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Abstract. Parity games are two player games with omega-winning con-
ditions, played on finite graphs. Several algorithms for solving parity
games have been proposed in the literature, and while the problem was
recently shown to be solvable in quasi-polynomial time, so far, the ques-
tion whether such games can be solved in polynomial time remains elu-
sive. In practice, parity games play an important role in verification,
satisfiability and synthesis. It is therefore important to identify algo-
rithms that can efficiently deal with large and complex games that arise
from such applications. In this paper, we describe our experiments with
BDD-based implementations of Zielonka’s recursive algorithm and the
more recent Priority Promotion algorithm. We conclude that overall,
Zielonka’s BDD-based algorithm beats the BDD-based Priority Promo-
tion algorithm by a small margin for games that are characteristic of
practical verification problems.

1 Introduction

Parity games [10, 18, 21] are infinite duration games played by two player on a
finite directed graph. Each vertex in the game graph is owned by one of the two
players and vertices are assigned a colour, or priority. The game is played by
pushing a single token along the edges in the graph; the choice to which vertex
the token is to move next is decided by the player owning the vertex currently
holding the token. A parity winning condition determines the winner of this
infinite play. A vertex in the game is won by the player that has a strategy
for which, no matter how the opponent plays, every play from that vertex is
won by her; the winner of each vertex is uniquely determined [18]. The parity
game solving problem is to compute the set of vertices won by each player. From
a practical viewpoint, parity games are interesting since they underlie typical
verification, satisfiability and synthesis problems, see [7, 10, 1].

The simplicity of the game can be deceptive. In spite of a continued research
effort, no polynomial algorithm for solving such games has been found. The
problem of solving a parity game is known to be in UP N coUP [13], a class that
neither precludes nor predicts the existence of a polynomial algorithm. In recent
years, several new algorithms have been devised for solving parity games, and
only last year, the problem was shown to run in quasi-polynomial time [6].



Most parity game solving algorithms fall in one of two categories: ‘strat-
egy identification’ (SI) algorithms and ‘dominion identification’ (DI) algorithms.
The SI category of algorithms directly computes the winning strategies for both
players; e.g. by means of policy iteration or by maintaining some statistics about
the gameplays that can emerge from a vertex. The recent quasi-polynomial al-
gorithms [6,15] all fall in this category, but also classical algorithms such as
Jurdziniski’s small progress measures algorithm [14]. The DI category of algo-
rithms all proceed by (recursively) decomposing the game graph in dominions:
small subgraphs that are won by a single player and from which the opponent
cannot escape. A classical exponent of the latter category is Zielonka’s recursive
algorithm [21], but also the recently introduced Priority Promotion algorithm [5].
While DI algorithms typically have a worst-case running time complexity that
is theoretically less attractive than that of SI algorithms, in practice, the SI are
significantly outperformed by DI algorithms [19].

Since parity games that originate from practical verification problems can
become quite large, it is natural to study techniques that help to solve such
games, relying on compact, symbolic representations of the game graph such as
Binary Decision Diagrams (BDDs). Unlike ST algorithms, DI algorithms typically
compute with subgraphs and as such are likely candidates admitting a symbolic
implementation. Indeed, several BDD-based implementations of Zielonka’s algo-
rithm have been studied in the past [2].

In this paper, we describe our implementation of the PP algorithm using
BDDs. Moreover, we compare its performance to a BDD-based implementation
of Zielonka’s algorithm. In particular, we reassess the conclusions from [19] in
which Zielonka’s algorithm and the PP algorithm were shown to have similar
performance when computing with a non-symbolic representation of the game
graph. A few samples taken from a set of benchmarks for parity games encod-
ing verification problems point at a much better scalability of our BDD-based
solvers, compared to their explicit counterparts. Apart from comparing the per-
formance on games originating from typical verification problems, we have as-
sessed the performance of both BDD-based implementations by generating BDDs
representing random game graphs. While we confirm that also in the symbolic
setting the two algorithms perform similarly, our observations indicate that for
games with a modest number of priorities in the game, Zielonka beats the PP
algorithm by a small margin.

This paper is structured as follows. In Section 2, we introduce parity games
and the relevant concepts. The two algorithms that we compare are then intro-
duced and discussed in Section 3 and we describe how these can be implemented
using BDD techniques in Section 4. In Section 5, we describe our experimental
evaluation of our implementations and we finish with conclusions in Section 6.



2 Parity Games

A parity game is an infinite duration game, played by players odd, denoted by 1
and even, denoted by 0, on a directed, finite graph. The game is formally defined
as follows.

Definition 1 (Parity game). A parity game is a tuple (V, E,p, (Vo, V1)), where:

— V is a finite set of vertices, partitioned in a set Vi of vertices owned by player
0, and a set of vertices V1 owned by player 1,

— E CV xV is the edge relation; we assume that E is total, i.e. for allv € V,
there is some w € V' such that (v,w) € E,

— p:V — N is a priority function that assigns priorities to vertices.

We depict parity games as graphs in which diamond-shaped vertices represent
vertices owned by player 0 and box-shaped vertices represent vertices owned by
player 1. Priorities, associated with vertices, are typically written inside vertices,
see Figure 1.
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Fig. 1. A parity game with 7 vertices, 6 different priorities, 3 vertices owned by player
0 and 4 vertices owned by player 1.

Plays, Strategies and Winning. We write v — w whenever (v,w) € E. Hence-
forth, @ € {0,1} denotes an arbitrary player. We write & for a’s opponent; i.e.
0=1and 1= 0. A sequence of vertices v1,...,v, is a path if v,, — V41 for
all 1 < m < n. Infinite paths are defined in a similar manner. We write m,, to
denote the n'" vertex in a path 7.

A game starts by placing a token on vertex v € V. Players move the token
indefinitely according to a single simple rule: if the token is on some vertex
v € Vg, player a gets to move the token to an adjacent vertex. The parity of
the highest priority that occurs infinitely often on a thus constructed infinite
sequence of vertices through the game defines the winner of the path: player 0
wins if, and only if this priority is even.



More formally, the moves of players 0 and 1 are determined by their respective
strategies. Informally, a strategy for a player o determines, for a vertex m; € V,,
the next vertex m;y; that will be visited if the token visits m;. In general, a
strategy is a partial function o:V* x V, — V which, given a history of vertices
visited by the token and a vertex on which the token currently resides, determines
the next vertex. For simplicity and (due to the positional determinacy theorem
for parity games [10]) without a loss of generality, we only consider positional
strategies. A positional strategy (hereafter simply referred to as strategy) for a
player « is a partial function o:V, — V that is compatible with F, i.e. for all
v € V, it is the case that o(v) € {w € V | v — w}. An infinite path 7 is
compatible with a given strategy o if for all vertices m; for which o is defined,
we have m;11 = o(m;). We refer to an infinite path through the graph that is
compatible with a strategy for player 0 and a strategy for player 1 as a play. A
strategy is closed on a set U iff every play that is compatible with that strategy
remains within U. We say that a set of vertices U is a-closed iff a has a strategy
that is closed on U.

A play is won by player 0 iff the mazimal priority that occurs infinitely often
along that play is even. More formally, given a play m, player 0 wins  iff:

max{k e N|VjeN:J eN:i>jAk=p(m)} is even

Strategy o for player « is winning from a vertex v if and only if « is the winner
of every play starting in v that is compatible with o. A set of vertices W, is
won by « if for each vertex v € W, player a has some winning strategy from
v. Another consequence of the aforementioned positional determinacy theorem
is that the set of vertices W won by player 0 and the set of vertices Wy, won
by player 1, forms a partition of the set V: every vertex is won by exactly one
player.

Ezample 1. Consider the parity game depicted in Figure 1. The vertices vs, vg
and vy are won by player 1 whereas vertices vy, v, v3 and vy are won by player
0. To see why vertex vg and vy are won by player 1, consider her strategy o
defined by o(v7) = vg and o(vg) = vs. Any play that is compatible with this
strategy infinitely often visits vertex vg, which has a dominating odd priority.
Hence, such plays are won by player 1. Furthermore, note that this strategy is
closed on {vg,v7}. O

Subgames, Attractors and Dominions. For a game G = (V, E,p, (Vp, V1)) and
a set U C V, we define the subgame of G, denoted G N U, as the maximal
substructure (V', E',p’, (V{§, V{)) that is obtained by restricting the graph (V, E)
to U and lifting the restriction to the other elements of G, i.e. V! = U, E' =
ENn(UxU),p'(v)=p)forallv e U, and Vj = VoNU and V{ = V1 NU. If the
edge relation E' of GNU is again total, then the subgame is again a parity game.
We furthermore use the abbreviation G \ A to denote the subgame G N (V' \ A).

Parity game solving can essentially be reduced to identifying or computing
appropriate subgraphs that are entirely won by a single player and from which
the opponent cannot escape. A subgame that has this property for a player « is



called an a-dominion. Technically, an a-dominion is a non-empty set of vertices
D, C V such that player o has a winning strategy from all vertices in the set
D, that is closed on D,. We note that W), the set of vertices won by player 0,
is a 0-dominion; likewise W is a 1-dominion.

Ezxample 2. Reconsider the parity game from Figure 1. We already identified a
closed strategy that is winning for player 1 on the set of vertices {vs,vg}. So
this set is a 1-dominion. This is not a maximal 1-dominion: the winning set
{vs, vg, v7} is also a 1-dominion. O

For a non-empty set U C V and a player «, the a-attractor into U, denoted
Attr,,(U), is the least set of vertices for which player « can force play into U. We

define Attr, (U) as |J Attr’,(U), the limit of approximations of the sets Attr” (U),
i>0
which are inductively defined as follows:

At (U) =U

Aty TH(U) = At (U)
UfveV,|Jue Attrh(U): v — u}
U{veVa|VueV:iv—u = uecAttr,(U)}

The confined a-attractor, denoted Attr, (T, U), is defined analogously by limiting
the set of vertices to those from T in each approximation. That is, it represents
the subset of vertices 7" C T from which « can force play to U while remaining
in T'. We note that for arbitrary set U C V, the subgame G\ Attr, (U) is again a
parity game; that is, the edge relation of the subgame is again total. Furthermore,
the a-attractor into an a-dominion D, is again an a-dominion. Finally, observe
that the set V' \ Attr, (U) is a-closed.

Ezample 3. The O-attractor into the set {v2} contains the vertices v; (which is
owned by 1 but trivially attracted to vg since it has but one successor vertex),
vs and vy. Vertex vy does not belong to the 0-attractor into {v2} as player 1 can
choose to move to vy. For similar reasons, vertices vg and v; do not belong to
the O-attractor into {vs}. Note that the set {vs, vg,v7} is 1-closed. O

3 Two Parity Game Solving Algorithms

Algorithms for solving parity games essentially either use clever statistics for
identifying winning strategies, or they employ a decomposition of the game play
by identifying dominions in subgames. In this paper we focus on two algorithms
that fit in the latter class.

3.1 Zielonka’s Recursive Algorithm

The algorithm by Zielonka is a divide and conquer algorithm that searches
for dominions in subgames. The algorithm is essentially distilled from a con-
structive proof of the positional determinacy of parity games by, among others,



Zielonka [21]. Despite the fact that the algorithm has a relatively bad theoretical
worst-case complexity (it runs in O(mn?) where n is the number of vertices, m
the number of edges and d is the number of different priorities in the game)
and exponential worst-case examples are known for various classes of special
games [12], the algorithm remains among the most successful solvers for parity
games in practice, see [11] and the recent exploration [19].

Zielonka’s algorithm (see Algorithm 1) constructs winning regions for both
players out of the solution of subgames with fewer different priorities and fewer
vertices. For this, the algorithm relies on the fact that higher priorities in the
game dominate lower priorities, and that any forced revisit of these higher pri-
orities is beneficial to the player aligning with the parity of the priority. For
non-trivial games, the algorithm relies on attractor set computations (see line 8)
to identify the set of vertices that can be forced to visit the maximal priority in
the game; the remaining vertices are then solved recursively (see line 9).

The outcome of the recursion can be either that the entire subgame is won
by the player (say «) that has the same parity as the maximal priority in the
game or the opponent & wins a non-empty set of vertices. In case « wins all
vertices in the subgame, she wins the entire game (lines 11-12). This can be seen
as follows: since the subgame is @-closed, the opponent can choose to stay within
the subgame; choosing to do so means she will lose. So the only option she has
is to escape. But the only escape she has leads to the maximal priority which
has the parity of a. Note that if « is forced to leave this maximal priority she
will again end up in the subgame; any play that does so ad infinitum visits the
maximal priority infinitely often and is therefore won by «. In case o does not
win the entire subgame, the set of vertices won by @ in the subgame are also won
by & in the larger game since the subgame was @-closed; in other words, it is a
a-dominion and so is its a-attractor (the set B computed in line 13). Removing
this dominion and recursively solving the remaining subgame (line 14) then leads
to a solution of the entire game.

Several optimisations can be applied to Zielonka’s algorithm. For instance,
rather than solving the entire game at once, one can first decompose a game
into strongly connected components and first solve the bottom components.
The SCC decomposition can be integrated tightly in the algorithm so that in
each recursive call first an SCC decomposition is performed. While this may
sound expensive, in [12] it is shown that this actually allows the algorithm to
run in polynomial time on many practically relevant classes of special games
such as solitaire and dull games for which the original algorithm might require
exponential time otherwise. Another observation, made in e.g. [17] is that in case
W5 = Attry, (W) after the first recursive call, no second recursive call is needed.

3.2 Priority Promotion

The recent Priority Promotion (PP) algorithm [5] starts, like Zielonka’s recursive
algorithm, with a game decomposition that aims at identifying dominions for a
given player. In contrast to Zielonka’s algorithm, however, the PP algorithm does
not solve explicit subgames. Instead, within a fixed game, it uses a dominion



Algorithm 1 Zielonka’s Algorithm

1: function ZIELONKA(G)
2: if V =0 then

3: (Wo, Wh) < (0,0)

4: else

5: m <+ max{p(v) |v eV}

6: o < m mod 2

T: U« {veV]|Rw) =m}

8: A+ Attr,(U)

9: (W4, W1) < ZIELONKA(G \ A)
10: if W, =0 then

11: (Wa, Wa) < (AUWL,0)
12: else

13: B «+ Attrs(W5)
14: (Wg, W1) < ZIELONKA(G \ B)
15: (Wa, Ws) « (W), Wi U B)
16: end if
17: end if

18: return (Wy, W1)
19: end function

searcher that maintains a set of vertices, along with an updated (promoted)
priority mapping and zooms in on a dominion within that set of vertices. Once
an a-dominion is returned by the dominion searcher, its a-attractor is removed
from the game and the search for another dominion continues, see Algorithm 2,
until the entire game is solved.

Algorithm 2 Priority Promotion Solver

1: function SOLVEPP(G)
(Wo, W1) «+ (0,0)

3 repeat

4 m + max{p(v) |v €V}

5 (W§, W1) < SEARCHDOMINION(G, V, p, m)
6 (Wo, W1) + (Wo U W5, W1 U W)

7 G+ G\ (WiuWwy)
8

9

0:

until V = ()
return (Wy, W1)

10: end function

The main complexity and novelty of the PP algorithm lies in the way it
identifies a dominion. To this end, it relaxes the notion of a dominion to a quasi
a-dominion. A quasi a-dominion is a set U of vertices for which « has a strategy
that guarantees that every play that remains within U is won by «, or that exits
U via the a-escape of U. The a-escape of a set U, denoted esc(U) is the set of
vertices from which « can force play out of U in a single move; i.e. v € esc&(U),



for a game G holds iff v € V,, and for all w for which v — w we have w ¢ U, or
v € Vg and there is some w ¢ U such that v — w. A quasi a-dominion U in a
game G is said to be a-closed iff esc(U) = 0; otherwise it is said to be a-open.
Note that a a-closed quasi a-dominion is a a-dominion. When the @-escape set
of a quasi a-dominion only contains vertices with the highest priority in the
game, the o quasi-dominion is called a a-region.

By searching for quasi-dominions, the algorithm avoids the ‘hard’ problem
of identifying the (set of) priorities that lead to a player winning its dominion.
Under certain conditions, these quasi-dominions offer just enough guarantees
that when composed, the result is a dominion. Regions meet these conditions.
The dominion searcher, see Algorithm 3, essentially traverses a partial order
of states which contain information about the open regions the searcher has
computed up to that point. Once the searcher finds a closed region it terminates
and returns this dominion to the solver. Conceptually the searcher assigns to each
a-region it finds a priority that under-approximates the best value the opponent
@ must visit when escaping from the a-region. A higher a-region U; can then
be merged with a lower region Us, yielding a new a-region and improving the
under-approximation of U, by promoting its best escape value.

The searcher first checks whether the set of vertices U that dominate the
current state induces a closed region A within the entire game; if so, the region is
returned and the search is finished (lines 2-8). If the region is open, the opponent
@ may escape. When the region is open in the current state, she may try to escape
to some inferior priority within the subgraph; if the region is closed in the current
state, she can only escape to some region in the larger game and end up in a
priority that dominates my.

In case the region is open in the current state (line 11-14), the priority func-
tion of the current state is updated to set all vertices in A to the currently
dominating priority m,. This is achieved by the update p} < py[U +— mgy] which
is defined as pj;(v) = my in case v € U and pj(v) = py(v) otherwise. The new
priority for the subgraph that will be explored is set to the next largest priority
in the graph (line 13) and A is removed from the subgraph (line 14). This new
state is then explored recursively (see line 20). In case the region is closed in the
current state (line 16-18), the opponent must escape (if she wants to) to vertices
in the larger game. The best escape priority she can force is the minimal priority
among the set of vertices that she can force play to in a single step. This is given
by the function bepg‘g (A) which yields the minimum priority (according to pg)
of the set {w € V\ A |3v € ANV, : v = w}. The dominating priority mg is
updated to m} to reflect this best escape priority (see line 16) after which p,
is updated to py. In this update, all vertices in A are set to priority mj while
all vertices with priorities exceeding mj remain unchanged. All vertices with
priorities dominated by mj are reset to their original value. This is achieved by
the update in line 17. Here, pgm yields the partial function that coincides with
pg on the (maximal) domain V’ C V for which py(v) > m for all v € V', and is
undefined elsewhere. The update pWp,, for a partial function p, is then defined
as (pWpy)(v) = p(v) in case v ¢ dom(p,) and py(v) otherwise. The subgraph



that is explored next is set to all vertices with (promoted) priority no larger than
my. This newly constructed state is then again recursively explored (see line 20).
The PP algorithm resets all information in lower regions when promoting ver-

Algorithm 3 Priority Promotion Dominion Searcher

1: function SEARCHDOMINION(G, Vg, pg, myg)
2: a < mg mod 2

3: U<+ {veVg|pg(v) =mg}

4: A+ Attr,,(Vy,U)

5: X + esc&(A)

6: if X =0 then

7 (W, WE) « (Attro (A),0)

8: return (W5, Wy)

9: else

10: X « escgmvg (A4)

11: if X # 0 then

12: Py < DglA — my]

13: my < max{k | k <mgy AJv €V, :py(v) =k}
14: Vo Vy\A

15: else

16: my bepi‘g (A)

17: Py < (wp; " )A - mj)

18: Vo —{v eV |ps(v) <my}

19: end if
20: return SEARCHDOMINION(G, V', p;, my)
21: end if

22: end function

tices. As observed in [3,4], this can be improved by only resetting regions of the
opponent, or even a subset of that. While this affects the performance for some
artificial worst-case examples, these improvements do not lead to improvements
on games stemming from practical applications, nor on random games [19].

4 TImplementing Parity Game Solvers Using BDDs

An explicit representation of a parity game G that encodes a verification problem
of a (software or hardware) system quickly requires too much main memory. A
symbolic representation of the game graph may then help to sidestep this prob-
lem. Binary Decision Diagrams (BDDs) are essentially a clever data structure
that can be used to concisely and canonically represent propositional formulae,
which in turn can be used to characterise sets. In our setting we have to represent
the following sets: the set of vertices V' of a game, the edges E, the partition
(Vb, V1) of V and the priority function p. For most parity games stemming from
practical verification problems, the domain of p is small. For that reason, it
suffices to represent p as a collection of ordered sets.



We assume that the reader is familiar with BDDs and the algorithms ma-
nipulating these; for a comprehensive treatment we refer to [20,9]. For the com-
putations involved in the parity game solving algorithms of the previous section
we provide the key ingredients below; each operation is described using an ex-
pression for the BDD-based implementation.

We assume that x is the vector of Boolean variables used to span the set of
vertices V'; we assume ¢ is a total injective mapping from V to truth-assignments
for . The i-th Boolean variable of x is denoted «;; this notation extends to
other vectors of Boolean variables. We represent a set U C V by a propositional
formula encoded as a BDD U(x) that ranges over «; as is standard, for a truth-
assignment u for & we have U(u) = 1 iff «(v) = u for some v € U. This way,
we can represent, e.g. the sets Vy and V4 by BDDs Vy(x) and V; (). Note that
we only need representations of two of the three sets V.V, and V;; the third
can be constructed efficiently by computing the complement of the BDD. The
set of edges is given by a BDD &(x, ') that ranges over & and ', where x’ is
the vector of Boolean variables used to represent a successor vertex. Finally, the
collection of BDDs P;(x) represents the set of vertices with priority .

We first highlight the operations required for implementing Zielonka’s al-
gorithm using BDDs. Set comparison, intersection, union and complement are
easily expressed as BDD operations using equivalence, conjunction, disjunction
and negation. The main computational problem in Zielonka’s algorithm is there-
fore the attractor set computation and computing a subgame. Since subgames
are defined using set intersection, the operations involved when computing a
subgame require conjunction of BDDs only; we omit further details. For the at-
tractor set computation, which is also used in the PP algorithm, we first define
the pre-image operation using BDDs; that is, given a set U C V and a player «,
we encode the operation pre, (U) which is defined as follows:

pre,(U)={veVy|FuelU:voulU{veVz|VueV :iv—su=>uecU}
Observe that we can restate this as follows:
pre,(U)={veVy|FuelU:v—=ulU{ve V| -JueV\U:v—u}

Representing the above operation using standard BDD operations such as dis-
junction, conjunction, negation and existential quantification is then as follows:

pre,(U(z))

Valx) AT’ .(E(x, ") NUE))) V Valx) A -T2’ .(E(x, x') A —U(x)))

Using the pre-image, the a-attractor Attr, (U(x)) (cf. Page 2) is then effectively
implemented using BDDs. The confined a-attractor Attr, (T{x),U(x)), used in
the PP algorithm (see line 4) is defined analogously using an additional conjunc-
tion operator on BDDs. Note also that the operation esc(A), used in lines 5
and 10, can be implemented using the pre-image operation.

The operations in the PP algorithm that remain to be encoded involve the
computation of the best escape priority and the computation of new priority



mappings. For the best escape priority we require to compute minimal priority
among a set of successor vertices of a given set of vertices U. We split this
computation in two parts. First we identify the set of successor vertices using
the operation post(U) defined as follows:

postU) ={veV|Juel:u—v}
This can effectively be encoded as follows:
postU(z)) = Fz.E(z, ') NU(z)) [z — ]

Computing bep;‘g(A), see line 16, then can be implemented by searching for the
least value m in the domain of mapping p, for which the BDD —A(x) A py(m) A
post(A(x) A Vo (x)) is satisfiable. This can be done using a simple iteration.
Finally, the computations of pj in lines 12 and 17 are simple updates of the
function p, which can be done by iterating over the domain of the mapping
p (resp. py) and computing new BDDs using conjunction and disjunction of
the BDDs given by p and p,. More specifically, for updates of the form (p &
p7™)[A — m], we first compute the set of vertices in the domain of p, that
are above m, assuming we have BDDs P, ;(x) representing the set of vertices

{veV |p,(v)=1}:
Aboves, (x) = \/{’Pg,i(w) |i>m}

The updated priority function pj coinciding with (pw pgzm)[A — m], where A is
encoded by BDD A(x) and the set of vertices {v € V' | p(v) =i} is encoded by
P;i(x) is then, for each value i # m, given by:

—A(x) A ((Pi(x) A ~Above) V (Py.:(x) A Above))
whereas for value ¢ = m we have:

A(z) V (Pi(x) A ~Above) V (Py.i(x) A Above)

5 Experimental Evaluation

We have implemented Zielonka’s algorithm and the PP algorithm in Python,
utilising a BDD package! which, next to a native Python BDD implementation,
offers wrappers to C-based BDD implementations such as CUDD, Sylvan and
BuDDy. For the timings we report on for our experiments we rely on the native
Python implementation as our independent experiments indicate that its per-
formance is comparable to that of CUDD. Note that the choice of programming
language is secondary given that all essential time-consuming computations in-
volve BDD creation and manipulation. We conducted all experiments on a Mac-
book Pro, 3.5 GHz Intel Core i7 (13-inch, 2017 model, i.e. dual core), with 16
Gb 2133 MHz LPDDR3 main memory, running macOS 10.13.2.

! See https://github.com/johnyf/dd, version 0.5.4, by Toannis Filippidis



We compare the performance of our implementation of Zielonka’s algorithm
and the PP algorithm as described in Sections 3 and 4. To analyse the perfor-
mance of both algorithms on parity games beyond those from a fixed benchmark
set, we analyse their running times on randomly generated games. Such games,
however, may be poor predictors for the performance of the algorithms on prac-
tical problems. Since one of our aims is to assess the speed at which BDD-based
solvers can solve parity games that encode practical verification problems, we
also compare their performance on some of the cases of the Keiren benchmark
set [16].

5.1 Random Parity Games

The PGSolver [11] is a collection of parity game solving algorithms programmed
in OCaml, which includes tools to generate self-loop-free random parity games
with a fixed number of vertices. Since the tool generates explicit graphs in the
PGSolver format, we automatically converted these games to BDDs using a
binary encoding for the vertices.

Unfortunately (but not unexpected), our experiments indicate that for games
that consist of more than 2000 vertices, the BDD approach starts to fail dra-
matically; the BDD representations of the games become overly complex and
unstructured, leading to excessive running times of both our Zielonka and PP
implementations. The main reason for the poor performance is the lack of struc-
ture provided by the binary encoding of vertices: typically, BDDs remain concise
if two adjacent vertices (i.e. vertices related by FE) only differ in their represen-
tation by a relatively small number of bits. The binary encoding, however, does
not guarantee this.

In view of the above observation, we resort to another approach for generating
random games and testing the scalability of both implementations. Instead of
generating explicit games, we generate random BDDs representing games of a
fixed size but with different characteristics. We do this as follows. We generate
games consisting of exactly 2V vertices using a vector & of Boolean variables of
length N. The sets V; and Vi, the priority function p and the edges E are then
generated by constructing a ‘random’ clause. For Vjy we generate a conjunctive
clause by uniformly choosing, for each variable x; whether the variable occurs
positively, negatively, or not at all. The set V; is set to be the complement
of Vy. For the priority mapping we use a similar approach ensuring that the
priority mapping partitions the set of vertices V; we set an upper bound of K
priorities, meaning that we generate K clauses. Since it may happen that some
clauses become unsatisfiable, there may be fewer than K priorities in the games
we generate. Finally, we construct the edge relation F. To this end, we first
randomly select a subset u of the Boolean variables x. Next, we generate M
clauses where we again uniformly generate a clause based on a positive, negative
or no occurrence of a variable in u, and, similarly for their copies u’. For the
remaining variables we require that the primed copies @} are equivalent to the
unprimed ones, i.e. &, < ;.



We measured the performance of both algorithms on a collection of randomly
generated parity games where we varied N and K; we set M to 4. For each N,
for 3 < N < 34, we measured the total time to solve 2000 games. Figure 2 plots
the size of the randomly generated parity games (each consisting of 2V vertices)
on the x-axis against the time (in seconds) on the y-axis per algorithm. The
jumps in our plot are due to an increase in the number of priorities: for N < 32,
we generated games with at most 7 priorities, whereas for N > 32 we generated
games with at most 8 priorities.
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Fig. 2. Cumulative time (in seconds) required to solve 5000 random games (per in-
stance of N, consisting of 27V vertices each) using Zielonka and the PP algorithm.

We notice that Zielonka’s algorithm consistently outperforms PP. While for
small games the difference is not very significant, Zielonka seems to scale better as
games get more complex, as witnessed for the larger values for N. We remark that
the performance of both algorithms is still rather good: solving games consisting
of 234 vertices with 8 priorities takes, on average 5.7 seconds using Zielonka and
9.9 seconds using PP. We repeat the experiment, fixing N to 32, M again to 4
and varying K from 4 to 14, and generate 50 games for each configuration. The
results are depicted in Figure 3.

These second set of experiments sketch a slightly different picture, showing
that both Zielonka and PP have similar performance on average. Moreover, as
the number of different priorities in the games increase, the performance of
both algorithms degrades. This suggests that these algorithms will have more
difficulty handling symbolic games that derive from, e.g. synthesis problems
which typically have a large number of priorities.
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Fig. 3. Cumulative time (in seconds) required to solve 50 random games (per instance
of K) with 232 vertices using Zielonka and the PP algorithm.

5.2 The Keiren Parity Game Solving Benchmark Set

In [16], Keiren describes and provides a set of parity games that originate from
over 300 model checking problems and more than 200 equivalence checking prob-
lems. The main obstacle in reusing the data set is that the games are encoded as
explicit graphs in the PGSolver format. This means that most of the structure
that a BDD solver can typically exploit for compactly representing the game
graph is lost. As we concluded from the random games generated by PGSolver,
a binary encoding of the sets involved leads to severe performance degradation
of the solvers, and given the size of the graphs, there is little hope the running
times of our algorithms on such encoded BDDs provide meaningful information.
We have coped with this by generating BDDs from the original specifications for
a few of the model checking games included in the Keiren benchmark set. Note
that the conversion of the original specifications to BDDs is not straightforward:
most games stem from model checking problems for system models that employ
(unbounded) lists, natural numbers, etcetera, for which no trivial bounds can be
established. The results can be found in Table 1.

We note that solving the explicit game for Onebitg (the onebit sliding win-
dow protocol with 8 different messages) requires over 140 seconds using the
pbespgsolve tool of the mCRL2 [8] tool set and consumes 16Gb of memory.
In contrast, our BDD algorithms both solve the resulting game in under a sec-
ond and require a neglible amount of memory. We were unable to solve the
Onebitsy game using the pbespgsolve tool. Our experiments suggest that PP
and Zielonka will perform comparably on games originating from verification
problems.



Specification |Property Zielonka PP
Chatbox It is possible to JOIN infinitely often 0.01 0.01
Invariantly JOIN can be followed by LEAVE 0.01 0.01
Onebits Infinitely often send and receive 0.06 0.09
Absence of Deadlock 0.01 0.01
Onebitg Infinitely often send and receive 0.36 0.48
Absence of Deadlock 0.10 0.11
Onebitso Infinitely often send and receive 0.80 1.13
Absence of Deadlock 0.32 0.31

Table 1. Running times for selected model checking problems.

5.3 Discussion and Threats to Validity

The correctness of the tested algorithms was established in the respective papers
in which they were published; the correctness of our implementation, however,
cannot be guaranteed. Our code, however, closely matches the pseudocode given
in the preceding sections. We cross-checked the answers of both solvers, com-
paring the computed winning sets for both players for each game we solved.
Alternatively, one might compute winning strategies during game solving; such
strategies provide the certificates that can be checked in polynomial time. While
computing winning strategies can be done straightforwardly in an explicit set-
ting, it is not clear how to do the same in a symbolic setting. Finally, we base
some of our conclusions on randomly generated games; such games may not
have the structure of games that originate from practical verification problems
or synthesis problems.

Our results indicate that, overall, the performance of Zielonka’s algorithm
and the PP algorithm is comparable in most cases. For games with a small num-
ber of priorities, Zielonka seems to perform slightly better than PP, suggesting
that in practice, the former is the solver of first choice. However, given that both
solvers require at most seconds for even the largest models, containing up to 234
vertices, either algorithm would work in practice. Comparing the performance
of our symbolic solvers to the explicit solvers, however, indicates that there the
BDD-based solvers offer huge performance gains.

6 Conclusions

We studied two algorithms for solving parity games, viz. Zielonka’s recursive
algorithm and the recently introduced Priority Promotion algorithm. Both al-
gorithms work by repeatedly identifying dominions by decomposing a parity
game, but both have a different way of doing so. We have described how these
algorithms can be implemented using Binary Decision Diagrams (BDDs) and
subsequently assessed the performance of our implementations. Since there are
no available benchmark sets for experimenting on symbolically encoded BDDs;,
we have selected a few cases from the Keiren benchmark set for parity game



solvers [16] and converted these manually to BDDs. In addition, we have as-
sessed our implementations on random games of varying sizes and complexities.
Our results show that the two algorithms perform remarkably similar on aver-
age, with the classic Zielonka algorithm slightly ourperforming the PP solver for
games with few priorities. As soon as the number of priorities increases beyond
the number typically found in games encoding verification problems, the perfor-
mance of both algorithms is seriously compromised; this, however, is not specific
to the use of BDDs.
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