Furthermore, we note that a vertex is either won by the even or the odd player for a
given configuration.

We can now partition the vertex-configuration pairs of VPG G into two sets W c
0 and

W c
1 such that vertex v is in W c

α if and only if player α has a winning strategy σcα from
vertex v for configuration c. Solving a VPG is done by computing these partitions
for all c ∈ C.

Given a VPG G = (V,E,Ω,P ,C, θ) and a configuration c ∈ C, by G|c we denote the
projection of G onto c. This projection is a parity game G|c = (V,E ′,Ω,P) where
E ′ = {e ∈ E | c ∈ θ(e)}, which can be seen as a specific class of VPG that only has one
configuration. Furthermore, we can also define a projection for a set of configurations,
C ⊆ C, where the projection G|C is a parity game with E ′ = {e ∈ E | ∃c ∈ C : c ∈
θ(e)}.
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Figure 3.2: Example of a VPG with C = {c1, c2}.

Example 3.0.1. Consider the VPG G from Figure 3.2. In Figure 3.3 we can see the
projections G|c1 and G|c2. For the projection on c1 we have the winning sets W c1

o = ∅
and W c1

1 = {s0, s1, s2, s3, s4}, since player 0 does not have a winning strategy from
any vertex in Figure 3.3a. For the projection on c2 in Figure 3.3b we have the winning
sets W c2

0 = {s0, s1, s2, s4} and W c2
1 = {s3}, since player 1 now only has a winning

strategy for vertex s3.

1

0 2

5 3

s0

s1 s2

s3

s4

(a) Resulting parity game of projection {c1}.

1

0 2

5 3

s0

s1 s2

s3
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(b) Resulting parity game of projection {c2}.

Figure 3.3: Projections of the VPG from Figure 3.2.
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When discussing a subgame we call a function % : V → 2C a restriction of G, which
indicates the configurations which are under consideration for a vertex. Let ψ, % :
V → 2C be two restrictions, we define their intersection, using lambda calculus, as
(ψ∩ %) = λv ∈ V.ψ(v)∩ %(v), their subtraction (ψ \ %) = λv ∈ V.ψ(v) \ %(v) and their
union (ψ∪%) = λv ∈ V.ψ(v)∪%(v). We say % is a sub-mapping of ψ (% ⊆ ψ) iff for all
v ∈ V we have %(v) ⊆ ψ(v), similarly, we can have a strict sub-mapping % ⊂ ψ. We
say that a vertex v for configuration c ∈ C is won by player α in the game G restricted
to % iff c ∈ %(v) and the winning strategy for α only passes through vertices w such
that c ∈ %(w). With vert(%) we denote the vertices included in the restriction %, i.e.
the set {v ∈ V | %(v) 6= ∅}. With pr↓(G, %) we denote the lowest priority in the game
G restricted to %, i.e. min{Ω(v) | v ∈ vert(%)}.

3.1 Attractor

The attractor set is an important concept that is often used when solving parity
games. It is the set of vertices from which a player can force a play into a set of
vertices U ⊆ V . In the case of variability parity games, instead of a set of ver-
tices, the attractor is a restriction, giving for each vertex in the restriction the set
of configurations for which the vertex is part of the attractor. Formally we define
this attractor, which we will call the featured attractor, as proposed in [1], denoted
α-FAttr, as follows:

Definition 3.1.1. (Featured Attractor). Given a VPG G = (V,E,Ω,P , θ), and a
sub-mapping Uλ of a restriction %, we define α-FAttr(%, Uλ)(v) =

⋃
i≥0

α-FAttri(U
λ)(v)

where α-FAttri(U
λ)(v) is inductively defined as follows:

α-FAttr0(Uλ)(v) = Uλ(v)

α-FAttri+1(Uλ)(v) = α-FAttri(U
λ)(v) ∪

{c ∈ %(v) | v ∈ Vα ∧ ∃w ∈ vE : c ∈ θ(v, w) ∩ %(w) ∩ α-FAttri(U
λ)(w)} ∪

{c ∈%(v) | v ∈ Vᾱ ∧ ∀w ∈ vE : c ∈ (C \ (θ(v, w) ∩ %(w))) ∪ α-FAttr(Uλ)(w)}

We say a restriction % is α-maximal in G with α ∈ {0, 1} iff % = α-FAttr(%, Uλ).
Next, we say that G is total with respect to a restriction % iff for all v ∈ V and all
c ∈ %(v), there exists a vertex w ∈ vE such that c ∈ θ(v, w)∩%(w). Lastly, we observe
that for a VPG G that is total with respect to %, and an α-maximal restriction Uλ ⊆ %
the game G is total with respect to % \Uλ. We have the following two Lemma’s from
[1].

Lemma 1. Let G = (V,E,Ω,P ,C, θ) be a VPG, % : V → 2C a restriction and α
an arbitrary player. Then for all sub-mappings Uλ of %, α-FAttr(%, Uλ) is also a
sub-mapping of %.
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Lemma 2. Let G = (V,E,Ω,P ,C, θ) be a VPG and % : V → 2C a restriction such
that G is total with respect to %. Let Uλ be an α-maximal restriction such that Uλ

is a sub-mapping of %. Then G is total with respect to % \ Uλ.

3.2 Zielonka’s algorithm

In the previous section we introduced the featured attractor for VPGs, as proposed
in [1]. In this section we will describe how we can solve VPGs using this featured
attractor in Zielonka’s recursive algorithm. We will describe the concepts behind
the algorithm, give a rough description of the algorithm and then describe the full
algorithm as proposed in [1].

We can recursively solve VPGs using the featured attractor. Let G be a VPG and
% : V → 2C a restriction such that G is total with respect to %. We first take the set
of vertices v ∈ V and their configurations c ∈ %(v) that have the minimum priority
pr↓(G) in our game G and compute their attractor, for the player with the same parity
as the minimum priority: α ≡2 pr↓(G). This gives us an α-maximal sub-mapping Aλ

of % of all the vertices and configurations for which player α can force a play into a
vertex with minimum priority in the game. The game G restricted to % \ Aλ, which
we will call the subgame, can then be solved recursively. We now have two cases:

1. The subgame is entirely won by player α. Trivially the entire game is also won
by player α.

2. Part of the subgame is won by player ᾱ. Our attracted set Aλ is not necessarily
won by player α, as the opponent might be able to force a play from a vertex
v ∈ vert(Aλ) for a configuration c ∈ Aλ(v) into a part of the subgame that
is won by player ᾱ. Therefore, we remove the set of vertices from which the
opponent can force the play into one of its winning vertices, and again solve the
resulting subgame. Since we are guaranteed that the winning vertices of the
opponent are won by player ᾱ, we are ensured the returned solution is correct.

The full procedure for solving VPGs can be seen in Algorithm 1. For convenience, we
use the following shorthand notation to represent the empty restriction ∅λ = λv ∈ V.∅.

In the next chapter we will introduce strongly connected components for VPGs and
show how we can integrate them into Zielonka’s recursive algorithm to solve VPGs.
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Algorithm 1: Zielonka’s recursive algorithm for VPGs.

1 Zielonka (G = (V,E,Ω,P , θ), %)
2 (W λ

0 ,W
λ
1 )← (∅λ, ∅λ)

3 if % 6= ∅λ then
4 p← pr↓(G, %)
5 α← p mod 2
6 Uλ ← λv ∈ V.{c | c ∈ %(v) ∧ Ω(v) = p}
7 Aλ ← α-FAttr(%, Uλ)

8 (W λ
0
′
,W λ

1
′
)← Zielonka(G, % \ Aλ)

9 if W λ
ᾱ = ∅λ then

10 (W λ
α ,W

λ
ᾱ )← (Aλ ∪W λ

α
′
, ∅λ)

11 else

12 Bλ ← ᾱ-FAttr(%,W λ
ᾱ
′
)

13 (W λ
0
′
,W λ

1
′
)← Zielonka(G, % \Bλ)

14 (W λ
α ,W

λ
ᾱ )← (W λ

α
′
, Bλ ∪W λ

ᾱ
′
)

15 end

16 end

17 end
18 return (W λ

0 ,W
λ
1 )

CHAPTER 3. PRELIMINARIES 10



Chapter 4

Solving VPGs by decomposition into
Strongly Connected Components
Parity games can be solved by solving the strongly connected components (SCCs)
as shown in [14]. In Section 4.1 we will briefly introduce SCC decomposition in
normal parity games and informally sketch how an SCC decomposition can be used
when solving parity games. Next we will introduce strongly connected components
in a “family-based” setting and describe how we can use SCC decomposition to solve
VPGs. Lastly, we introduce a recursive algorithm that uses SCC decomposition to
solve VPGs, adapted from the original algorithm for parity games from [15].

4.1 SCC Decomposition

First we will define the concept of strongly connected components on a total directed
graph G = (V,E).

Definition 4.1.1. (Strongly Connected Components). Let G = (V,E) be a
total directed graph. A set of vertices S ⊆ V is called strongly connected if for all
v, w ∈ S there exists a path from v to w in G. The strongly connected components of
a graph G are all the maximal sets of vertices of G that are strongly connected.

Let S = S0, . . . Sn be the set of strongly connected components in G. We have the
topological ordering → where we say that Si → Sj for i, j ∈ N iff there is a vertex
w ∈ Sj and v ∈ Si such that v → w and Si 6= Sj. The smallest elements in this
ordering are called terminal SCCs. Let Si for some i ∈ N be a terminal SCC, by
definition there does not exist a component Sk with k ∈ n and i 6= k such that
Si → Sk. Therefore, we cannot leave such a terminal component, which will be an
important property when solving VPGs, since any play that enters the terminal SCC
is guaranteed to remain within the vertices of the SCC. We can solve the VPG for the
vertices of the terminal SCC without having to take into account the entire game. An
example of a SCC decomposition can be seen in Figure 4.1, where we have terminal
SCC S2.
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v2

S1

v3

v4

S2

Figure 4.1: SCC decomposition of a graph consisting of two strongly connected com-
ponents S1 and S2.

4.2 Family-based Strongly Connected Components

Before we define the strongly connected components of a VPG, first we will consider
the SCCs of a parity game Ĝ. Let Ĝ = (V,E,Ω,P) be a parity game. We can compute
its SCCs in the graph G = (V,E).

Definition 4.2.1. (SCC-Equivalence). Let Ĝ = (V,E,Ω,P) be a parity game and
≡⊆ V × V a relation, where v ≡ v′ for v, v′ ∈ V iff there is an SCC S of (V,E) such
that v, v′ ∈ S.

Lemma 3. The relation ≡ from Definition 4.2.1 is an equivalence relation on V .

0

v0

2
v1

1
v2

0
v3

4
v4

2
v5

3
v6

(a) Projection of G|c1

0

v0

2
v1

1
v2

0
v3

4
v4

2
v5

3
v6

(b) Projection of G|c2

Figure 4.2: Projections of the VPG G from Figure 4.3.

Example 4.2.1. Consider the parity games G|c1 and G|c2 from Figure 4.2. For
Figure 4.2a we have the equivalence classes: S0 = {v0, v1, v2}, S1 = {v3}, S2 =
{v4}, S3 = {v5}, S4 = {v6}. And for Figure 4.2b we have the equivalence classes:
S0 = {v1, v2, v3, v5, v6}, S1 = {v0}, S2 = {v4}.

We can now define the strongly connected components of a VPG G = (V,E,Ω,P ,C, θ).
Let ≈C⊆ V × V be a relation with C ∈ 2C. We define the SCC-family as follows:
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Definition 4.2.2. (SCC-Family). Given a VPG G = (V,E,Ω,P ,C, θ) and C ∈ 2C.
Let ≈C⊆ V × V be defined such that:

v ≈C v′ iff for all c ∈ C we have v ≡ v′ in G|c.

Lemma 4. The relation ≈C from Definition 4.2.2 is an equivalence relation on V .

Proof. In order to prove that ≈C is an equivalence relation, we will show that it is
reflexive, symmetric and transitive.

Reflexivity By reflexivity of ≡ we have that v ≡ v in G|c for all c ∈ C. It follows
that v ≈C v.
Symmetry Assume v ≈C w. By definition of ≈C we have v ≡ w in G|c for all c ∈ C.
By symmetry of ≡ we have that w ≡ v in G|c for all c. We conclude that w ≈C v.
Transitivity Assume v ≈C w and w ≈C u. We have v ≡ w and w ≡ u in G|c for all
c ∈ C. By transitivity of ≡ we have that v ≡ u in G|c for all c ∈ C. Hence v ≈C u.

Let [v]≈C be the equivalence class of v ∈ V with C ∈ 2C, where [v]≈C = {w ∈ V | w ≈C
v}.

0
v0

2
v1

1
v2

0
v3

4
v4

2
v5

3
v6

C

Cc1

c2

C

C

c2

C

C

C

Figure 4.3: Strongly Connected Components in a VPG G with C = {c1, c2}.

Example 4.2.2. Consider the VPG G from Figure 4.3. We have the following set of
equivalence classes for {c1} and {c2}: s0 = {v0, v1, v2}c1 , s1 = {v3}c1 , s2{v5}c1 and s3 =
{v6}c1 and s4 = {v1, v2, v3, v5, v6}c2 and s5 = {v0}c2 and for {c1, c2} : s6 = {v4}{c1,c2},
which are also the strongly connected components of the individual projections of G.

4.3 Approximated decomposition

In the worst case this SCC-family decomposition yields a different SCC for each con-
figuration and vertex, meaning we can no longer exploit the commonality in the VPG.
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The time complexity for such a decomposition (using Tarjan’s algorithm [22]) would
be O (|C| × (|V |+ |E|)). In Figure 4.4 we can see a VPG consisting of 4 vertices and
3 configurations, where all strongly connected components for the different configu-
rations are distinct. In fact, for any VPG with n configurations and n + 1 vertices,
where n ≥ 2, we can construct such a worst case scenario where for all configurations
all the connected components are distinct. Hence, it might be more interesting to
consider an approximation of this family-based SCC decomposition.

0
v0

1
v1

1

v2

1
v3

{c0}

{c0}

{c2}

{c2}

{c1}
{c0}

{c0}

{c2}

{c2}{c1}

{c1}

Figure 4.4: Example of a VPG where all strongly connected components in the SCC-
family are distinct.

Example 4.3.1. Given the VPG from Figure 4.4 we have the following sets of
strongly connected components for the different configurations: {v0, v1}, {v2, v3} for
configuration c0, in case of c1 we have {v0, v2}, {v1, v3} and for c2: {v0, v3}, {v1, v2}.

Instead of computing this SCC-family exactly, we propose the concept of an approx-
imation of an SCC-family.

Definition 4.3.1. (SCC-Family Approximation). Given a VPG G = (V,E,Ω,P ,C, θ),
C ∈ C and C̃ ∈ C such that C ⊂ C̃. We say that C̃ (over)approximates C iff for all
v, v′ ∈ V we have that v ≡ v′ in G|C̃.

Instead of computing the SCC decomposition exactly, we only compute the approxi-
mated SCC decomposition for some C̃ ∈ 2C.

Note that the coursest SCC approximation we can compute is that of the game G|C.
This approximation disregards any of the edge guards and computes the connected
components in the entire VPG. Although it is not exploiting any information about
the different configurations, it is computationally inexpensive and easy to compute
(using for instance Tarjan’s algorithm [22] running in O(|V |+ |E|)).
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C
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Figure 4.5: VPG with C = {c1, c2} and strongly connected components {v0, v1, v2},
{v3, v4} and {v5, v6}.

Using this coursest approximation, we can decompose a VPG into its strongly con-
nected components. Algorithm 2 on the following page describes such an algorithm
for solving VPGs with tight SCC integration. Note that the algorithm is very sim-
ilar to the recursive algorithm we described in Chapter 3.2. On line 8 we compute
the SCC decomposition of the VPG, where we only include vertices if %(v) 6= ∅
and includes edges if %(v) ∩ θ(v, w) ∩ %(w) 6= ∅. Next we compute the restriction
ζ = λv ∈ V.{c | c ∈ %(v) ∧ v ∈ T}, where ζ(v) = ∅ if v 6∈ T and ζ(v) = %(v)
otherwise. Because of this, the restriction ζ(v) is closed under reachability: for each
vertex v ∈ vert(ζ) there does not exist a vertex w ∈ V ∧ w 6∈ vert(ζ) such that
(v, w) ∈ E and %(v)∩ θ(v, w)∩ θ(w) = ∅. Because of being closed under reachability,
if player α has a winning strategy for vertex v and a configuration c ∈ C in the game
G restricted to ζ, the player will also have this strategy in the entire game G.

Next we solve the game G restricted to ζ similarly as we would in Zielonka’s al-
gorithm: removing all vertices with minimum priority and recursively solving the
smaller game. Lastly, any vertices and configurations which were not in any of the
terminal components are solved on line 26.

Example 4.3.2. Let G be the VPG as shown in Figure 4.5. The game G has three
strongly connected components: {v0, v1, v2} and the terminal components {v3, v4}
and {v5, v6}. The vertices in {v3, v4} are won by for configurations C the odd player
(by the lowest priority 3) and by extension of the featured attractor the vertices
{v0, v1, v2} are also won by the odd player for configurations {c1}. Similarly, the
vertices {v5, v6} are won by the even player for configurations C (by lowest priority
4) and by extension of the featured attractor the vertices {v0, v1, v2} are also won by
the even player for configurations {c2}. As all vertices and configurations have been
solved, the algorithm can stop.
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In Example 4.3.2 on the preceding page we informally give an example how Algorithm
2 solves a VPG using SCC decomposition. In the example the recursive algorithm
with SCC integration requires two recursive calls (both on line 15) and one SCC
decomposition to solve the game. If we compare this to Zielonka’s recursive algorithm
from page 10 – which requires 14 recursions in total – we conclude that for certain
VPGs it can be beneficial to do this SCC decomposition, instead of the original
Zielonka’s algorithm.

Algorithm 2: Zielonka’s recursive algorithm with SCC decomposition inte-
gration.

1 Zielonka-SCC(G = (V,E,Ω,P , θ), %)
2 (W0

λ,W1
λ)← (∅λ, ∅λ)

3 if % = ∅λ then
4 return (W λ

0 ,W
λ
1 )

5 else
6 V ′ ← {v ∈ V | %(v) 6= ∅}
7 E ′ ← {(v, w) ∈ E | %(v) ∩ θ(v, w) ∩ %(w) 6= ∅}
8 S ← SCC Decomposition(V ′, E ′)
9 foreach terminal SCC T ∈ S do

10 ζ ← λv ∈ V.{c | c ∈ %(v) ∧ v ∈ T}
11 p← pr↓(G, ζ)
12 α← p mod 2
13 Uλ ← λv ∈ V.{c | c ∈ ζ(v) ∧ Ω(v) = p}
14 Aλ ← α-FAttr(ζ, Uλ)

15 (W λ
0
′
,W λ

1
′
)← Zielonka-SCC(G, ζ \ Aλ)

16 if W λ
ᾱ
′
= ∅λ then

17 (W λ
α
′′
,W λ

ᾱ
′′
)← (Aλ ∪W λ

α
′
, ∅λ)

18 else

19 Bλ ← ᾱ-FAttr(ζ,W λ
ᾱ
′
)

20 (W λ
0
′
,W λ

1
′
)← Zielonka-SCC(G, ζ \Bλ)

21 (W λ
α
′′
,W λ

ᾱ
′′
)← (W λ

α
′
, Bλ ∪W λ

ᾱ
′
)

22 end

23 (W λ
0 ,W

λ
1 )← (W λ

0 ∪ α-FAttr(%,W λ
0
′′
),W λ

1 ∪ α-FAttr(%,W λ
1
′′
))

24 %← % \ (α-FAttr(%,W λ
0
′′
) ∪ α-FAttr(%,W λ

1
′′
))

25 end

26 (W λ
0
′
,W λ

1
′
)← Zielonka-SCC(G, % \ (W λ

0 ∪W λ
1 ))

27 return (W λ
0 ∪W λ

0
′
,W λ

1 ∪W λ
1
′
)

28 end

29 end
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4.4 Correctness

We will now show the correctness of Algorithm 2 on the preceding page. To prove
its correctness, we will use a similar approach to the proof of Zielonka’s algorithm for
VPGs from [1]. First, we observe that a terminal component T ∈ S of the (total by
Lemma 2) graph (V ′, E ′) where V ′ = vert(%) and E ′ = {(v, w) ∈ E | %(v)∩ θ(v, w)∩
%(w) 6= ∅} is closed under reachability, i.e. for all v ∈ T there does not exist w ∈ V \T
such that (v, w) ∈ E and that any play that enters T never leaves T .

Theorem 1. Let G = (V,E,Ω,P , θ) be a variability parity game and % : V → 2C

a restriction such that G is total with respect to %. Zielonka-SCC(G, %) returns
mappings W λ

0 ,W
λ
1 : V → 2C such that for all v ∈ V , W λ

0 (v) ∪W λ
1 (v) = %(v) and for

each c ∈ W λ
α (v) player α has a winning strategy from v for configuration c.

Proof. Let |%| =
∑
v∈V
|%(v)|. We will prove the theorem by induction on |%|.

Base Case: We have % = ∅λ. Therefore, by lines 2,3 and 4 of Algorithm 2, Zielonka-SCC(G, %)
returns W λ

0 = ∅λ and W λ
1 = ∅λ which trivially satisfy the statement.

Inductive Step: For our induction hypothesis, we assume that the theorem holds for all %′ such
that |%′| < |%|. We have that % 6= ∅λ and by our assumption G is total with
respect to %, and therefore both V ′ and E ′ are non-empty. As the graph (V ′, E ′)
is non-empty, so is its decomposition, and therefore we have at least one smallest
element in the decomposition S, which is terminal. First, note that T ∈ S from
line 9 is a terminal component of (V ′, E ′) (lines 6 and 7) and therefore closed
under reachability in G restricted to %. Next, ζ is the restriction where we only
include vertex v ∈ V and their configuration %(v) if v ∈ T , as per line 10. Next,
we observe that G is total with respect to restriction ζ, since G is total with
respect to % and for all vertices in v ∈ vert(ζ) and their configurations ζ(v) we
have that there exists an edge (v, w) such that w ∈ vert(ζ) (otherwise % would
not be a total restriction or T would not be a terminal SCC of (V ′, E ′)). Now
let Uλ ⊆ ζ be the restriction containing the configurations ζ(v) only if v has
minimum priority in the game, and ∅ otherwise (line 13). Next by Lemma 1
we note that Aλ ⊆ ζ and since Aλ is an α-maximal restriction, by Lemma 2 G
restricted to ζ \Aλ is also total. By our induction hypothesis W λ

0
′
,W λ

1
′

on line
15 are mappings that satisfy the statement. Now we have two possible cases:

Case 1) The opponent does not have a winning strategy for any of the vertices -
and their configurations - in ζ \Aλ. Since player α has a winning strategy
for all vertices v ∈ vert(ζ \ Aλ) and all their configurations c ∈ (ζ \
Aλ)(v), they also have a winning strategy for all vertices v ∈ vert(Aλ)
and configurations in Aλ(v), since for all configurations the play either
stays in vertices of vert(Aλ) forever, or they eventually leave vert(Aλ) to
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a vertex in vert(ζ\Aλ) which is also won by player α. Hence the mappings
Aλ ∪W λ

α
′

and ∅λ are mappings such that for each player and vertex v we
have that W λ

α (v) contains the set of configurations such that player α has
a winning strategy from v.

Case 2) The opponent has a winning strategy for some of the vertices and configu-
rations in ζ \Aλ. Since some of the vertices and configurations in Aλ might
be won by the opponent, we recompute the winning sets, this time remov-
ing all vertices in ᾱ-FAttr(%,W λ

ᾱ
′
), since player ᾱ has a winning strategy

for all configurations and vertices in W λ
ᾱ
′
. Again, by our induction hypoth-

esis and Lemma 2, ζ \Bλ is a total restriction and the mappings W λ
α
′
,W λ

ᾱ
′

contain for each player and vertex in vert(ζ) the set of configurations for
which the player has a winning strategy from v. For any vertex and con-
figuration in Bλ that was not in W λ

ᾱ
′

we have a winning strategy: forcing
the play towards vertices in W λ

ᾱ
′
. Hence the mapping Bλ ∪W λ

ᾱ
′

contains
for each vertex v ∈ vert(ζ) the set of configurations for which player ᾱ
has a winning strategy, and the same holds for W λ

α
′

and player α.

In both cases we get mappings W λ
0 and W λ

1 and since the restriction ζ is closed
under reachability, the player also has a winning strategy in the game G re-
stricted to %, since no play will ever leave the restriction ζ. Because of this,
any vertices and configurations in the featured attractor set of W λ

α
′′
, which is

computed on line 23, is also won by player α. Furthermore, if a vertex v and
configuration c was not in any of the restrictions ζ, it is either in the attractor
set of W λ

0
′′

or W λ
1
′′

in which case player even, respectively player odd, has a win-
ning strategy, or it is in the remainder of the game G restricted to %\(W λ

0 ∪W λ
1 ),

which is total by Lemma 2. By our induction hypothesis, the remainder of the
game solved on line 26.

We can conclude that Zielonka-SCC(G, %) returns mappings W λ
0 ,W

λ
1 for player even

and odd such that W λ
α (v) contains the set of configurations for which player α has a

winning strategy from vertex v.

4.5 Conclusions

We have introduced the concept of an SCC-family, which describes the strongly con-
nected components in a VPG. We have given an approach to solve VPGs using this
family-based decomposition into SCC-families and how to solve these decomposed
games and its correctness. Furthermore, we have defined the approximation of an
SCC-family and how to compute them. In the next section we will introduce a small
progress measures algorithm for variability parity games.
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Chapter 5

Small Progress Measures
In this section we will introduce a second algorithm for solving variability parity games
based on the small progress measures (SPM) algorithm as first proposed in [19]. The
algorithm discussed here is based on the SPM algorithm for variability parity games
as put forward in [12]. First we will briefly introduce the required notation and the
(non-deterministic) small progress measures algorithm from [12]. Next we describe
the required changes required to implement the algorithm. For easier reading we will
introduce an adapted version which is more in line with the notation throughout the
rest of this thesis.

5.1 Jurdziński’s Small Progress Measures

First, let m ∈ Nd be a d-tuple of non-negative integers, with d the maximum pri-
ority in a parity game G. When comparing d-tuples (<,≤,=, 6=,≥, >) we use the
lexicographic ordering. Furthermore, let <i,≤i,=i, 6=i,≥i, >i for some i ∈ N with
i < d be the lexicographic ordering applied to the first i + 1 integers in the tuple
m. For instance, we have (2, 3, 0, 1) > (2, 3, 0, 0) and (2, 3, 0, 1) =2 (2, 3, 0, 0), as
(2, 3, 0) = (2, 3, 0).

Definition 5.1.1. (Parity progress measure). Let G = (V,E,Ω,P) be a parity
game. A function % : V → Nd is a parity progress measure for G if for all (v, w) ∈ E
we have %(v) 1Ω(v) %(w) where 1Ω(v) is defined as:{

%(v) ≥Ω(v) %(w) if Ω(v) is even

%(v) >Ω(v) %(w) if Ω(v) is odd

Next, we define MG to be the following finite subset of Nd:

MG = [0]× [V 1]× [0]× [V 3]× · · · × [V d−1] with V p = |Ω−1(p)|
and [n] = {0, . . . , n}.

if d is even. If d is odd, we have [V d−2] × [0] at the end. So MG is a finite set of
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d-tuples such that we have zeros on the even positions, and non-negative integers on
the odd positions i which are bounded by the amount of vertices with priority d− i.

We define the set M>
G = MG ∪{>}, where > is the largest element in M>

G , i.e. for all
m ∈MG and i ∈ N we have that m <i >.

Next we define the Prog operation:

Prog(%, v, w) =

{
min{m ∈M>

G | m ≥Ω(v) %(w)} if Ω(v) is even

min{m ∈M>
G | m >Ω(v) %(w) or m = %(w) = >} if Ω(v) is odd

Lastly, we define the game parity progress measure.

Definition 5.1.2. (Game parity progress measure). A function % : V →M>
G is

a game parity progress measure if for all v ∈ V , we have:

� if v ∈ V0 then %(v) ≥Ω(v) Prog(%, v, w) for some (v, w) ∈ E, and

� if v ∈ V1 then %(v) ≥Ω(v) Prog(%, v, w) for all (v, w) ∈ E

Furthermore, with ||%|| we denote the set {v ∈ V | %(v) 6= >}.

We then have the following proposition from [19].

Proposition 1. Player even has a winning strategy for a vertex v ∈ V iff %(v) 6= >,
where % is the smallest game parity progress measure.

The proof of Proposition 5.1 is omitted here, but can be found in [19]. Next we will
describe how we can compute the smallest game parity progress measure.

First, we define an ordering v, and a family of Lift(·, v) operators for all v ∈ V , on
the set of functions V → M>

G . Given functions %, µ : V → M>
G , we define µ v % to

hold if µ(v) ≤ %(v) for all v ∈ V . This ordering relation v gives a complete lattice
structure on the set of functions V → M>

G . We write µ @ % if µ v % and µ 6= %. We
can now define the Lift(%, v) operator for v ∈ V as follows:

Lift(%, v)(u) =


%(u) if u 6= v

max{%(v),min(v,w)∈E Prog(%, v, w)} if u = v ∈ V0

max{%(v),max(v,w)∈E Prog(%, v, w)} if u = v ∈ V1

From this definition, it trivially follows that the Lift(·, v) operator is monotone, as
it is always assigned a value of at least %(u). As we have a complete lattice and a
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monotone operator on that lattice, Lift(·, v), by the Knaster-Tarski theorem, there
must exist a least fixpoint.

In order to solve VPGs using parity progress measures, the authors from [12] define
the parity progress measure for each vertex v ∈ V and set of configurations c ∈ 2C for
the VPG G = (V,E,Ω,P , θ). By taking into account the edge guards of the VPG,
we can update the parity progress measure for each vertex in the VPG accordingly.

In Algorithm 3 we describe how to compute this smallest game parity progress mea-
sure for VPGs, which relies on the FPAttr, defined in Algorithm 4. As VPGs can
be played for multiple configurations, the algorithm tries to compute the game parity
progress measure (denoted with U) in the algorithm for each vertex and set of con-
figurations c ∈ 2C. Algorithm 3 and 4 are taken from [12] and have been adapted to
the VPG notation used throughout this thesis. With 0 we denote the smallest game
parity progress measure (0, 0, 0, 0, . . .).

Algorithm 3: Fixed point computation of the small progress measures al-
gorithm for VPGs.

1 Fpattr∗(G = (V,E,Ω,P , θ))
2 forall v ∈ V do
3 U(v)(C)← 0
4 end
5 repeat
6 Uold ← U
7 U ← max(U,Fpattr(U))

8 until U = Uold;
9 return U

10 end

Note that Algorithm 3 tries to compute the (smallest) fixed point of the game parity
progress measure by trying to lift the progress measures until we reach a stable point.
The computation of the minimum and maximum of the function U : V → 2C →M>

G
is omitted here, but is similar to Algorithm 6 on page 24 and can be found in [12].
The same holds for the reduce function on line 18 of Algorithm 4 and is required to
make sure the domain of U(v) is a partition of the configurations C. In Section 5.2
we will discuss a more efficient approach to computing the new function U .

Algorithms 3 and 4 compute the game parity progress measure for all vertices de-
pending on the old progress measure. This is not a very efficient way to compute
the progress measure in practice, as most changes will be localised to a group of ver-
tices, where most of the progress measures will stay the same. In the next section we
will describe the set of changes required to implement the small progress measures
algorithm for VPGs efficiently.
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Algorithm 4: Algorithm to lift the parity progress measures for all vertices
and configurations in the VPG G.

1 Fpattr(G = (V,E,Ω,P ,C, θ), U)
2 forall v ∈ V do
3 U ′(v)(C)← 0
4 forall w ∈ vE do
5 foreach ϕ ∈ dom(U(w)) do
6 Ψ← θ(v, w) ∩ ϕ
7 if Ψ 6= ∅ then
8 W (Ψ)← min{m ∈M>

G | m 1Ω(v) U(w)(ϕ)}
9 end

10 end
11 if P(v) = 0 then
12 U ′(v)← min(U ′(v),W )
13 else
14 U ′(v)← max(U ′(v),W )
15 end

16 end

17 end
18 U ′(v)← reduce(U ′(v))
19 return U ′

20 end

5.2 Adapted algorithm

In a VPG a player can have different strategies depending on the configuration for
which the game is played, therefore we also have to keep track of the progress measures
per configuration for all the vertices.

To keep track of these progress measures, in [12] the authors define a partial mapping
U : 2C →M>

G for each vertex v ∈ V . The domain of U partitions C and describes for
each set c ∈ dom(U) the parity progress measure associated with it, where a progress
measure m ∈M>

G is the same as that defined in the original algorithm.

In our version, we inverse this mapping such that each progress measure m ∈M>
G in

the (new) domain of U points to the set of configurations c ∈ 2C for which m is the
current progress measure. This makes it easier to ensure that each progress measure
m is only mapped to one set of configurations, by using a datastructure, such as a
hashmap, which only allows for unique values in the domain. In Algorithm 6 we also
ensure that this property holds.

In Algorithm 5 we describe our adapted version of the small progress measures algo-
rithm. Note that instead of computing the new progress measures for all the vertices
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like in the original algorithm as described in [12], we keep a queue Q of vertices which
can potentially be lifted to a higher progress measure. Because a progress measure
depends on the progress measures of its neighbours, we only have to recompute it for
a vertex v if one of its neighbours has had its progress measure lifted. Hence, when
we compute the progress measure for a vertex w and it has changed compared to the
previous value, we add all vertices v ∈ V , such that (v, w) ∈ E, to the queue Q to
be updated again. For the ordering of the queue we use a first in, first out (FIFO)
ordering. With (m 7→ c) with m ∈ MG> and c ∈ 2C we denote the partial function
s.t. (m 7→ c)(m) = c.

Algorithm 5: Adapted small progress measures algorithm for solving vari-
ability parity games.

1 Prog(G = (V,E,Ω,P ,C, θ))
2 U ← λv ∈ V.(0 7→ C)
3 Q← V
4 while Q 6= ∅ do
5 v ← Q.pop()
6 W (0)← C
7 forall w ∈ vE do
8 foreach mw ∈ dom(U(w)) do
9 Ψ← θ(v, w) ∩ U(w)(mw)

10 if Ψ 6= ∅ then
11 mv ← min{n ∈M>

G | n 1Ω(v) mw}
12 X(mv)← Ψ

13 end

14 end
15 if P(v) = 0 then
16 W ← min(W,X)
17 else
18 W ← max(W,X)
19 end

20 end
21 J ← U(v)
22 U(v)← max(U(v),W )
23 if J 6= U(v) then
24 Q← Q ∪ {t | t ∈ Ev}
25 end

26 end

27 end

In order to compute the maximum and minimum of two different functions U : M>
G →

2C and S : M>
G → 2C as described on lines 16 and 18 of Algorithm 5 we need to

compare all the progress measures we defined for the different sets of configurations
c ∈ rng(U) and c′ ∈ rng(S) and set the new progress measure of c ∩ c′ to the
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maximum, respectively minimum, of U−1(c) and S−1(c′). This procedure for the min
operation is described in Algorithm 6, the procedure of computing the max has been
left out as it is very similar.

Algorithm 6: Algorithm to compute the minimum of two functions U, S :
M>
G → 2C.

1 MIN (U : M>
G → 2C, S : M>

G → 2C)
2 foreach c ∈ rng(U) do
3 mw ← U−1(c)
4 W (mw)← W (mw) ∪ c
5 foreach c′ ∈ rng(S) do
6 ms ← S−1(c′)
7 if c′ ∩ c 6= ∅ then
8 if ms < W−1(c) then
9 W (ms)← c ∩ c′

10 end

11 end

12 end

13 end
14 return W

15 end

1
v0

1
v1

2
v2

3
v3

{c2}

{c1}

{c2}

{c1} {c2} C {c1}

Figure 5.1: A small Variability Parity Game with C = {c1, c2}. The smallest fixed
point of the parity progress measures can be found in Table 5.1 on the next page.

5.3 Example

In Figure 5.1 we can see an example of a variability parity game, with C = {c1, c2}.
We will now go over a few iterations of the small progress measures algorithm from
Algorithm 5.
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Initially our queue Q will contain all vertices in the parity game, i.e. [v0, v1, v2, v3].
The initial ordering of this queue is not particularly important, as long as each ver-
tex is considered at least once. After one iteration we have that the game parity
progress measure of vertex v0 is lifted from U(v0)(C) 7→ (0, 0, 0, 0) to U(v0)(C) 7→
(1, 0, 0, 0) and the queue is updated to [v1, v2, v3, v0]. Vertex v1 is then also lifted to
U(v1)(C) 7→ (1, 0, 0, 0). In case of vertex v2, we have that U(v2)({c2}) 7→ (1, 0, 0, 0)
and U(v2)({c1}) 7→ (0, 0, 0, 0), since the progress measure of U(v3)({c1}) 7→ (0, 0, 0, 0).

After several iterations, we get to the stable state as described in Table 5.1. As we
can see, the vertices v0, v1, v2, v3 for configuration {b} are won by player odd, as their
progress measure is set to >. The remainder of the vertices and their configurations
are therefore won by player even.

v0 {c1} (0, 2, 0, 0) v2 {c1} (0, 0, 0, 0)
{c2} > {c2} >

v1 {c1} (0, 1, 0, 0) v3 {c1} (0, 0, 0, 1)
{c2} > {c2} >

Table 5.1: Solution for VPG from Figure 5.1 on the previous page
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Chapter 6

Priority Promotion
In this chapter we will first informally describe the original priority promotion algo-
rithm for parity games, as first put forward in [2]. Afterwards we will describe the
adaptations needed to perform priority promotion on variability parity games and
provide an algorithm and prove its correctness.

6.1 Original Priority Promotion

The main concept of the priority promotion algorithm is that of an α-dominion, which
is the set of vertices from which ᾱ can not escape and is won by player α.

Definition 6.1.1. (α-dominion). Let G = (V,E,Ω,P) be a parity game. Further-
more, let U ⊆ V be a set of vertices in the parity game G. We say that U is an
α-dominion for α ∈ {0, 1} if there exists a strategy σα for player α such that for all
opponent strategies σᾱ and positions v ∈ U the induced play π has pr↓(π) ≡2 α, and
πi ∈ U for all i ≥ 0.

3

0 1

0

0

2 1

v1

v2 v3 v4

v5 v6 v7

Figure 6.1: A parity game with in green the 1-dominion D = {v4, v6, v7}.
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Example 6.1.1. Consider the parity game from Figure 6.1 and let U = {v4, v6, v7}.
U is a 1-dominion, since the odd player has a strategy for which all positions and
induced plays in U are won by player odd.

Next, we define the escape set for a set of vertices U , which is the set of vertices v ∈ U
through which player α can escape U .

Definition 6.1.2. (α-escape). Let G = (V,E,Ω,P) be a parity game, and U ⊆ V
a set of vertices. We define the escape set of U as follows:

escαG(U) ={v ∈ V | P(v) = α ∧ ∃w ∈ vE : w 6∈ U}
∪{v ∈ V | P(v) = ᾱ ∧ ∀w ∈ vE : w 6∈ U}

We say that a set of vertices U ⊆ V is open, respectively closed, iff escαG(U) 6= ∅ and
escαG(U) = ∅ respectively. A more general concept with respect to a dominion, is that
of a quasi α-dominion, which is a set of vertices which is won by player α if the play
does not leave the quasi dominion.

Definition 6.1.3. (Quasi α-dominion). Let G = (V,E,Ω,P) be a parity game
and α an arbitrary player. A non-empty set of positions Q ⊆ V is a quasi α-dominion
in G if there exists an α-strategy σα such that, for all ᾱ-strategies σᾱ and positions
v ∈ Q, the induced play π satisfies pr↓(π) ≡2 α, if πi ∈ Q for all i ∈ N, otherwise let
π≤i be the prefix such that πj ∈ Q for all j ≤ i and πi+1 6∈ Q, then πi ∈ escᾱG(Q).

Next, we introduce the α-region, which is a set of vertices in our parity game which
the opponent ᾱ can only leave through vertices of priority pr↓(G).

Definition 6.1.4. (Region). A quasi α-dominion R is an α-region if pr↓(G) ≡2 α
and all positions in escᾱ(R) have priority pr↓(G), which we call the priority of the
region.

The above definition ensures that if an opponent ᾱ can escape from an α-region, it
must visit a position in the region which has lowest priority in the game and has
parity α. Definition 6.1.4 allows for two operations crucial to priority promotion:
region merging and region extension, taken from [2]. We say a set of vertices R ⊆ V
is α-maximal in G if R = α-AttrG(R), where α-Attr is the original attractor set
definition, which does not take into account configurations.

Proposition 2. (Region Merging). Let G be a parity game, R ⊆ V an α-region,
and D ⊆ V an α-dominion in the subgame G ′ where we remove vertices in R. Then,
we have that R? = R ∪ D is an α-region in G. Moreover, if both R and D are
α-maximal in G and G ′ then R? is α-maximal in G as well.

Proposition 3. (Region Extension). Let G be a parity game and R? ⊆ V an
α-region in G. Then, R = α-AttrG(R

?) is an α-maximal region in G.
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With Proposition 2 and 3 we now have all the required ingredients for explaining the
priority promotion mechanism.

First, we define the region function r : V → N, which is a function that maps each
vertex v ∈ V to the priority of the region it belongs to, where the priority of a region
is the lowest priority of a vertex that is in the region. With Gr≈p for some p ∈ rng(r)
and region function r, we denote the subgame where we only include vertices from
{v ∈ V | r(v) ≈ p}, where ≈∈ {=,≤,≥, <,>}. Lastly, we require for each i ∈ rng(r)
that r−1(i) is a region in the subgame Gr≥i

The simplest region we can think of would be the set of all vertices with minimum
priority in the game G, i.e. R = {v ∈ V | Ω(v) = pr↓(G)}. From Proposition 3, we
have that the attractor set R? = α-attr(R) with α ≡2 pr↓(G), is an α-maximal region.
Now we have two possibilities: either R? is open in the game G, or R? is closed and
we have found a dominion.

In case R? is open in G, we can continue to look for a region in the subgame G\R?.
We can again construct a region by computing the attractor set of the set of vertices
R?′ = {v ∈ V \R? | Ω(v) = pr↓(G\R?)}. We can keep constructing and removing
α-maximal regions in this way until we eventually encounter a closed region.

Let G? be the current subgame we are considering. In case the region R? is not closed
in the entire game G but is closed in the subgame G?, we can promote the region R?.
Since escᾱG(R

?) 6= ∅, we have that there is at least one vertex v ∈ R? from which we
can escape to a vertex w in G. Since this vertex w is not present in the subgame G?,
it must belong to a region of lower priority. Furthermore, this region is also of the
same parity as region R?, as otherwise one of the previous regions we removed from
the game was not α-maximal (since we could have added v which would have been
attracted from vertex w). Since the region R? is closed in G?, this also means it is an
α-dominion in G?. Therefore we can promote R? to the priority of this lower region
and merge these regions by Proposition 2.

Let r0 be the original region function that for each vertex v ∈ V sets r0(v) = Ω(v).
Since each region of priority p consist of the set of vertices with priority p, it trivially
holds that all plays that stay in the region are won by player p mod 2 and that all
vertices in the escape set of the region have priority p. Next, we define the update
operator ] for a region function r and a partial region function r′ as follows:

(r ] r′)(v) =

{
r′(v) if v ∈ dom(r′)

r(v) otherwise
for all v ∈ V

The original priority promotion algorithm relies heavily on the search operation for
finding dominions. In the variability parity game setting we will take the same ap-
proach. However, instead of computing dominions for a set of vertices in the graph,
we will adapt it to compute the dominions for a restriction Uλ : V → 2C of the VPG
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graph. In the next section we will adapt the definitions used in priority promotion to
apply to VPGs.

6.2 Adaptations for priority promotion in VPGs

Recall from Chapter 3 that we have a variability parity game G = (V,E,Ω,P ,C, θ).
We will now introduce some notation for the remainder of the section.

When describing a restriction Uλ : V → 2C we use the following notation: with
Uλ = (v1 7→ c1, . . . , vi 7→ ci) for vj ∈ W ⊆ V , and cj ∈ 2C we denote the restriction
where Uλ(vj) = cj for all vj ∈ W and Uλ(wj) = ∅ for all wj ∈ V \W .

Next we define the featured α-escape, which is again a restriction describing the
vertices and configurations for which player α can leave the restriction Uλ in a single
step. We say that a vertex v can reach vertex w for a configuration c ∈ Uλ(v) with
v, w ∈ V iff c ∈ θ(v, w)

Definition 6.2.1. (Featured α-escape). Let Uλ : V → 2C be a restriction and
G = (V,E,Ω,P ,C, θ) a VPG restricted to % : V → 2C and Uλ ⊆ %, such that G is
total with respect to %. We define the featured α-escape as the set of configurations
per vertex in Uλ from which player α can leave Uλ.

escαG(%, U
λ)(v) ={c ∈ Uλ(v) | P(v) = α ∧ ∃w ∈ vE : c 6∈ Uλ(w) ∧ c ∈ θ(v, w) ∩ %(w)}

∪{c ∈ Uλ(v) | P(v) = ᾱ ∧ ∀w ∈ vE : c ∈ θ(v, w) ∩ %(w) =⇒ c 6∈ Uλ(w)}

We leave out the restriction % when it is clear and does not change in the context,
where we write escα(Uλ) instead of escαG(%, U

λ). We say that a restriction Uλ is
open, respectively closed, in G restricted to %, iff escαG(U

λ) 6= ∅λ or escαG(U
λ) = ∅λ

respectively.

Example 6.2.1. Consider the VPG from Figure 6.2 with Uλ = (a 7→ {c1, c2}, e 7→
C, c 7→ {c1}, i 7→ {c3}) and % = (a 7→ C, e 7→ C, c 7→ C, i 7→ C). The set of configu-
rations such that player even can force to leave the restriction Uλ is esc0(%, Uλ) =
(a 7→ ∅, e 7→ {c2}, c 7→ {c1}, i 7→ ∅). The odd player can stay in Uλ from vertex
a, since they can move to vertex e for both configurations c1 and c2. However, the
odd player must leave Uλ from vertex e for configuration c2, as the only option is to
move to vertex c, however c2 6∈ Uλ(c). For vertex c we can leave Uλ for configuration
c1, since we can move to vertex e or vertex i, and both c1 6∈ Uλ(e) and c1 6∈ Uλ(i).
Lastly, the even player can not force the odd player to leave Uλ from vertex i, since
the odd player can remain in Uλ.

Definition 6.2.2. (Featured α-dominion). Let G = (V,E,Ω,P ,C, θ) be a VPG
and % : V → 2C a restriction such that G is total with respect to %. Let Uλ : V → 2C

be a non-empty sub-mapping of %. We say that Uλ is a featured α-dominion iff there
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Figure 6.2: Running example of a variability parity game.

exists a strategy for player α such that for all ᾱ-strategies, player α has a winning
strategy for all vertices v ∈ vert(Uλ) and configurations c ∈ Uλ(v) in G restricted to
Uλ.

Example 6.2.2. Consider again the VPG from Figure 6.2. Consider the restriction
Uλ = (b 7→ {c3}, d 7→ {c3}, g 7→ {c3}, i 7→ {c3}) and % = (λv ∈ V.C). Since
esc0(Uλ) = ∅λ, and all infinite paths in (Uλ) are won by player odd, Uλ is a featured
1-dominion.

Lastly, we define the adaptations of the quasi α-dominion and α-region.

Definition 6.2.3. (Featured quasi α-dominion). Let G = (V,E,Ω,P ,C, θ) be
a VPG and % : V → 2C a restriction such that G is total with respect to %. Let
Qλ : V → 2C be a non-empty sub-mapping of %, Qλ is a quasi α-dominion iff there
exists a strategy for player α such that for all ᾱ-strategies player α has a winning
strategy for all vertices v ∈ vert(Qλ) and configurations c ∈ Qλ(v) in the game G
restricted to %, or the play leaves vertices or configurations of Qλ.

Furthermore, we define the concept of open and closed quasi α-dominions. We
say a featured quasi dominion Qλ is open or closed, if escᾱ(Qλ) 6= ∅λ respectively
escᾱ(Qλ) = ∅λ. Note that a closed featured quasi α-dominion is an α-dominion.

Definition 6.2.4. (Featured α-region). Again let G be a VPG and % : V → 2C a
restriction such that G is total with respect to %. Let Rλ : V → 2C be a non-empty
sub-mapping of % that is a quasi α-dominion in G restricted to %, we say Rλ is an
α-region if the lowest priority in G restricted to % is of parity α and all vertices in
v ∈ vert(escᾱ(Rλ)) have lowest priority Ω(v) = pr↓(G, %).

Example 6.2.3. Consider the VPG from Figure 6.2. Take Rλ = (a 7→ C, i 7→
{c1, c2}). Rλ and % = (λv ∈ V.C)is an open 0-region, since the plays that remain in
Rλ (none) are won by player 0 and esc1

G(%,R
λ) = (a 7→ C) and Ω(a) = 0 ≡2 0.
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Next, we define region merging and extension for VPGs as follows.

Proposition 4. (Region Merging) Let G be a VPG, % : V → 2C a restriction such
that G is total with respect to %, Rλ : V → 2C an α-maximal region such that Rλ

is a sub-mapping of % and Dλ : V → 2C an α-dominion in the game G restricted to
% \ Rλ, which is total according to Lemma 2. Then R? = Rλ ∪Dλ is an α-region in
G restricted to %. Moreover, if both Rλ and Dλ are α-maximal in G and G restricted
to % \Rλ respectively, then R? is α-maximal as well.

Proof. To show that R? is still an α-region, we will have to show that R? is (i) a
quasi α-dominion and (ii) the minimum priority p in G is of parity α and for all
v ∈ vert(escᾱG(R

?)), v has minimum priority p.

Let σα be the combined strategy of player α for region Rλ and dominion Dλ, and σᾱ
be the opponent strategy for Rλ and Dλ. We will show that for all v ∈ vert(R?) the
induced play π is won by player α if it remains in R?, or the vertices in vert(escᾱG(R

?))
have priority pr↓(G). We consider the following cases:

� π always stays in Dλ. As Dλ is an α-dominion, the play π will be won by player
α.

� π always stays in Rλ. As Rλ is an α-region, π will also be won by player α.

� π goes through vertices of Rλ and Dλ infinitely often. As π must leave Rλ

infinitely often, it must also pass through a vertex in escᾱG(%,R
λ) infinitely

often. Since Rλ is an α-region all v ∈ vert(escᾱG(R
λ)) must have priority

pr↓(G) and are of parity α, which implies that π is won by α.

� π eventually leaves R?. As Dλ is an α-dominion in G restricted to % \ Rλ, the
play π is only able to leave Dλ through a vertex in the restriction Rλ. Hence
escᾱG(R

?) ⊆ escᾱG(R
λ). As all vertices v ∈ vert(escᾱG(R

λ)) have priority pr↓(G)
and parity α, v ∈ vert(escᾱG(R

?)) must have priority pr↓(G) of parity α as well.

As we have shown that R? is a quasi α-dominion and that the lowest priority p is of
parity α and all vertices in vert(escᾱG(%,R

?)) have priority p, we can conclude that
R? is an α-region.

To prove that R? is α-maximal if Rλ and Dλ are α-maximal, suppose that Rλ and
Dλ are α-maximal, and R? is not α-maximal. This means that there exists a vertex
v 6∈ vert(R?) from which player α can force a play into R?. As R? = Rλ∪Dλ, v enters
R? through a vertex w, where either w ∈ vert(Rλ) or w ∈ vert(Dλ). However, this
contradicts the maximality of Rλ or Dλ. Hence by contradiction, we have that R? is
also α-maximal.

Proposition 5. (Region Extension) Let G be a game restricted to % and Rλ ⊆ %
an α-region in G. Then R? = α-FAttr(%,Rλ) is an α-maximal α-region in G restricted
to %.
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Proof. Since Rλ is an α-region in G, we have that the minimum priority p in G must
be of parity α. Furthermore, let σα be the combined strategy of player α for region
Rλ and σᾱ be the opponent strategy in R?. Now, for all opponent strategies and
vertices v ∈ vert(R?) the play π we have that either:

� π remains in R? forever. As R? = α-FAttr(%,Rλ) the play π will eventually
reach region R?. As Rλ is an α-region, the play π will be won by player α.

� π eventually leaves regionR?. AsR? = α-FAttr(%,Rλ) we have that escᾱG(R
?) ⊆

escᾱG(R
λ) since escᾱG(R

λ) \Rλ = ∅λ as otherwise a vertex v would not be in the
attracted set R? \Rλ. Since Rλ is an α-region, all vertices v ∈ vert(escᾱG(R

λ))
have lowest priority p in G and are of parity α. Therefore, the same holds for
all vertices v ∈ vert(escᾱG(R

?)).

In both cases R? is still an α-region. Lastly, it trivially holds that R? is α-maximal,
since R? = α-FAttr(%,Rλ).

This gives us all the concepts required to describe the priority promotion algorithm,
which we will describe in the next section.

6.3 A Priority Promotion Algorithm for Variabil-

ity Parity Games

In the previous section we adapted the concepts required for the priority promotion
algorithm to VPGs. In this section we will introduce some auxiliary concepts which
are required for the algorithm (but are not interesting outside the priority promotion
algorithm components), and lastly the priority promotion algorithms.

First, we generalise region functions r to VPGs as follows: let G be a VPG restricted
to %, such that G is total with respect to %. Then r : V → 2C → N is the region
function, where we now require that for all i ∈ rng(r) we have that the restriction
r−1(i) is a region in G restricted to % and that dom(r(v)) is a partition of the set %(v),
for all v ∈ V . Furthermore, we say that a region function r is maximal below p for
some p ∈ rng(r) iff for all q ∈ rng(r) such that q < p the restriction r−1(q) is an
α-maximal region, with α = q mod 2. Lastly, we use the notation Gr≤p to denote

the game G restricted to % =

(⋃
i≤p

r−1(i)

)
. Hence we denote the escape set of a

restriction Uλ ⊆ % as escαG≤p(U
λ) = escαG(%, U

λ). The region function r is used to
restrict the game G to the subgame we are using, as well as containing all information
about the regions in the game.
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When the region is open in the entire game, but closed in the subgame, the opponent
can escape to a region with the best escape priority. We define bepαr (Aλ) as the
function that returns the highest priority (according to the region function r) of the
set of vertices that player α can escape restriction Aλ from, formally: bepαr (Aλ) ,
max{n ∈ rng(r) | ∃(v, w) ∈ E : Aλ(v) ∩ θ(v, w) 6= ∅ ∧ Aλ(v) ∩ θ(v, w) ⊆ r−1(n)(w)}.

We again use the notation r0 to denote the ‘original’ region function, which for a
VPG restricted to % is defined as r0(v)(%(v)) = Ω(v) for all v ∈ V . Again, since each
region of parity p consists of all vertices with parity p, each restriction in r0 is trivially
a region. We say a region function is a partial region function if there exists a vertex
v ∈ V and configuration c ∈ %(v) for which ¬∃C ∈ dom(r(v)) : c ∈ C. Let r≤m denote
the region function r restricted to the largest domain such that for all v ∈ dom(r≤m)
and C ∈ dom(r≤m(v)) we have r≤m(v)(C) ≤ m. Similarly we can define the restricted
functions r<m, r>m and r≥m, which are all partial region functions.

We use the operator ] to merge the region functions r0 and r≤p
?

on line 14 of Algo-
rithm 7. First, let r be a region function and r′ a partial region function. For each
v ∈ r let C(v) = dom(r′(v)) ∪ {C ∈ 2C | ∃C ′ ∈ dom(r(v)) : C = C ′ \

⋃
C′′∈dom(r′(v))C

′′}.
We then define the update function ], for all v ∈ V and C ∈ C(v) as follows:

(r ] r′)(v)(C) =

{
r′(v)(C) if C ∈ dom(r′(v))

r(v)(C ′) if C 6∈ dom(r′(v))for the unique C ′ such that C ⊆ C ′

Lastly, we use the notation r[Uλ 7→ i] for a sub-mapping Uλ of % and i ∈ rng(Ω) to up-
date the region function r, formally r[Uλ 7→ i] = r]

(
λv ∈ {u ∈ V | Uλ(u) 6= ∅}.(Uλ(v) 7→ i)

)
.

In Algorithm 8 we can see the adapted priority promotion algorithm for VPGs, and
Algorithm 7 describes how to find a region in the game G. In Algorithm 8, Uλ is
the restriction that contains for each vertex v ∈ V the set of configurations for which
we still need to find a solution. We then find a dominion in the game G restricted
to Uλ and add the dominion to the winning set of player even or odd, until we have
solved the entire game. Algorithm 7 uses the region function to check if the region of
priority p that we are currently considering is open or closed in the entire game G and
the restricted game Gr≥p respectively. Using region merging and region extension, we
ensures that r is maximal below p until we find a dominion for player α.
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Algorithm 7: VPG Dominion-searcher

1 searchDominionVPG (G = (V,E,Ω,P ,C, θ), r, p)
2 α← p mod 2
3 R← r−1(p)
4 R? ← α-FAttr(Gr≥p , R)
5 if escᾱG(R

?) = ∅λ then
6 Dλ ← α-FAttr(Gr, R?)
7 return (α,Dλ)

8 else
9 if escᾱG

r≥p
(R?) 6= ∅λ then

10 r∗ ← r[R? 7→ p]

11 p∗ ← min{n ∈ rng(r) | r∗−1
(n) 6= ∅λ ∧ n > p}

12 else
13 p∗ ← bepᾱr (R?)

14 r∗ ←
(
r0 ] r≤p∗

)
[R? 7→ p?]

15 end
16 return searchDominionVPG(G, r∗, p∗)
17 end

18 end

Algorithm 8: VPG Priority Promotion

1 Priority Promotion G = (V,E,Ω,P ,C, θ)
2 (W0,W1)← (∅λ, ∅λ)
3 Uλ ← (λv ∈ V.C)
4 while Uλ 6= ∅λ do
5 p← min{Ω(v) | v ∈ vert(Uλ)}
6 r ← λv ∈ V.(Uλ(v) 7→ Ω(v))
7 (α,Dλ)← searchDominionVPG(G, r, p)
8 (Wα)← Wα ∪Dλ

9 Uλ ← Uλ \Dλ

10 end
11 return (W0,W1)

12 end

6.3.1 Early termination of dominion search

The dominion-searcher as described earlier only returns a dominion if it is closed in
the entire game G. This requires that escᾱG(R

λ) = ∅λ, in other words, there is no
configuration such that player ᾱ can force the play to leave the region Rλ. This
means that if the region is not closed, we first need to promote or solve the vertices
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Figure 6.3: Early termination of a region of priority 6 that contains vertices v0, v1 for
the set of configurations {c1, c2, c3}.

with higher priorities before we can return the region Rλ.

Consider the situation as illustrated in Figure 6.3. Let G be total with respect to % =
(v0 7→ C, v1 7→ C, v2 7→ C, v3 7→ C, . . .). We have a region Rλ = (v0 7→ {c1, c2, c3}, v1 7→
{c1, c2, c3}, v2 7→ ∅, v3 7→ ∅, . . .) of priority 6. The region is not closed, as esc1

G =
(v0 7→ {c2}), and we will continue to look for a dominion in the game G restricted
to % \ Rλ. This means we will only be able to solve the aforementioned region Rλ if
the vertex of priority 7 with configuration c2 is removed from the game. However,
the region Rλ = (v0 7→ {c1, c3}, . . . ) is closed. Instead of continuing the search, we
can compute the smallest set of configurations such that the region is closed in the
subgame G. We can do this according to the following set of rules:

Let Rpr↓(Rλ)(v) =

{
Rλ(v) if Ω(v) = pr↓(Rλ)

∅ if Ω(v) 6= pr↓(Rλ)

Then we compute the new region as follows:

Rλ′ =α-FAttr
(
G, Rpr↓(Rλ) \ escᾱG(Rλ)

)
As this smaller region is still a valid dominion in the VPG, removing it earlier does
not have an impact on the rest of the game.

There are cases where early termination might require more searches; respectively less
searches. Consider again for instance the VPG from Figure 6.3. When we terminate
our search early, we will have to search the VPG three times before we solved it
entirely, namely: the region of priority 6, region of priority 7 and lastly the region
of priority 8 consisting of only vertex v3. Compare this with the amount of searches
when not terminating early, in which case we will only need two searches: the first
dominion returned will be that of priority 7 and lastly the region of priority 6, with
the region of priority 8 promoted to priority 6 during the search.
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6.3.2 Escape-set approximation

In Section 6.2 we discussed the α-escape set for a restriction in a VPG. In the priority
promotion algorithm the escape set is computed to determine whether a region is open
or closed in the entire game G and subgame Gr≥p . In both cases we are not interested
in the exact escape-set, only whether it is empty or not. In Algorithm 9 we describe
how to more efficiently find if the escape set in the subgame is open in the subgame
Gr≥p . Since Rλ is a region, by definition, the only vertices which we can leave through
will be of priority p = pr↓(Gr≥p) and we can restrict the search to vertices of priority
p. Note that we can stop our search as soon as we have found a vertex through which
we can leave the region.

When computing the escape-set of Rλ in the entire game G, and we already know
that the region is closed in the subgame G≥pr , we only have to look if there is a vertex
owned by the opponent that can leave the region Rλ. We don’t have to consider
vertices that belong to the owner of the region Rλ since any vertices owned by player
α will not be able to leave the region either, as they would have been attracted in an
earlier subgame. The computation of the bep and finding whether it is open or closed
can then be combined, similarly as described in Algorithm 9 where we keep track of
the best escape priority throughout the search.

Algorithm 9: Escape set approximation for a region Rλ of priority p.

1 Escape(G = (V,E,Ω,P ,C, θ), Rλ, p)
2 α← p mod 2
3 P ← {v ∈ vert(Rλ) | Ω(v) = p}
4 for v ∈ P do
5 if P(v) = α then
6 esc← ∅
7 for w ∈ vE do
8 esc← esc ∪ (Rλ(v) ∩ θ(v, w) ∩ %(w))

9 esc← esc \
(
Rλ(v) ∩ θ(v, w) ∩Rλ(w)

)
10 end
11 if esc 6= ∅ then
12 return True

13 else if P(v) = ᾱ then
14 for w ∈ vE do
15 if

(
Rλ(v) ∩ θ(v, w) ∩ %(w)

)
\Rλ(w) 6= ∅ then

16 return True

17 end

18 end

19 end
20 return False

21 end
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Algorithm 9 returns if the escape set of region Rλ of priority p is open or closed in
the restricted game G≥pr .

6.3.3 Example

In Table 6.1 we can see an example of the dominion search on the game illustrated
in Figure 6.2. A downward arrow denotes a region that is open in its respective
subgame, an upward arrow denotes a region being promoted, and a star denotes the
search finding a closed region (and therefore also a dominion) in the entire game G.
The index on the left indicate the priority of the region, the numbers in the second
column indicate when a search has been reset. Note that when describing a region in
Table 6.1 we usually leave out the elements in the domain which map to the empty
set, except to explicitly indicate that that vertex already belongs to a region with
higher priority.

The first region returned by the searchDominionVPG function is the region (a 7→
C, i 7→ {c1, c2}, b 7→ {c1, c2}, d 7→ {c1, c2}, g 7→ {c1, c2}) of parity even and priority 0,
which is open. Next we find the region of priority 1, which is just (b 7→ {c3}), and
compute its maximal α-region in the subgame where we remove the regions of higher
priority, which is (b 7→ {c3}, h 7→ {c3}, f 7→ {c3}). This search continues until we
find the closed region of parity 2 (f 7→ {c1, c2}, h 7→ {c1, c2}, e 7→ {c3}), which is not
closed in the entire game G but the only opponent move exiting the region is to the
region of priority 0 which has the same parity, thus the priority can be promoted.
This continues until we find the dominion Dλ = (b 7→ {c3}, h 7→ {c3}, f 7→ {c3}, d 7→
{c3}, i 7→ {c3}, g 7→ {c3}) of priority 1. As Dλ is a 1-dominion, we also know that
every vertex v ∈ vert(Dλ) is won by player 1 for configuration(s) Dλ(v). The search
for dominions then continues in the game G restricted to % \Dλ.

6.4 Correctness

Next we will prove the correctness of our searchDominionVPG function. In order to
do this, let us first introduce the state space of our search, which is adapted for VPGs
from [2].

Definition 6.4.1. (State Space) We define the state space of our dominion search
as the tuple SG = 〈SG,≺G〉 where its components are defined as follows:

1. SG ⊆ R× PrG, where R is the set of all region functions and PrG = rng(Ω) the
set of all priorities in G. A state s = (r, p) is composed of a region function r
and a priority p such that r is maximal below p and p ∈ rng(r).
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1

6 (a 7→ C, i 7→ {c1, c2}, b 7→ {c1, c2}, d 7→ {c1, c2}, g 7→ {c1, c2}) ↓

5 (b 7→ {c3}, h 7→ {c3}, f 7→ {c3}) ↓

4 (c 7→ C, e 7→ {c1, c2}) ↓

3 (d 7→ {c3}) ↓

2 (f 7→ {c1, c2}, h 7→ {c1, c2}, e 7→ {c3}) ↑6

2

6 (a 7→ C, i 7→ {c1, c2}, b 7→ {c1, c2}, d 7→ {c1, c2}, g 7→ {c1, c2}, f 7→ {c1, c2},
h 7→ {c1, c2}, e 7→ {c3}) ↓

5 (b 7→ {c3}, h 7→ {c3}, f 7→ {c3}) ↓

4 (c 7→ C, e 7→ {c1, c2}) ↓

3 (d 7→ {c3}) ↓

1 (i 7→ {c3}, h 7→ ∅, g 7→ {c3}) ↑3

3
...
3 (d 7→ {c3}, i 7→ {c3}, h 7→ {c3}, g 7→ {c3}) ↑5

4
...
5 (b 7→ {c3}, h 7→ {c3}, f 7→ {c3}, d 7→ {c3}, i 7→ {c3}, g 7→ {c3})?

Table 6.1: Dominion search in VPG of Figure 6.2 on page 30.
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2. For any two states s1 , (r1, p1), s2 , (r2, p2) ∈ SG, it holds that s1 ≺ s2 iff either
(a) there exists a priority q ∈ rng(r1) with q ≤ p1 such that (a.i) r<q1 = r<q2 and
(a.ii) r−1

2 (q) ⊂ r−1
1 (q), or both (b.i) r1 = r2 and (b.ii) p1 > p2 hold.

Note that without this state space we would not be able to formally reason about our
search, as neither the region function r nor the priority p on their own are strictly
increasing in the search. However, before we can continue, we will have to show that
our new state space is a well-founded partial ordering w.r.t ≺G.

Lemma 5. The state space S = 〈SG,≺G〉 is a well-founded partial order w.r.t ≺G.

The proof of Lemma 5 is omitted here, as it is very similar to the original well-
foundedness proof from the original paper on priority promotion [2]. For complete-
ness the proof is included in Appendix A. With this ordering we can now prove the
correctness of our searchDominionVPG function. Note that, although not explicitly
mentioned in the proof, every restricted subgame Gr≤p in which we are searching for
a restriction is total. Since r is α-maximal below p, every restriction r−1(p′), with
p′ < p, we exclude from the restricted game, is α-maximal hence Gr≤p is total by
Lemma 2.

Theorem 2. searchDominionVPG(G, r, p) with (r, p) ∈ SG returns an α-maximal
dominion in game G and the player α ∈ {0, 1} that it belongs to.

Proof. Since (r, p) ∈ SG we know that searchDominionVPG(G, r, p) will terminate,
since all subsequent calls to searchDominionVPG are with states (r′, p′) such that
(r′, p′) ≺G (r, p) and there are only a finite amount of states in SG. Hence it remains
to prove that it returns an α-maximal dominion in G. We will prove our claim by
induction on the well-founded partial order S.

Base case Let s = (r, p) be a smallest element in SG, i.e. ¬∃s′ ∈ SG : s′ ≺G s. For the sake
of contradiction, assume that R? = α-FAttr(%, r−1(p)) is an open α-region for
α = p mod 2. We now have two cases:

1) R? is open in the game Gr≥p . This means there exists a region of priority
q > p such that for some v ∈ vert(escᾱG

r≥p
(R?)) there exists w ∈ vE such

that escᾱG
r≥p

(R?)(v) ∩ θ(v, w) ∩ r−1(q)(w) 6= ∅. However, this contradicts

our assumption that s is a smallest element, as we now have a smaller
state s′ ≺G such that s′ = (r′, p′) with p′ = min{n ∈ rng(r) | r∗−1

(n) 6=
∅λ ∧ n > p} and r′ = r[R? 7→ p]. Observe that s′ is a state in SG as by our
assumption r is a region function maximal below p, since R? is α-maximal,
r′ is maximal below p′.

2) R? is closed in the subgame Gr≥p . Since R? is open in G, there must
be some region(s) of priority p′ < p such that we have a vertex v ∈
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vert(escᾱG(R
?)) such that there exists w ∈ vE such that escᾱG(R

?)(v) ∩
θ(v, w)∩ r−1(p′)(w) 6= ∅. Furthermore, the priority p′ of one such a region
has parity α, as otherwise we have a region in r that is not ᾱ-maximal,
as the vertex v and configuration(s) escᾱG(R

?)(v) ∩ θ(v, w) ∩ r−1(p′)(w)
would belong to that region of player ᾱ. By region merging R?′ = R? ∪
λv ∈ V.{c ∈ C | r(v)(c) = p′} is also an α-maximal region. However,
this contradicts our assumption that s is a smallest element, as we have
s′ = (r′ = r0 ] r≤p′ , p′) and there exists q ≤ p′ such that r′<q = r<q and
r−1(q) ⊂ r′−1(q), and therefore s′ ≺G s.

Inductive step Let s = (r, p) be an arbitrary state in SG such that ∃s′ ∈ SG : s′ ≺G s. As
our induction hypothesis, assume that searchDominionVPG(G, r′, p′) returns an
α-maximal dominion for all s′ = (r′, p′) ≺ s = (r, p). From lines 2 through 4 we
have that R? = α-FAttr(G≥pr , r−1(p)). We now have the following three cases:

escᾱG(R
?) = ∅ As R? is a closed α-maximal region, it is also an α-maximal dominion.

Hence searchDominionVPG(G, r, p) returns an α-maximal dominion in G.

escᾱ
G≥pr

(R?) 6= ∅ R? is open in the subgame G≥pr . On line 3 we assign R = r−1(p), hence

we have that r−1(p) ⊆ R? since R ⊆ R?. We can distinguish two possible
cases:

r−1(p) ⊂ R? Let q = p, we have r∗ = r[R? 7→ p] and r∗
<q

= r<q and r∗
−1

(p) =
r−1(p)∪R? and therefore r−1(q) ⊂ r∗

−1
(q) satisfying Definition 6.4.1.3(a).

As r is maximal below p, and r∗
−1

(p) = R? which is α-maximal, r∗ is
maximal below p∗, from Algorithm 7 line 11, with (r∗, p∗) ≺ (r, p).

r−1(p) = R? We have r∗ = r[R? 7→ p] = r. Furthermore, we have that p∗ > p, thus
satisfying Definition 6.4.1.4(b) . Again, as r is maximal below p, and
r∗
−1

(p) = r−1(p) = R?, which is α-maximal, r∗ is maximal below p∗,
with p? from Algorithm 7, line 11 and we have (r∗, p∗) ≺ (r, p).

In both cases above, by our induction hypothesis searchDominionVPG(G, r∗, p∗)
returns an α-maximal dominion in game G, therefore searchDominionVPG(G, r, p)
also returns an α-maximal dominion in G by Proposition 4.

escᾱ
G≥pr

(R?) = ∅ R? is closed in the subgame G≥pr . From the definition of the bep and the

fact that R? is closed in the subgame, it follows that p∗ < p, with p? from
Algorithm 7 line 13. Furthermore we have that r∗

−1
(p∗) = r−1(p∗) ∪ R?

according to line 14 in Algorithm 7. Clearly we have r−1(p∗) ⊂ r∗
−1

(p∗)
(as R? 6= ∅) and p∗ ∈ rng(r?).

As r is α-maximal below p, clearly it is also α-maximal below p∗. Further-
more, note that R? is also closed in G≥p∗r \ r−1(p∗) hence by Proposition
4 (Region Merging) r−1(p∗) ∪ R? is also an α-maximal region in G≥p∗r , r∗

is α-maximal below p∗ and by validity of the original region function r∗ is
also a valid region function.

We have (r∗, p∗) ≺ (r, p) and therefore by our induction hypothesis we have
that searchDominionVPG(G, r∗, p∗) returns an α-maximal dominion, and
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therefore searchDominionVPG(G, r, p) returns an α-maximal dominion in
G.

As we have shown our hypothesis holds for both the base case and inductive step,
we can conclude by induction on S that searchDominionVPG(G, r, p) returns an α-
maximal dominion in G.

6.5 Conclusions

In this section we have introduced the original priority promotion algorithm and have
shown how to adapt it to solve variability parity games and proved its correctness.
We described how to optimize determining whether the escape set of an α-maximal
region is open or closed and a different approach of searching for closed dominions in
a variability parity game using an early termination approach. In the next section
we will introduce self-loop elimination - a well-known pre-processing steps for parity
games - and adapt it to the VPG setting.
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Chapter 7

Self-loop elimination for Variability
Parity Games
Pre-processing is a step which is often performed before solving parity games [14,
21, 8]. When pre-processing a game, we transform the problem without affecting
the solution, often with the aim of decreasing the complexity of the problem. One
common pre-processing step is self-loop elimination. By removing parts of the parity
game before solving it, we can potentially speed up the computation time. Depending
on the parity and owner of a vertex with a self-loop, we can in some cases disregard
the loop entirely, or use the loop to solve part of the parity game.

First, let v be an arbitrary vertex with a self-edge (v, v) ∈ E with even priority
and owner. Therefore, we have a trivial strategy for player even to win this vertex:
always stay in this vertex by taking the self-loop. Because the lowest priority of the
resulting path occuring infinitely often will be even, the player has a winning strategy
for this vertex. Furthermore, note that the set of vertices with such a self-loop is also
a dominion for player even, since any play that enters one of the vertices will stay in
the dominion indefinitely, and is won by player even. All vertices in the even attractor
set of the dominion are won by player even, since player even can force the play to
enter the dominion.

Alternatively, the owner of the vertex v is player odd. If the vertex has any outgoing
edges we can remove the self-edge, as taking the self-edge would be a losing strategy
for player odd. In both cases we can narrow down the edges which will be in the
strategy for player even or odd, allowing us to remove edges which will not be taken
by either player.

In case of VPGs, we will also need to take into account the edge guards while elim-
inating self-loops. In Figure 7.1 we again have two vertices with self-loops. We will
now describe how to perform self-loop elimination on VPGs.
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0
{c1, c2}

{c2, c3}

(a) Vertex with a self-edge and even priority
and owner.

0
{c1, c2}

{c2, c3}

(b) Vertex with a self-edge and even priority
owned by player odd.

Figure 7.1: Self-loop elimination for a VPG, with C = {c1}.

Let G be a parity game that is total w.r.t restriction %. Again, in case the owner and
priority of the vertex are the same, as in Figure 7.1a, the owner of the vertex v ∈ V
with a self-edge (v, v) ∈ E and θ((v, v)) = {c2, c3} will have a strategy for winning the
vertex for configurations {c2, c3} (taking the self-edge). We can compute the featured
attractor for player even to the set of all vertices with such a self-edge, which are
also won by player even. Let Aλ be this featured attractor, we can remove it from
the game as it is won by player even. We can then continue solving the subgame G
restricted to % \ Aλ.

When the owner and the priority are not the same, we can still solve parts of the
game. Since taking the self-edge will never result in a winning strategy for player
odd, player even can only win from the vertex if the odd player is forced to take the
self-edge. Therefore, we can compute the configurations that are winning for player
even for the vertex as follows:

w(v) = θ(v, v) \
∑

w∈vE∧w 6=v

θ(v, w)

If we take all vertices v ∈ V with such a self-edge and their winning configurations
w(v), we can compute their featured attractor, Aλ, which is won by player even. We
again solve the subgame G restricted to % \ Aλ.

The same set of elimination rules can be applied to vertices with odd priority.

In the next section, we will perform experiments on all the algorithms proposed up
until now, comparing their computation time when solving parity games.

CHAPTER 7. SELF-LOOP ELIMINATION FOR VARIABILITY PARITY
GAMES
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Chapter 8

Experiments
We will perform experiments by comparing the solving times of the implementations
of the different algorithms as well as compare other metrics to gain more insight into
the performance of our implemented algorithms. In this chapter we will describe
in more detail our implementation and experimental setup in Section 8.1, our test
cases we used to run our different algorithms on and describe the methods we used
to generate our own random VPGs in Section 8.2, we present our results in Section
8.4 and lastly the discussion in Section 8.5.

8.1 Implementation

The algorithms and pre-processing method from Chapters 4,5,6 and 7 have been
implemented in C++14. The edge guards of VPGs are represented using the BDD
library BuDDy1. In the SPL setting the different products are the collection of
features that are enabled for that configuration or product. Since we are interested
in solving SPL model checking problems, we will also represent the configurations
in our VPG as a collection of features, which can usually be represented efficiently
with Binary Decision Diagrams (BDDs). The same code for parsing and printing
solutions of games is used as in [20], as well as the underlying representation of
variability parity games, to ensure that the different algorithms can be compared
fairly against the existing algorithms.

All of the implemented algorithms and scripts to perform the experiments are avail-
able on GitHub2).

The algorithms implemented are:

� Priority Promotion (with and without early termination),

� Small Progress Measures,

� Zielonka’s algorithm with tight SCC decomposition

1https://sourceforge.net/projects/buddy
2https://github.com/Dodecahedra/VPGSolvers
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Recall that the SCC Decomposition on VPGs only computes the SCCs without taking
into account the configurations, as described earlier in Chapter 4.

To ensure our implementations are correct, we compared the output of our algorithms
against the output of Zielonka’s algorithm for VPGs, as well as verified our solution
by comparing each projection against the output of the corresponding projected game
using Oink3 [10].

In the remainder of this chapter we will discuss the test cases we used when performing
our experiments, describe the results from our experiments and lastly discuss the
results. In Section 8.4.1 we compare the performance of the different algorithms on
the games generated in Section 8.2.1.

8.2 Test cases

We compare the aforementioned algorithms on the same set of VPGs as used in [20].
Sadly there are only a limited amount of VPGs available from an SPL setting. To
be able to compare our algorithms on a rigorous set of VPGs, we also generated our
own VPGs by adapting parity games generated using PGSolver4 [14].

8.2.1 Random Variability Parity Games

In order to create VPGs, we first generate parity games using the PGSolver tool,
which can generate three different classes:

Randomgames Randomgames are generated satisfying the given number of nodes, maximum
priority and a lower and upper bound on the number of outgoing edges for each
vertex. These games are usually the simplest.

Steadygames Similar to randomgames but tries to circumvent often used optimisations, such
as priority compression, and self-loop elimination and is better suited to test
the performance of the algorithm solving the game instead of any pre-processing
steps.

Clusteredgames Usually the randomgames and steadygames that are generated will consist of
one big SCC, therefore not being a good game to be solved by the SCC decom-
position algorithm. Clusteredgames are generated to contain more SCCs and
will be a better benchmark specifically for algorithms using SCC decomposition.

3https://github.com/trolando/oink
4https://github.com/tcsprojects/pgsolver
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When verifying products in an SPL, a product in an SPL consists of a set of features
which are enabled for that specific product. In VPGs such a product can be seen as
one configuration for which we play the VPG. Therefore to model a product from an
SPL a configuration consists of a set of features, where F is the set of all our features
in the SPL. We will now describe how we can generate VPGs consisting of such sets.

Given a parity game, a number m describing the amount of features in F and a
threshold ψ ∈ (0, 1], we can iteratively generate a VPG. Let l = k

|E|·m where k the
sum of the number of enabled - or disabled - features for all configurations that we
have added to our game. Hence before we added any configurations it holds that
k = 0.

The next step is to generate configurations to add to our parity game. First, let p
be a random integer in [0, ...,m]. Next, we randomly pick p features from the set F ,
where with probability 1

2
we take the negation of a feature f ∈ F . This set of features

becomes our configuration we can add to our game.

Our last step is to pick an edge to add a configuration to. We will use two approaches:
(uniform) pick an edge using a uniform distribution, such that each edge is equally
likely to be picked, or (grouped) we increase the chance of picking an edge after its
source vertex has been picked before. This second approach will generate VPGs where
the edge guards are more “clustered” together, which might mean the games will be
able to exploit the greater commonality between different products. Note that when
we pick an edge that already has a configuration, we take the disjunction of both
configurations.

We repeat this process of generating configurations until k
|E|·m ≥ ψ.

In the next section we will describe our experimental setup and how we gathered the
results.

8.3 Benchmark

For each algorithm we keep a set of metrics to evaluate their performance, the metrics
we keep for each algorithm can be seen in Table 8.1. Performing all the experiments
for the Small Progress Measures algorithm was not possible due to the long solving
times of the SPM algorithm, which was longer than our 10 minute timeout. We use a
script to run each algorithm on the set of games in our dataset and collect the metrics
in a csv file. In the next section we will describe our results.

In Section 8.4.2 we discuss the lower performance of the SPM algorithms compared
to the other algorithms. In Section 8.4.3 we compare the performance of the different
algorithms (excluding SPM) on the original dataset from [20]. Lastly, we compare
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Priority Promotion Progress Measures SCC Decomposition Zielonka
# Attractions # Lifts # Attractions # Attractions

Attractor time (ns) # Upgrades # SCC Decompositions # Attractors
Escape-set time (ns) - Decomposition time (ns) Attractor time (ns)

# Promotions - Attractor time (ns) # Recursions

Table 8.1: Collected metrics for each algorithm.

the algorithms in some special cases in Sections 8.4.4 and 8.4.5, where consider clus-
teredgames and games increasing in size respectively.

8.4 Results

We will now describe the results of our experiments. For each dataset that we ran our
algorithms on we will describe the results we gathered. The raw data from the results
is available through Zenodo5[9]. We use the following abbreviations for the different
type of algorithms: (Zlnk) Zielonka’s recursive algorithm, (PP) Priority promotion
(without early termination), (ET) Priority promotion with early termination, (SPM)
Small Progress Measures and (SCC) Zielonka’s algorithm with tight SCC integration.

8.4.1 Game generation

In Section 8.2.1 we described two different approaches for generating random VPGs
from parity games. In Figure 8.1 we can see the solving times for uniform and grouped
random VPGs, where each data point is the solving time of one individual game. In
Figure 8.1a we can see that the solving time does not increase as the number of
configurations gets larger, whereas we can see an exponential increase in Figure 8.1b.
In Figure 8.1c we can see the solving times for all random games and in Figure 8.1d
only games with 50 vertices. As we can see, for smaller games the solving times do
not really increase depending on the configurations, this is likely because the games
are too small for more than 10 configurations. For this reason we will only consider
games with more than 50 vertices.

Also note that in Figure 8.1a games with 5 configurations already take one magnitude
longer to solve than the grouped random games. We think this is because the uniform
games will have a random distribution of edges with guards, while the grouped random
games will have the guards more localised in parts of the graph, which the algorithms
can exploit using the family-based approach.

5https://doi.org/10.5281/zenodo.5637419
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(b) Increasing configurations for games with
100 vertices of grouped random games.
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(c) Increasing configurations for games with
50 vertices of unified random games.
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(d) Increasing configurations for games with
50 vertices of grouped random games.

Figure 8.1: Solving times, in logarithmic scale, of unified and clusered random games
against the number of configurations. Each point in the figures is the solving time of
one game.
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This might explain why the solving times of the uniform games do not increase ex-
ponentially, as is the case with grouped random games. Since the uniform games will
have little “commonality” early on, adding more configurations will not cause a big
increase of complexity.

As the grouped random games are more in-line with VPGs that we expect from
problems from an SPL setting: high commonality and exponential increase with more
configurations, we will use these games in the rest of our experiments.

8.4.2 Small Progress Measures

In the previous section we did not include the small progress measures algorithm when
comparing the different type of games. In the next sections we will also mostly be
excluding the small progress measures algorithm, as it is vastly outperformed by the
other algorithms and will often take longer than 10 minutes when solving games with
more than 50 vertices. In Figure 8.2 we can see the SPM algorithm for 50 vertices
compared to the other algorithms.

Game 1 2 3 4 5
# Upgrades 31003 156239 6052 39905 824687

# Lifts 203167 769293 19821 140753 3659826
% Upgrades 15.3 20.4 31.5 27.8 20.7

Table 8.2: Metrics of the SPM algorithm on games with 50 vertices, where the number
of lifts is the number of “Lift” operations that we performed, the number of upgrades
is the amount of successful lifts and the % Upgrades is the percentage of succesful
Lift operations out of the total Lift operations.
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Figure 8.2: Solving times for grouped random games with 50 vertices, including the
SPM algorithm. With |F|,|V | and |E| we denote the sizes of the set of features,
vertices and edges respectively.
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As we can see from Figure 8.2 the solving times for random games with 50 vertices
is in all cases slower than the SCC, priority promotion and recursive algorithm, in
most cases by multiple orders of magnitude. For games with 100 vertices none of the
games were solved within 10 minutes.

In Table 8.2 we can see some metrics of the SPM algorithm for five different smaller
games.

8.4.3 Original dataset

In this section we will give an overview of the performance of the new algorithms on
the dataset from [20]. In Table 8.3 we give the average solving time, attractor time
and number of attractors.

An interesting thing we observe is that, compared to the randomly generated games,
on average all the algorithms spend a lot less time on the attractor computation for
the minepump games (roughly 35% instead of 80%). We also note that although the
SCC decomposition algorithm performs the most attractor computations, the total
attractor time is in almost all cases (except for the minepump games) the lowest for
the SCC algorithm. This makes sense, as we first decompose the VPG into smaller
connected components before calculating the attractor set in each. Lastly we observe
that Zielonka’s recursive algorithm has the best average performance over the whole
dataset.
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Average solving time (ns) Attractor time (ns) % Attractor # Attractors
PP 3.09 · 108 3.06 · 108 98.82 13.96

SCC 2.85 · 108 2.65 · 108 92.71 34.76
Zlnk 2.71 · 108 2.71 · 108 99.77 20.88

(a) Average solving time for random games of original dataset.

Average solving time (ns) Attractor time (ns) % Attractor # Attractors
PP 5.68 · 106 5.12 · 106 90.10 8.5

SCC 5.77 · 106 4.61 · 106 79.87 21.36
Zlnk 4.99 · 106 4.74 · 106 94.83 7.54

(b) Average solving time for random scaled games of original dataset.

Average solving time (ns) Attractor time (ns) % Attractor # Attractors
PP 1.73 · 106 1.48 · 106 85.73 11.70

SCC 1.55 · 106 1.11 · 106 71.96 26.92
Zlnk 1.31 · 106 1.16 · 106 88.38 17.98

(c) Average solving time for random verification games of original dataset.

Average solving time (ns) Attractor time (ns) % Attractor # Attractors
PP 9.00 · 106 2.21 · 106 30.60 4.33

SCC 1.53 · 107 5.46 · 106 35.76 20.33
Zlnk 3.36 · 106 1.52 · 106 47.05 2.00

(d) Average solving time for minepump games of original dataset.

Average solving time (ns) Attractor time (ns) % Attractor # Attractors
PP 3.95 · 109 2.69 · 109 68.10 5.00

SCC 1.53 · 1011 1.32 · 1010 8.63 2.69 · 103

Zlnk 2.13 · 109 1.80 · 109 84.51 2.00

(e) Average solving time for elevator games of original dataset.

Table 8.3: Performance and metrics of the priority promotion, SCC and Zielonka
recursive algorithm on the dataset from [20]. The average solving times are the
average of the random (75), scaled random (55), random verification (203), minepump
(9) and elevator (7) games respectively.

8.4.4 Clusteredgames

One interesting class of games to consider is the “clustered games”, which are gen-
erated to contain a large amount of strongly connected components. Although these
games are not likely to be encountered when solving verification problems, they do
provide for an interesting comparison between the SCC decomposition algorithm and
the others. We generated clusteredgames using PGSolver and generated VPGs of
using the grouped approach as described in Section 8.2.1. In Figure 8.3 we can see
the solving times for the different algorithms.
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(a) Solving time for all clustered games de-
pending the size of the game.
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(b) Solving time for games with less than 400
vertices, depending on the size of the game.
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(c) Solving times for games greater than 400
vertices, depending on the size of the game.

Figure 8.3: Solving times for the grouped clusteredgames. With |F|,|V | and |E| we
denote the sizes of the set of features, vertices and edges respectively.

In Figure 8.3a we can see the solving times depending on the size of the game for the
entire set of clustered games. Upon inspection of the solving times of the games, we
notice that for games with more than 400 vertices the SCC decomposition algorithm
is multiple magnitudes faster than the other algorithms. In Figures 8.3b and 8.3c
we can see the solving times for the games with less than 400 and more than 400
vertices. Interesting to note is that for the smaller games in Figure 8.3b the solving
times are similar to those of the other class of games, where Zielonka’s and the SCC
algorithm perform similarly and the priority promotion algorithm performs slightly
worse. However, for the larger games the SCC decomposition algorithm performs
several order of magnitude better than both priority promotion and Zielonka’s algo-
rithm. This might be because the games are large enough to contain multiple smaller
SCCs, giving the SCC decomposition algorithm an advantage, as it only has to solve
the smaller SCCs.
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Vertices Attractor calls Tarjan calls % Attractor % Tarjan
≥ 400 113.1 1538.46 55 11
< 400 265.41 1027.99 92 6

Table 8.4: Average number of attractor set calculations, SCC decomposition using
Tarjan’s algorithm and average percentage of time spent on each for different clustered
games.

In Table 8.4 we can see metrics of the SCC decomposition algorithm for games with
more than 400 vertices and with less than 400 vertices. As we can see from Table 8.4,
for the larger games we on average have fewer attractor set calculations (113) and
spend less time on the attractor set calculation (55%) compared to the smaller games
(265 attractor sets and 92%). However, for the larger games we spend more time
on computing the SCC decompositions (11% against 6% for smaller games), which
might explain the huge decrease in solving times compared to Zielonka’s recursive
algorithm and the priority promotion algorithm.

8.4.5 VPGs increasing in size

In previous sections we looked into different classes of games and compared the perfor-
mance of the different algorithms depending on their size or number of configurations.
Another metric that is interesting to look at is the effect of the number of vertices
on the solving times. In Figure 8.4 we can see the solving times, and attractor set
metrics, for VPGs increasing in size.
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Average solving time (ns) % Attracting % Escape-set % Tarjan
PP 2.15 · 108 97.50 0.37 -

SCC 2.31 · 108 95.11 - 4.21
Zlnk 2.21 · 108 99.24 - -

Table 8.5: Average solving times, attractor set calculaction, escape-set calculation
and SCC decomposition times of games increasing in vertices.
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(a) Average solving time in nanoseconds, for
VPGs with 5 features and an increasing num-
ber of vertices.
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(b) Average time spent on attractor set cal-
culation for VPGs with 5 features and an in-
creasing number of vertices.

0 2,000 4,000 6,000 8,000
100

102

104

106

108

Number of vertices

A
tt

ra
ct

or
se

t
ca

lc
u
la

ti
on

s SCC
PP

Zlnk

(c) Number of attractor set calculations for
VPGs with 5 features and an increasing num-
ber of vertices.
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(d) Percentage escape-set calculation of the
total solving time for the priority promotion
algorithm and games increasing in size.

Figure 8.4: Solving times, attracting time and number of attractor set calculations
under VPGs with increasing number of vertices.

In Figure 8.4a and 8.4b we can see the average solving and attracting times. Based on
the theoretical time complexity, we would expect the solving time to grow polynomi-
ally as the number of vertices of the games increases. We can confirm that the solving
time and attractor set time increase sub-exponentially as the games increase in the
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number of vertices. We also note that both figures are almost identical, suggesting
that the solving time is dominated by the attractor set calculation, this can also be
seen in Table 8.5.

Table 8.5 shows the average solving time and the percentage of time spent on the
attractor-set, escape-set or Tarjan’s calculation for the appropiate algorithm. We
note that the average solving times are very close together and that there is no clear
“winner”.

In Figure 8.4d we can see the percentage of the escape-set calculation as the number
of vertices of the game increases. As the game increases in size the percentage of the
escape-set calculation seems to converge to around 0.3%, together with Table 8.5 this
seems to indicate that most of the solving time is spent on the attractor set (for all
the algorithms).

In Figure 8.4c we can see the number of attractor set calculations. Unlike the average
attractor and solving time, the number of attractor calculations does not seem to
increase linearly as the number of vertices of the game increases.

8.4.6 Self-loop elimination and early termination

In Tables 8.6 and 8.7 we can see the solving times of the algorithms with self-loop
elimination, compared to the solving times without first eliminating the self-loops on
the VPGs from the original dataset and randomly generated grouped games.

Solving time After elimination Including elimination
PP -5.53% 28.13%

SCC -4.70% 40.34%
Zlnk -5.23% 39.38%

Table 8.6: Average solving time increase on random games using self-loop elimination
compared to the average solving times without performing self-loop elimination.

Solving time After elimination Including elimination
PP -6.13% 44.04%

SCC -8.81% 42.24%
Zlnk -9.81% 54.67%

Table 8.7: Average solving time increase on minepump and random verification games
from the original dataset using self-loop elimination compared to the average solving
times without performing self-loop elimination.

As we can see from Table 8.6 and 8.7 the solving time after eliminating the self-loops
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of a VPG decreases by roughly 5% to 10%. However, if we include the time spent on
solving these self-loops we see that the overall solving times actually increase on both
random and verification games. We propose this is because removing the self-loops
is a computationally expensive operation, since we have to update the neighboring
edges after removing (part of) the self-loop.

In Section 6.3.2 we discussed another method for determining whether a region is
open or closed by removing any configurations from which the opponent can leave
the region. We compare the priority promotion algorithm against priority promotion
with early termination on the random games and the dataset from [20].

Solving time (ns) Attractor % Escape-set % Attractions
Priority Promotion 6.47 · 107 98.5 0.24 11.7
Early termination 2.15 · 108 99.5 0.16 55.7

Table 8.8: Average solving time increase and attractor and escape-set calculation on
random verification games of the original dataset.

Solving time (ns) Attractor % Escape-set % Attractions
Priority Promotion 9.00 · 106 30.60 13.74 4.33
Early termination 1.86 · 109 99.55 0.11 5.21 · 103

Table 8.9: Average solving time increase and attractor and escape-set calculation on
minepump games of the original dataset.

In Table 8.8 we list the average solving times, attractor and escape-set times for ran-
dom verification games from the original dataset. Quite clearly priority promotion
without early termination performs better than priority promotion with early termi-
nation. Even though we spend relatively less time on computing the escape set, the
overall solving time increases. This is probably due to the amount of attractor sets
that we have to compute in total is more for the early termination variant, causing the
solving time to increase. Looking at the average amount of attractor set calculations
for all the games, we can verify that this is indeed the case, with the average for early
termination being roughly 5 times higher than the original algorithm. Looking at the
number of attractions for the minepump games in Table 8.9 we can see a vast differ-
ence between priority promotion and early termination, where early termination uses
more than 5000 attractor set calculations, compared to the 4 by priority promotion.

When looking at the random games however, we find opposite results, which we can
see in Table 8.10. In Figure 8.5 we can see the attractor and escape-set calculation as
the games increase in size. As we would expect, we spend more time on the escape-
set calculation. In terms of attractor set calculation, there is no significant difference
between both algorithms. Lastly, note that early termination is significantly slower
for the verification games, but decreases the solving times for random games.
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(a) Attractor set calculation times of the pri-
ority promotion and priority promotion with
early termination algorithms.
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(b) Escape-set calculation times of the pri-
ority promotion and early termination algo-
rithm.

Figure 8.5: Attractor-set times and escape-set times for the priority promotion and
priority promotion with early termination.

Solving time (ns) Attractor % Escape-set %
Priority Promotion 6.43 · 107 97.37 0.086
Early termination 4.36 · 107 96.62 0.62

Table 8.10: Average solving time and attractor and escape-set calculation times for
random games.

8.5 Discussion

We will now discuss the performance of the algorithms on the different datasets. We
will discuss the results we have found in Section 8.4 in the same order as introduced
there. Afterwards we will discuss the threats to validity to our experiments.

In Section 8.4.1 we described the solving times of the different algorithms as the
number of configurations increases for uniform and grouped random games. For the
remainder of the experiments we only used grouped random games, as the games
generated using this method are different from a lot of the random games already
present in the existing datasets.

We notice that the small progress measures algorithm has the worst performance of
all the algorithms. This is not surprising as the original algorithm for parity games is
also outperformed by the recursive algorithm and priority promotion for parity games.
In fact, for most of the games which are easily solved by the recursive algorithm and
priority promotion, the SPM algorithm will take longer than 10 minutes, and due to
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this we ran the progress measures algorithm only on smaller games of each dataset.
We think this poor performance is probably due to two factors: (1) the algorithm
often has to compute the new progress measure of a vertex, which uses a lot of BDD
operations, which can be very expensive, (2) a lot of the progress measures that are
computed are the same as the old value, hence adding to the running time.

Next we compared the different algorithms on the dataset from [20]. Like the random
games, Zielonka’s recursive algorithm performs the best on average for almost all the
different games in the dataset. However, one interesting observation is that in case of
the minepump games, which are derived from an SPL model checking problem, very
little time of the solving time is spent on the attractor set computation compared to
the randomly generated games. This is an indication that the randomly generated
games might not represent VPGs that we would encounter in a model checking setting.
Considering the different type of randomly generated games and random games from
the original dataset, we think this is due to the structure and placement of the
configurations rather than the distribution of the configurations.

Next, we looked at the performance of clustered games, which are randomly gener-
ated VPGs consisting of multiple clusters of strongly connected components. As we
would expect, the recursive algorithm with SCC decomposition performs the best
out of all the algorithms. We also found that for games larger than 400 vertices the
SCC decomposition algorithm outperforms the other algorithms by multiple orders
of magnitude. Looking at the internal metrics of the SCC algorithm, we found that
significantly more time is spent on the SCC decomposition using Tarjan’s algorithm
than for the smaller games. This is most likely why we see this large increase in
performance, as the “heavy lifting” is done by the SCC decomposition instead of the
attractor set calculation.

Contrary to what we saw when increasing the number of configurations, we do not
find an exponential increase in solving time as the number of vertices increase in
Section 8.4.5. From Figure 8.4 and Table 8.5 we can see that the solving times for
all the algorithms are dominated by the attractor set calculation. Like the SCC de-
composition, calculating the escape-set does not increase linearly, such as the solving
time and attractor time. We can conclude that all three algorithms are dominated
by the attractor-set calculation.

Lastly, we looked at the performance of the different algorithms after self-loop elimi-
nation and with early termination, as described in Sections 8.4.6. We notice that the
solving time after we eliminated the self-loops decreases, since we are able to remove
parts of the VPG before running one of the algorithms. However, if we include the
time it took to eliminate these self-loops, we actually see an increase in the solving
time for all the algorithms. This means that it takes more time to compute the set of
configurations for which we can eliminate the self-loop than solving the game without
self-loop elimination.
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When running the priority promotion algorithm with early termination, we see a
significant increase in the solving times compared to original priority promotion when
solving minepump and other SPL-based VPGs. However, when running on random
games, early termination seems to perform marginally better.

8.5.1 Threaths to validity

We will now discuss some of the threats to the validity of our experiments. We will
discuss the optimization and correctness of the algorithms, and the representativeness
of our dataset.

When implementing the different algorithms, we made sure to validate the results
with the output from Zielonka’s recursive algorithm to ensure our output is correct.
We also checked the results against an existing parity game checker, Oink [10]. This
way we can be fairly certain that our implementation and algorithms are correct.

Another factor that may invalidate our findings is the optimization of the implemented
algorithms. If certain operations are not optimized, it might negatively impact the
running time of one of the algorithms. In case of the priority promotion and SCC
decomposition algorithm we are fairly sure they are optimized, as we found that the
attractor-set calculation is almost always dominating the solving time. In case of
the small progress measures algorithm we can not make this observation, as it does
not depend on the attractor calculation. However, our finding that it performs the
worst among all implemented algorithms in practice is also found for the parity game
variant of the small progress measures algorithm, indicating that it might be due to
the algorithm itself rather than being unoptimized.

Lastly, we generated new games to expand our dataset we can compare our algorithms
on. Though our dataset might give a good insight on how the algorithms perform
in general, we also noted that a lot of the generated VPGs don’t share the same
characteristics compared to the minepump dataset. This means that our dataset
might not be very representative of the type of games we might encounter in a model
checking setting.
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Chapter 9

Conclusions
Although variability parity games are a novel concept, a few algorithms to solve VPGs
exist. Being a generalization of parity games, a lot of the definitions and concepts
used to solve parity games can be adapted to apply to VPGs as well.

We adapted the concepts of regions, dominions and escape-sets used in priority pro-
motion for parity games to be applicable to VPGs and introduced an algorithm to
solve VPGs using priority promotion. We solve VPGs by iteratively constructing
the maximal region, consisting of a set of vertices and configurations, until we find a
dominion, which is a subgame won by one player. We have shown that this algorithm
is correct in solving VPGs as well as provided an implementation.

Next we briefly introduced the original small progress measures algorithm for parity
games and provide implementation details on an adaptation of the small progress
measures algorithm for VPGs.

We introduced the notion of SCC-families, which lifts the concept of SCCs to VPGs,
defining for each SCC the largest set of vertices and configurations such that it is
still a valid SCC in the projections of all the configurations. Next we introduced an
adaptation of Zielonka’s recursive algorithm that solves VPGs by decomposing the
VPG into its strongly connected components.

Next we gave an adaptation of self-loop elimination, a pre-processing step often used
when solving parity games, applicable to VPGs. By taking into account the set of
configurations for which the player is forced to, or able to, take the self-loop, we can
solve part of the VPG before running one of the algorithms on the remaining game.

We provided methods to generate VPGs from parity games by iteratively adding
edge guards to the game, with either a random or “clustered” approach. We looked
into some of the properties of the resulting games and found that the clustered ap-
proach generates games that increase exponentially as we add more configurations.
We used these games when comparing the different algorithms. Using this approach
we generated multiple classes of VPGs, such as: clustered VPGs and random VPGs.

Next we used our newly generated VPGs and existing datasets to compare the per-
formance of Zielonka’s recursive algorithm, the priority promotion algorithm, small
progress measures and the recursive algorithm with SCC decomposition. We found
that Zielonka’s recursive algorithm performs best out of the set algorithms in general,
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with the priority promotion and SCC decomposition algorithms performing slightly
worse. The small progress measures algorithm performed worst out of all the algo-
rithms, in most cases taking longer than the timeout we set for the computation time.
This poor performance is also seen in the original small progress measures algorithm.

When comparing the algoritms on the clustered games, which contain multiple strongly
connected components, the SCC decomposition algorithm performs better than the
recursive algorithm and priority promotion and works very well on larger games.
Looking into the metrics of the SCC algorithm, we found that for smaller games
most of the computation time is still spent on computing the attractor set, however
for larger games the decomposition takes more time, indicating more of the work is
done by the decomposition algorithm.

We looked into the performance of the different algorithms as the number of vertices of
the VPGs increased. We found that the solving time and attractor set time increased
linearly with the number of vertices. We found that most of the solving time of the
algorithm is spent on the attractor set calculation. Optimizing this computation will
probably see the most returns for algorithms using the attractor set.

Lastly we looked into the effect of self-loop elimination and early termination on the
solving time. We found that removing self-loops from VPGs does decrease solving
times, however if we include the time to remove these self-loops we found an increase in
the solving times. This is most likely due to computing the set of configurations being
quite expensive, causing it to be too expensive most of the time. We found similar
results when comparing the original priority promotion algorithm against priority
promotion with early termination. In most cases performing early termination does
not decrease the solving times compared to the original algorithm.

Future work

In our work we looked into the effect of early termination in priority promotion,
where we can stop our search for a dominion early by removing configurations from
our region. More optimizations for the original priority promotion algorithm exist [2]
and it would be interesting to look into the effect on performance these optimization
might have. The original small progress measures algorithm paper also details some
optimizations which could be made, such as SCC decomposition and an adapted
progress measure [19] which might also be interesting to investigate further.

We introduced the concept of SCC-families, where SCCs are defined on VPGs, al-
though we did not use this concept in the recursive decomposition algorithm. It would
be interesting to compute the decomposition taking into account the edge guards of
the graph.
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When comparing the algorithms using the attractor set calculation, we noticed that
most of the solving time is spent on computing the attractor sets. Therefore, it
might be interesting to look into different approaches to compute the attractor set
for VPGs, or optimize the existing attractor set calculation. One approach might
be to first compute the (non-featured) attractor in the game. Similarly to the SCC-
approximation, this attractor is an “over-approximation” of the featured attractor.
Next we can compute the featured attractor on this smaller set of vertices, avoiding
the more expensive featured attractor on the entire game.

We noted that the VPGs generated from the minepump and elevator application do
not share the same internal metrics as the randomly generated VPGs. As there are
not a lot of VPGs available from an SPL setting, we do not have a good insight into
the performance of the algorithms on these types of games. It would be interesting
to model more of these SPL problems in the future to be able to have a more reliable
comparison.
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Appendix A

Well-foundedness proof
Lemma 5. The state space S = (SG,≺G) as defined in Definition 6.4.1 is a well-
founded partial order w.r.t ≺.

Proof. Since SG is finite, to show that it is a well-founded partial order w.r.t. ≺G it
suffices to prove that it is a strict partial order on SG; to show it is irreflexive and
transitive. Through property 2.(b.ii) of Definition 6.4.1, we can see that s 6≺G s for
all states s = (r, p) ∈ SG since neither p 6< p nor does there exist a priority q ∈ rng(r)
such that r−1(q) ⊂ r−1(q), since r = r.

For the transitive property, we consider three states s1 = (r1, p1), s2 = (r2, p2) and
s3 = (r3, p3) with s1, s2, s3 ∈ SG, such that s1 ≺G s2 and s2 ≺G s3 holds. We can now
make a case distinction on all four of the possible cases:

Case 1) Property 3(a) from Definition 6.4.1 holds for both s1 ≺G s2 and s2 ≺G s3: there
exist priorities q1 ∈ rng(r1) and q2 ∈ rng(r2) with q1 ≤ p1 and q2 ≤ p2 such

that r
(<q1)
1 = r

(<q1)
2 , r

(<q2)
2 = r

(<q2)
3 , r−1

2 (q1) ⊂ r−1
1 (q1) and r−1

3 (q2) ⊂ r−1
2 (q2).

Let q = min{q1, q2} ≤ p1. We get the following cases:

� If q = q1 = q2 then r
(<q)
1 = r

(<q)
2 = r

(<q)
3 and r−1

3 (q) ⊂ r−1
2 (q) ⊂ r−1

1 (q).

� If q = q1 < q2 then we have that r
(<q)
1 = r

(<q)
2 = (r

(<q2)
2 )(<q) = (r

(<q2)
3 )(<q) =

r
(<q)
3 and r−1

3 (q) ⊂ r−1
2 (q) ⊂ r1(q).

� Lastly, if q = q2 < q1 then r
(<q)
1 = (r

(<q1)
1 )(<q) = (r

(<q1)
2 )(<q) = r

(<q)
2 = r

(<q)
3

and r−1
3 (q) ⊂ r−1

2 (q) = r−1
1 (q).

As q is either in the range of r1 or r2 by definition, it holds that q ∈ rng(r1)
and q ∈ rng(r2) and therefore s1 ≺G s3.

Case 2) Property 3(a) for s1 ≺G s2 and 3(b) for s2 ≺G s3. Therefore, there exists priority

q ∈ rng(r1) with q ≤ p1 such that r
(<q)
1 = r

(<q)
2 and r−1

2 (q) ⊂ r−1
1 (q) and by

property 3.(b.i) r2 = r3. So r
(<q)
1 = r

(<q)
2 = r

(<q)
3 and r−1

3 (q) = r−1
2 (q) ⊂ r−1

1 (q),
and we can conclude that s1 ≺G s3. The symmetric case can be proven similarly.

Case 3) Property 3(b) for both s1 ≺G s2 and s2 ≺G s3. It follows that r1 = r2, r2 =
r3,p1 > p2 and p2 > p3. Hence it follows that r1 = r3 and p1 > p3 therefore
s1 ≺G s3.
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