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Abstract

This paper researches the possibility to make parity game solving algorithms more
efficient by using BDDs for their implementation. The paper focuses on the Priority
Promotion algorithm provided by Benerecetti et al. [1] and provides an implementation
of this algorithm based on BDDs. Test results show that the actual algorithm is much
more efficient when using BDDs. However, the time it takes to make the initial BDDs is
not efficient yet. Future work can include improving these pre-processing times as well
as researching whether other parity game solving algorithms can (also) be made more
efficient when implementing them using BDDs.

1 Introduction

A currently widely used technique for model checking problems is the use of parity games [4],
where parity games are infinite duration games played by two players, player odd and player
even, on a directed finite graph. The game involves moving a token throughout the graph.
The vertices in the graph belong either to player odd or player even, who can decide the next
move if the token ends up in one of their vertices. The vertices also contain priorities, which
are used to determine the winner. By representing the model checking problem of a labeled
transition system and a modal formula as a parity game, one can check whether or not the
modal formula holds for said labeled transition system by solving the parity game and seeing
if player even wins the desired vertex.

While there are several parity game solving algorithms available, they typically rely on an
explicit representation in the form of a graph, where the vertices of the graph are represented
in some set representation which grows and shrinks throughout the algorithm. Such graphs
however, can grow very large very quickly as well as the set representations of these vertices,
making the operations of such algorithms perhaps less efficient. Using binary decision dia-
grams (BDDs) as a data structure to deal with these set representations can potentially offer
a way to make such operations more efficient [2].

This paper considers the Priority Promotion algorithm as presented by Benerecetti, Dell’Erba
and Mogavero [1] and presents a way to implement this algorithm using binary decision dia-
grams as the underlying data structure. Results show that the BDD-based version is indeed
much faster, at least for the actual algorithm itself. The pre-processing time needed however
to make the initial BDDs is not quite efficient yet and requires more work.

First some preliminaries are provided in Section 2 with some background information on
parity games, parity game solving algorithms and binary decision diagrams. Section 3 then
provides a summary of the Priority Promotion algorithm of Benerecetti et al. [1] and Section
4 presents a method to implement this algorithm using binary decision diagrams by first
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explaining the creation of the initial binary decision diagrams, followed by an elaboration
on how the operations of the Priority Promotion algorithm can be performed using this data
structure. Section 5 explains the experimental setup, for which the results are listed in Section
6 and a conclusion follows in Section 7.

2 Preliminaries

In this section some background information is provided. This includes an elaboration on
parity games, on parity game solving algorithms and on binary decision diagrams (BDDs).

2.1 Parity Games

2.1.1 Definition

Parity games are infinite duration games which are played by two players, player odd and
player even on a directed, finite graph which is also called the arena. The formal definition
of a parity game is as follows:

Definition 2.1. A parity game is a tuple PG =< V,E,Ω, (V3, V2) > with:

• V is a finite set of vertices.
• E ⊆ V × V is a total edge relation, i.e., for all v ∈ V we have (v, w) ∈ E for some
w ∈ V .
• Ω : V → N is the priority function assigning a priority to each vertex.
• V3 ⊆ V is the set of vertices owned by player even.
• V2 ⊆ V is the set of vertices owned by player odd.

Note that we have V3 ∩ V2 = ∅ and V3 ∪ V2 = V .

The shape of a vertex determines which player owns it, i.e., a box shaped vertex is owned
by player odd and a diamond shaped vertex is owned by player even. An example of a parity
game is depicted in Fig 1 [8], where the number inside a vertex represents the priority of that
vertex.

Figure 1: An example of a parity game

The game is played by putting a token on one of the vertices and by letting the players
move the token throughout the graph. The player who owns the vertex that currently holds
the token, determines where the token moves next. The player can move the token along any
outgoing edge of the vertex. For instance, in Fig 1, v1 is owned by player odd (because it
is box shaped), thus when the token resides in v1, player odd can decide whether the token
moves to v1, v2 or v3 (since we have (v1, v1), (v1, v2), (v1, v3) ∈ E).

Let a path be an infinite sequence of vertices visited in order and let a play be a path
chosen by the players. The winner of a game, for a particular play, is the parity of the highest
priority occurring infinitely often in that play, where a parity of 0 means player even won and
a parity of 1 means player odd won. For instance, considering the play that moves between
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v4 and v5 infinitely long is won by player odd as the highest priority occurring infinitely often
is 5 and the parity of 5 is 5 ≡2 1.

Let a strategy be a function σ : Vα → V such that for all v ∈ Vα for which σ(v) is defined,
we have σ(v) ∈ {w | (v, w) ∈ E} where α denotes the player, i.e., α ∈ {2,3}. A play π is
conforming to a strategy if for any v ∈ V for which v on π and for which σ(v) is defined,
the edge (v, σ(v)) is chosen. A strategy is called a winning strategy for player α if any play
conforming to this strategy is won by player α.

Intuitively, the players then fight over all the vertices in the graph. In order to determine
which player wins a vertex, a game is played where the token is initially placed on this vertex.
This vertex is then won by player α if player α has a winning strategy for this game.

2.1.2 Important properties

Some important properties concerning parity games are:

• A player can always make a move, i.e., for each vertex there is at least one outgoing
edge.
This follows from the fact that parity games are defined as infinite duration games. If
some vertex existed without an outgoing edge, the game would not be infinite.
• There is always a winner.

Since the winner is defined as the parity of the highest priority occurring infinitely often
in the play, and since parity games are infinite duration games, there will always be at
least one vertex occurring infinitely often. If there are more of those vertices, then the
one with the highest priority is chosen. Thus there must always be a winner.
• For every vertex, there is always a way for one of the players to win the game regardless

of the opponent’s moves.
Let W3 ⊆ V be the set of vertices in V from which player even can win regardless of
the moves of player odd, and let W2 be the set of vertices in V from which player odd
can win regardless of the moves of player even. Then (W3,W2) partitions V such that
W3 ∩W2 = ∅ and W3 ∪W2 = V . The proof for this notion [9] is omitted as it goes
beyond the scope of this paper.

2.1.3 Purpose

Though parity games can be used for several purposes, the one that is considered for this
paper is the purpose of model checking for modal µ-calculus. Consider a process P and a
modal formula M . To determine whether M holds for P , one can create a parity game from
the combination of P and M . How this is done exactly goes beyond the scope of this paper
[8]. But once this parity game is created, one can use parity game solving algorithms to solve
the parity game. If a vertex in the parity game, that represents whether M holds for P , is
won by player even, then M holds for P , and if it is won by player odd then M does not hold
for P .

2.2 Parity Game Solving Algorithms

There are multiple algorithms available to solve parity games, such as the one provided by
Zielonka [9] which was later improved by Jurdzinski, Paterson, and Zwick [3] and once again
by Schewe [5]. However, Jurdzinski also proposed another technique together with Voge [7]
which was later improved by Schewe as well [6]. The algorithm considered in this paper is
the one provided by Benerecetti et al. [1], called Priority Promotion.

These parity game solving algorithms mainly use two techniques, namely computing W3
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and W2 by repeatedly finding and merging dominions (subgames) and computing winning
strategies for both players by improving these strategies. Priority Promotion uses the first
technique and directly computes W3 and W2. One can then simply look in which of these
sets the initial vertex lies to determine who the winner is.

Though this paper focuses only on Priority Promotion, further studies can determine
whether other parity games solving algorithms can also be made more efficient by using
BDDs.

2.3 BDDs

In this section some background information concerning binary decision diagrams (BDDs) is
provided, by explaining what BDDs are and how they are useful for this topic.

2.3.1 Description

A binary decision diagram is a data structure used to concisely and canonically represent
boolean formulas. It is a decision tree represented as a directed acyclic graph, where each level
of the tree represents one variable of the boolean formula and where the left edge represents
the variable above being true, and the right edge represents it being false. An example of a
decision tree is shown in Fig 2.

Figure 2: An example of a decision tree

One of the strengths of BDDs is their ability to sometimes greatly reduce the size of a
graph, where the size of a graph denotes the number of internal nodes. This size-reduction
is implemented by using two reduction techniques, namely elimination and merging. The
merging technique repeatedly merges two nodes with the same variable, the same left subtree
and the same right subtree together into one node. This is illustrated in Fig 3, where there
are three occurrences of variable r with the same left subtree and the same right subtree
merged into one node.

The elimination technique repeatedly replaces, for each variable p for which its left subtree
L is equal to its right subtree R, the decision tree with root p with L. This is demonstrated
in Fig 4, where in the left subtree of p, the tree with root q can be replaced with T since the
left subtree of q is equal to its right subtree. A similar elimination step is performed in the
right subtree of p, for the variable r in the left subtree of q.

To turn the decision tree into a decision diagram all True nodes are merged into one as
well as all False nodes, turning the decision tree into a directed acyclic graph, see Fig 5.
Applying these techniques to this example shows how the initial decision tree with 7 internal
nodes is reduced into a decision diagram with 3 internal nodes.

By representing the sets of a parity game as boolean formulas, BDDs can be used to
represent these sets. Another important strength of BDDs is then that set operations such
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Figure 3: Applying merge to a decision tree: before (left) and after (right)

Figure 4: Applying elimination to a decision tree: before (left) and after (right)

Figure 5: Turning a decision tree into a decision diagram by merging all True nodes and all
False nodes

as intersection and union can be done efficiently on BDDs with a complexity related to the
size of the BDDs.

2.3.2 Purpose

Since parity game solving algorithms are mostly based on a graph structure representing the
game, and since these graphs can grow exponentially in the worst case, BDDs may be used
to concisely represent said graphs. Furthermore, since the operations needed for the Priority
Promotion algorithm require basic set operations such as intersection and union, and since
these operations can be done efficiently on BDDs, the use of BDDs may prove more efficient
for parity game solving when using the Priority Promotion algorithm.
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2.3.3 Variable ordering

An important notion for BDDs is that the actual size of a BDD for a given boolean formula
depends greatly on the order of the variables, where a variable ordering denotes the order in
which the boolean variables occur in the BDD from top to bottom. Where some orderings
may result in a relatively small BDD, other orderings for the same boolean formula may
result in exponentially large BDDs [2]. Since the complexity of BDD operations depends on
the size of BDDs, it is important to try and find variable orderings that lead to minimally
sized BDDs.

3 Priority Promotion Algorithm

In this section the Priority Promotion algorithm is presented and explained in more detail.
First the global idea is explained, then the algorithm itself is presented and finally an example
follows. For more details, the original paper can be consulted [1].

3.1 Global idea

Given a parity game PG =< V,E,Ω, (V3, V2) >, the algorithm computes W3 and W2, i.e.,
the sets of vertices from which player even can win regardless of the moves of player odd and
vice versa, respectively. These sets are created by using the notion of α-dominion and quasi
α-dominion, where α ∈ {0, 1} denotes either player even or player odd respectively. Let α
denote α’s opponent, i.e., if α = 0, then α = 1 and vice versa. The formal definition for an
α-dominion is as follows.

Definition 3.1. An α-dominion is a set of vertices U ⊆ V , such that player α can enforce
a winning play that stays in U from any position in U , i.e., such that the maximal priority
visited infinitely often has parity α.

An α-dominion U is called an α-maximal dominion when player α cannot force any other
vertex outside U to enter U .

Note that W3 and W2 are thus α-maximal dominions, more precisely an even-maximal
dominion and an odd -maximal dominion respectively. To compute these α-maximal domin-
ions, subsets of these dominions are created first and expanded iteratively. These subsets are
called quasi α-dominions, for which the formal definition is as follows.

Definition 3.2. A quasi α-dominion is a set of vertices U ⊆ V such that player α can induce
a play from any position in U such that the play is either a winning play that never leaves U
or such that the play leaves U at some point.

A quasi α-dominion U is called α-open if there is at least one α vertex in U that must
leave U in one move or if there is at least one α vertex that can leave U in one move.

A quasi α-dominion U is called α-closed if it is not α-open, i.e., if player α can enforce
a winning play from any position in U that never leaves U .

It then follows that Q is an α-closed quasi α-dominion ⇐⇒ Q is α-dominion.

To compute quasi α-dominions, the notion of predecessor set and attractor set are used,
for which the formal definitions are as follows.

Definition 3.3. The predecessor set preα(U, Vg) of a set of vertices U where Vg denotes the
set of vertices in the current subgame, is the union of the set of α-vertices in Vg that can
enter U in one move and the set of α-vertices in Vg that must enter U in one move.
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Formally, preα(U, Vg) = {v ∈ Vg ∩ Vα | ∃u ∈ U : (v, u) ∈ E} ∪ {w ∈ Vg ∩ Vα | ∃u ∈ U :
(w, u) ∈ E ∧ ¬∃u′ ∈ Vg\U : (w, u′) ∈ E}.

Definition 3.4. The attractor set atrα(U, Vg) of a set of vertices U where Vg denotes the set
of vertices in the current subgame, is the union of the predecessor sets preα(U, Vg) calculated
repeatedly until no new vertices are added.

Formally, atrα(U, Vg) = atrα(U, Vg)
m for some m where atrα(U, Vg)

m = atrα(U, Vg)
m+1

with:
atrα(U, Vg)

0 = U
atrα(U, Vg)

n+1 = atrα(U, Vg)
n ∪ preα(atrα(U, Vg)

n, Vg)

When a quasi α-dominion U is computed it is necessary to determine whether it is α-open
or α-closed in the current parity game. This is done by calculating the escape set of U in Vg
for α. The formal definition of an escape set is as follows.

Definition 3.5. The escape set escα(U, Vg) of a set of vertices U where Vg denotes the set of
vertices in the current subgame, is the union of the set of α-vertices in U that can leave U
in one move to a vertex in Vg and the set of α-vertices in U that must leave U in one move
to a vertex in Vg.

Formally, escα(U, Vg) = {v ∈ U ∩ Vα | ∃u ∈ Vg\U : (v, u) ∈ E} ∪ {w ∈ U ∩ Vα | ∃u ∈
Vg\U : (w, u) ∈ E ∧ ¬∃u′ ∈ U : (w, u′) ∈ E}.

Note that this is equivalent to: escα(U, Vg) = U ∪ preα(Vg\U).

If the escape set escα(U, Vg) is empty, then U is α-closed in the current subgame, otherwise
it is α-open.

Given these notions, the global idea of the algorithm is to, starting with the vertices with
the highest priority, create quasi α-dominions until an α-closed quasi α-dominion a.k.a an
α-dominion is found. Once this α-dominion is found, its attractor set is calculated which will
be a subset of Wα. The algorithm is then run again on the remaining set of vertices until all
vertices are part of a dominion.

When an α-open quasi α-dominion is found, the algorithm applies its priority promotion
and then recurses on a subgame, which will be explained in the next section.

3.2 Algorithm

Given a parity game PG =< V,E,Ω, (V3, V2) >, find all dominion pairs by running the
recursive algorithm below with findAllDominionPairs(V, Ω, maxPr(V )) where maxPr(V )
denotes the max priority in V . Let domPairs be a set of dominion pairs, where one dominion
pair contains a dominion and some α ∈ {0, 1}, and let domPairs.dom denote the union of all
dominions in domPairs. Let Vg,Ωg, pg denote V,Ω, p in the current subgame g respectively,
where initially g is thus PG.

procedure findAllDominionPairs(V,Ω, p)
domPairs← findDominionPair(V,Ω, p)
while V \domPairs.dom ! = ∅ do . If not all vertices are in a dominion yet

remV ← V \domPairs.dom . Continue with the remaining vertices
domPairs← domPairs ∪ findDominionPair(remV,Ω,maxPr(remV ))

end while
return domPairs

end procedure
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procedure findDominionPair(Vg,Ωg, pg)
α← pg mod 2
U ← {v ∈ Vg | Ωg(v) = pg}
atrC ← atrαg (U) . Attractor set in subgame
escT ← escαPG(atrC) . Escape set in total game
if escT is empty then . Closed in total game

atrT ← atrαPG(atrC) . Attractor set in total game
return atrT, α . α-closed dominion pair in PG

else . Open in total game
escC ← escαg (atrC) . Escape set in subgame
if escC is empty then . Closed in subgame

I ← {v ∈ V \atrC| ∃u ∈ atrC ∩ Vα : (u, v) ∈ E}
p∗ ← minPr(I,Ωg)
for u ∈ atrC do

Ω∗(u) = p∗ . Promote priority
end for
for u′ ∈ V \atrC do

if Ωg(u
′) < p∗ then

Ω∗(u′) = Ω(u′) . Reset priority
else

Ω∗(u′) = Ωg(u
′) . Keep priority as it is

end if
end for
V ∗ ← {v ∈ V | Ω∗ ≤ p∗}
findDominionPair(V ∗,Ω∗, p∗)

else . Open in subgame
for u ∈ atrC do

Ω∗(u) = pg . Promote priority
end for
for u′ ∈ Vg\atrC do

Ω∗(u′) = Ωg(u
′) . Keep priority as it is

end for
p∗ ← maxPr(Ω∗) with p∗ < pg
V ∗ ← Vg\atrC
findDominionPair(V ∗,Ω∗, p∗)

end if
end if

end procedure

3.3 Example

The algorithm is now demonstrated by means of an example. Consider the parity game as
displayed in Fig 6, with V3 = {b, c, g} and V2 = {a, d, e, f}.

Starting with the vertices with the highest priority, the algorithm starts with pg = 6 and
U = {b}. The even attractor set of U is {a, b, c} as shown in Fig 7a by orange line indicators,
since α = 6 ≡2 0 and since a is a α vertex that must move into U and c is an α vertex that
can move into U . The remaining α vertices d, e, f do not necessarily need to move into U
and the remaining α vertex g cannot move into U . Thus then U = {a, b, c}.
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Figure 6: An example of a parity game

(a) Attractor set of U = {a, b, c} (b) Applying step 6(a) of the algorithm

Figure 7: An example of a parity game

Since the escape set contains vertex b, as that is an α vertex that must leave U in its next
move, U is open in the total game and open in the subgame, which at this point are similar
games. Thus step 6(a) of the algorithm is executed. The priority function is updated by
promoting the priorities of the vertices in U to 6, the new max priority is 3 and the vertices
in U and their edges are no longer considered in the following subgame (as indicated by red
lines), see Fig 7b.

Now U = {f} and its odd attractor set remains the same as α = 3 ≡2 1 and there are
no α vertices that can move into U and no α vertices that must move into U . The escape
set of U contains f since it has to move out of U in its next move. Since f can move to a
vertex in the subgame, namely e, U is both open in the subgame as in the total game, hence
again step 6(a) is executed. Since there is only one vertex in U , priority promotion brings no
change and the next subgame continues without vertices a, b, c and f , see Fig 8a.

The new max priority is then 2, giving U = {e, g} and its even attractor set U = {d, e, g}
since α = 2 ≡2 0 and d is a α vertex that must move into U (in this subgame). The escape
set of U is empty in the subgame, but not empty in the total game where it contains a and b.
Hence step 6(b) is executed, where I = {a, b} and thus p∗ = 6. The priorities of the vertices
in U are then promoted to 6, while the rest remains the same. Also, since p∗ = 6, the new
subgame contains again all vertices in the total game.

Having U = {a, b, c, d, e, g}, the even attractor set of U then contains all vertices in the
total game as shown in Fig 8b, since α = 6 ≡2 0 and f is a α vertex that must move into
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U . Since U contains all vertices in the total game, it is obviously closed in the total game
and thus this set is returned as W3. In other words, W2 is empty, meaning player even can
always win this game no matter where it starts and no matter the moves of player odd.

(a) New attractor set U = {d, e, g} (b) New attractor set contains all vertices

Figure 8: An example of a parity game

4 BDD-based Priority Promotion Algorithm

In this section the adaptation of the Priority Promotion algorithm is presented and explained
in detail by first elaborating on which BDDs will be created and how, followed by a description
of how the Priority Promotion operations are implemented using BDDs.

4.1 BDD creation

For the purpose of BDD-based Priority Promotion, several BDDs are initially created. Given
a parity game PG =< V,E,Ω, (V3, V2) >, two BDDs are created for V , one BDD each for
E, V3 and V2 as well as two BDDs per priority in Ω, namely POp and PCp for each p in
Ω, where POp represents the set of vertices in V that originally have priority p and PCp
represents the set of vertices in V that currently have priority p, i.e., in the current subgame.
The distinction between these two BDDs per priority is necessary in order to keep track of
both the original priority function Ω and the current priority function Ωg. For a similar reason
two BDDs are created for V , namely V O and V C to represent the vertices in the original
game and the vertices in the current game respectively.

For V O, V C, V3, V2 and for the BDDs per priority, the idea is similar, namely to
represent each vertex by a boolean formula and by taking the disjunction of these formulas.
Representing each vertex by a boolean formula is done by using binary encoding. Given a set
of boolean variables, each possible combination of these variables can be used to represent
one vertex. The number of boolean variables needed to represent a vertex depends on the
total number of vertices, since n boolean variables have 2n possible combinations and can
thus represent a maximum of 2n vertices.

For example, the parity game provided in Section 3.3 consists of 7 vertices. It would
then suffice to use 3 boolean variables. Considering 3 such variables x, y, z, a possible binary
encoding for the vertices in this parity game is shown in Fig 9. Which boolean formula
is assigned to which vertex has an effect on the speed of the algorithm. Adjacent vertices
preferably differ by as few bits as possible, but this is not always possible, especially not when
there are cycles.
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Figure 9: Binary encoding of a parity game

For this binary encoding, a BDD can now easily be created as follows: V O = V C =
{(x∧y∧z)∨(x∧y∧¬z)∨(x∧¬y∧z)∨(x∧¬y∧¬z)∨(¬x∧y∧z)∨(¬x∧y∧¬z)∨(¬x∧¬y∧z).
Note that when all possible combinations of the variables are used, i.e., in this case if all 8
combinations for x, y, z would be used, then the BDD would simply have one vertex named
True. This is not the case here however, since there are only 7 vertices in the parity game
under consideration.

For E a different technique is used to create a boolean formula for the BDD. First, a copy is
created for each boolean variable and for each vertex. So, continuing with the example above,
6 boolean variables are used for E namely x, y, z, x′, y′ and z′. Note that using the following
variable ordering is generally more efficient than the previous one: x, x′, y, y′, z, z′. The copy
of each vertex is similar to its original, except that each occurrence of x, y, z is replaced by
x′, y′, z′ respectively. For instance, the copy of vertex (¬x ∧ y ∧ ¬z) is (¬x′ ∧ y′ ∧ ¬z′).

For each vertex v an implication is created where the left-hand side of the implication is
the original representation of v and the right-hand side of the implication is the disjunction
of the copies of all vertices that v can move to in one move. The entire boolean formula for
E is then the conjunction of all above-mentioned implications. Note that, for every vertex
representation not used, an implication to False must be added in order to create a correct
boolean formula for E.

Following the previous example, the resulting boolean formula for E is as follows:

(x ∧ y ∧ z) =⇒ (x′ ∧ y′ ∧ ¬z′) ∧
(x ∧ y ∧ ¬z) =⇒ ((x′ ∧ ¬y′ ∧ ¬z′) ∨ (¬x′ ∧ y′ ∧ ¬z′)) ∧
(x ∧ ¬y ∧ z) =⇒ (x′ ∧ y′ ∧ ¬z′) ∧
(x ∧ ¬y ∧ ¬z) =⇒ ((x′ ∧ y′ ∧ z′) ∨ (¬x′ ∧ y′ ∧ z′)) ∧
(¬x ∧ y ∧ z) =⇒ ((x′ ∧ y′ ∧ ¬z′) ∨ (¬x′ ∧ ¬y′ ∧ z′)) ∧
(¬x ∧ y ∧ ¬z) =⇒ ((x′ ∧ ¬y′ ∧ z′) ∨ (¬x′ ∧ y′ ∧ z′)) ∧
(¬x ∧ ¬y ∧ z) =⇒ ((x′ ∧ ¬y′ ∧ ¬z′) ∨ (¬x′ ∧ y′ ∧ ¬z′)) ∧
(¬x ∧ ¬y ∧ ¬z) =⇒ False

How these initially created BDDs are maintained throughout the algorithm is explained
in the next section.
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4.2 BDD-based operations

Considering the algorithm as depicted in Section 3.2, the following operations are reviewed:
computing initial U , computing the attractor set of U , computing the escape set of U , com-
puting Ω∗, computing V ∗ and computing I.

Computing initial U
Step 1 of the Priority Promotion algorithm is to take U to be the set of all vertices in Vg with
priority pg. This operation can simply be done by taking V C ∩ PCpg which contains all the
vertices in Vg that currently have the required priority pg.

Computing the attractor set of U
To compute the attractor set atrαg (U) of a set of vertices U in parity game g, the imple-
mentation provided by Ioannis Filippidis on GitHub at https://github.com/johnyf/dd it
used. This implementation uses existential quantification, another set operation that can be
done efficiently on BDDs. Applying an existential quantification for a variable x on a BDD Z
means to find the BDD Z ′ such that there exists an assignment for x for which Z ′ is satisfied,
regardless of the assignments of other variables. For example, consider the BDD in Fig 10,
where the existential quantification of r in Z results in the BDD Z ′ containing only True.
This means that there exists some assignment for r such that the boolean formula True is
satisfied regardless of the assignments for p and q.

Figure 10: BDD Z (left) and BDD Z ′ with existential quantification for r in Z (right)

Let Q[u → u′] denote the BDD that results from replacing all boolean variables in BDD
Q with their primed counterparts, which are introduced in the previous section and vice versa
for Q[u′ → u]. Let EQ(w, u) denote the existential quantification of u in w. Furthermore let
E denote the BDD representing the edge relation E and let U denote the BDD representing
the vertices in U for which the backwards analysis is requested. Computing the attractor set
of U is then done as follows.

First the predecessor set is computed. For this, first the intersection of the BDDs E and
U [x → x′] is taken, which results in a BDD showing which moves in E end in U and which
do not. Using existential quantification for all primed variables x′ on this new BDD another
BDD is returned, which represents a set P of vertices for which there exists a move to a
vertex in U . This computed set P however does not yet meet the requirements as specified in
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Definition 3.3. Hence from P first all α vertices are removed for which there is another vertex
u ∈ V \U : (v, u) ∈ E, resulting in the correct predecessor set. The algorithm then continues
with the next predecessor set as specified in Definition 3.4 (See pseudocode below).

procedure getAtr(U, V )
q ← U
qold ← False
while q ! = qold do . While new vertices are still being added continue

qold = q
predQ← getPred(q)
a← Vα ∩ predQ
predV notU ← getPred(V \U)
na← Vα\predV notU
predQ← (na ∪ a) ∩ V . Make sure to only get vertices in the current game
q = q ∪ predQ ∪ U

end while
return q

end procedure

procedure getPred(U)
nextZ ← U [u→ u′]
w ← E ∩ nextZ
predU ← EQ(w, u′)
return predU

end procedure

Computing the escape set of U
Since by Definition 3.5 it is given that escα(U, Vg) = U ∪ preα(Vg\U) the same technique is
applied to compute the escape set escα(U, Vg) as for computing the attractor set.

Computing Ω∗

To compute Ω∗, several operations are required depending on whether the set U is α-open or
α-closed in the subgame.

If U is α-open, the following operations are needed: for all vertices u in U , Ω∗(u) = pg
and for all vertices u′ in V \U , Ω∗(u′) = Ωg(u

′). This can simply be done by taking PCpg =
PCpg ∪ U and PCp = PCp\U for all priorities p in Ω such that p 6= pg (See pseudocode
below).

...
PCpg ← PCpg ∪ U
for p ∈ Pr : p ! = pg do

PCp = PCp\U
end for
...

If U is α-closed the following operations are needed: for all vertices u in U , Ω∗(u) = p∗,
for all vertices u′ in V \U with Ωg(u

′) < p∗, Ω∗(u′) = Ω(u′) and for all vertices u′′ in V \U
with Ωg(u

′′) ≥ p∗, Ω∗(u′′) = Ωg(u
′′). This can be done in a few simple steps. First of all let

T be the union of all PCp for p < p∗, followed by for all p < p∗, PCp = (POp ∩ T )\U , and
finally PCp∗ = PCp∗ ∪ U (See pseudocode below).

Seminar Formal System Analysis L. Sanchez
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...
T ←

⋃
p<p∗ PCp

for p ∈ Pr : p < p∗ do
PCp = (POp ∩ T )\U

end for
PCp∗ ← PCp∗ ∪ U
...

Computing V ∗

There are two possible operations for computing V ∗, namely V ∗ is the set of vertices in Vg\U
and V ∗ is the set of vertices v in V such that Ω∗(v) ≤ p∗. In the first case the computation
can be done by taking V C = V C\U and in the second case by taking V C =

⋃
p≤p∗ PCp.

Since computing Ω∗ precedes computing V ∗, PCp will already be properly updated for this
operation, for all p ≤ p∗.

Computing I
For this operation, the same implementation is used as for computing the attractor set and
the escape set, but it is slightly altered to find a ’successor’ set rather than the predecessor
set.

First the intersection is created of E and U . Then existential quantification for all original
variables u is used to return a BDD R showing for which vertices a move is possible starting
from a vertex in U . These vertices are still represented in their primed form however, so they
need to be translated back to their original form by doing R[u′ → u]. To compute the set I,
this method is applied to Vα ∩U and from the result all vertices are extracted that are in the
total game but not in U . The pseudocode to compute I is shown below.

...
i← getSuc(Vα ∩ U)
I ← (i ∩ V )\U
...

procedure getSuc(U)
w ← E ∩ U
sucU ← EQ(w, u) . Existential quantification of u in w
sucU ← sucU [u′ → u]
return sucU

end procedure

5 Experimental setup

In this section a description is given on how the difference is tested between the original
Priority Promotion and the BDD-based version.

Both algorithms are first implemented using Python. The code for both implementations
can be found in the appendix. Several test cases are created in the form of parity games.
These test cases differ in the number of vertices, the number of priorities and the number
of boolean variables as those parameters are assumed to have an effect on the efficiency of
BDD-based Priority Promotion. These test cases are run on the original Priority Promotion
algorithm and on the BDD-based version. The results are evaluated on correctness and on
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speed, where a difference in speed is monitored between the time needed for pre-processing
the data and the time needed for executing the algorithm. Some details on the test cases are
provided in Table 1. The first two test cases are added to the Appendix, whilst the latter two
are omitted due to readability and size. These test cases are added to the paper as text files
as well as the text files for all test cases containing the format used for the BDD version.

Table 1: Details on the test cases

#vertices #priorities #Booleans

mini1 9 7 8
mini2 7 6 6
chatbox1 98305 2 36
chatbox2 163840 3 36

6 Results

In this section the results of the experiments are provided and discussed.

The results of running both versions of the algorithm on the test cases is shown in Table
2, where for each test case the result is mentioned as well as the number of dominion pairs
that have been found and the number of recursive calls that were made. Note that in all cases
all vertices are won by player even but that chatbox2 required running the algorithm twice to
find two separate dominions both for player even. One can clearly see that both algorithms
return the same results when run on the test cases, as is desired, since other results would
most likely indicate flaws in the implementation.

Table 2: Results for the test cases on outcome

PP BDD-based PP

Result #dom. #rec. calls Result #dom. #rec. calls

mini1 all even 1 19 all even 1 19
mini2 all even 1 4 all even 1 4
chatbox1 all even 1 1 all even 1 1
chatbox2 all even 2 4 all even 2 4

The performance results of running both versions of the algorithm on the test cases is
shown in Table 3. A distinction is made between the time it takes to pre-process the data
and the time it takes to run the actual algorithm, where the time is listed in seconds. For
the original algorithm the pre-processing involves parsing the data from a text files into sets
and for the BDD-based version the pre-processing involves turning some hardcoded data
into actual BDDs using the library provided by Ioannis Filippidis on GitHub at https:

//github.com/johnyf/dd.

As one can see from the results in Table 3 the BDD-based version performs better when
considering larger parity games. The majority of the time however is consumed by pre-
processing of the data, i.e., creating the actual BDDs. These pre-processing times however
may differ per computer and also per implementation, meaning that the BDD-based version
of Priority Promotion is certainly worth pursuing more. If this pre-processing time can also
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Table 3: Results for the test cases on performance

PP BDD-based PP

Total Prep Alg Total Prep Alg

mini1 0.016 0.0 0.016 1.638 0.874 0.764
mini2 0.016 0.0 0.016 0.827 0.671 0.156
chatbox1 10.888 4.555 6.333 7.316 7.051 0.265
chatbox2 45.645 8.330 37.315 12.761 12.121 0.640

be reduced significantly, the BDD-based version would provide an even bigger improvement
over the original version, at least when considering larger priority games.

7 Conclusion

After implementing the original Priority Promotion algorithm as well as its BDD-based version
and after running several test cases differing in number of vertices, number of priorities and
number of Booleans, the conclusion can be drawn that the BDD-based version runs much
faster than the original version, when considering larger parity games. Since the bulk of
the runtime for this version is consumed by the pre-processing of the data, future work
can determine whether this pre-processing time can also be reduced significantly, thereby
rendering the BDD-based version of Priority Promotion even more efficient than the original
algorithm.

Furthermore, since the results for the BDD-based version of Priority Promotion indicate
a potential great improvement over the original version, future work may also include testing
other parity game solving algorithms for their potential for increased efficiency when imple-
mented by using BDDs.
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A Original Priority Promotion implementation

from time import proce s s t ime

# main loop
def f indDominionPair ( Psg , r , p ) :

global remain ingVert i ces , countPairs , countCa l l s
countCa l l s = countCa l l s + 1
# g e t i n i t i a l V
V = getV ( Psg , r , p )
alpha = p%2
i f alpha == 0 :

a lphaSet = Ps0
notAlphaSet = Ps1

else :
a lphaSet = Ps1
notAlphaSet = Ps0

# g e t a t t r a c t o r s e t o f V
V = getAtr (V, alphaSet , notAlphaSet , Psg )

#i f c l o s e d in t o t a l game
i f isClosedInGame (V, alphaSet , notAlphaSet , Ps ) :

#p r i n t (” c l o s e d in t o t a l game”)
atrV = getAtr (V, alphaSet , notAlphaSet , Ps )
#p r i n t (” found dominion : ” , atrV , ” f o r p l a y e r : ” , a lpha ) ;
print ( ” found dominion f o r p laye r : ” , alpha ) ;
i f len ( atrV ) < r ema in ingVer t i c e s :

r ema in ingVer t i c e s = rema in ingVer t i c e s − len ( atrV )
countPair s = countPairs + 1
for v in atrV :

Ps [ v ] = Fal se
newP = 0
for v in range ( len ( Ps ) ) :

i f Ps [ v ] == True and pr [ v ] > newP :
newP = pr [ v ]

f indDominionPair ( Ps [ : ] , pr [ : ] , newP)
else :

print ( ” a lgor i thm completed ” )
return

#i f c l o s e d in subgame
e l i f isClosedInGame (V, alphaSet , notAlphaSet , Psg ) :

##g e t I
I = set ( )
for v in V. i n t e r s e c t i o n ( notAlphaSet ) :

for s in succ [ v ] . d i f f e r e n c e (V) :
i f Ps [ s ] == True :

I . add ( s )
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#g e t min p r i o r i t y in I
newP = getMinPr ( I , r )
#g e t new reg ion f u n c t i o n prNew
prNew = r [ : ]
for id in range ( len ( pr ) ) :

i f id in V :
prNew [ id ] = newP

e l i f r [ id ] != None and r [ id ] < newP :
prNew [ id ] = pr [ id ]

#g e t new s e t o f v e r t i c e s psgNew
psgNew = Ps [ : ]
for v in range ( numVertices ) :

i f prNew [ v ] != None and prNew [ v ] > newP :
psgNew [ v ] = Fal se

#i f open in subgame
else :

#g e t new reg ion f u n c t i o n prNew
prNew = r [ : ]
for id in range ( len ( pr ) ) :

i f id in V :
prNew [ id ] = p

else :
prNew [ id ] = r [ id ]

# g e t new max p r i o r i t y
newP = 0 ;
for pr i o in prNew :

i f pr i o != None and pr i o > newP and pr i o < p :
newP = pr i o

#g e t new s e t o f v e r t i c e s psgNew
psgNew = Psg
for v in V :

psgNew [ v ] = Fal se
return f indDominionPair (psgNew , prNew , newP ) ;

# Get the min p r i o r i t y o f a s e t o f nodes g iven a reg ion f u n c t i o n
def getMinPr ( I , r ) :

min = max( pr )
for i in I :

i f r [ i ] < min :
min = r [ i ]

return min ;

# Get the o r i g i n a l s e t V g iven a s e t o f v e r t i c e s , . . .
# . . . a reg ion f u n c t i o n and a p r i o r i t y
def getV ( Psx , r , p ) :

V = set ( )
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for x in range ( numVertices ) :
# i f the current v e r t e x i s in the subgame . . .
# . . . and i t s p r i o r i t y i s p , add i t to V
i f Psx [ x ] == True and r [ x ] == p :

V. add ( x )
return V;

# Get the a t t r a c t o r s e t o f V, g i ven a s e t o f v e r t i c e s and a lpha
def getAtr (V, alphaSet , notAlphaSet , Psx ) :

Vold = V
Vnew = getPre ( Vold , alphaSet , notAlphaSet , Psx )
#p r i n t (” update : ” , Vnew)
while Vold != Vnew :

Vold = Vnew
Vnew = getPre ( Vold , alphaSet , notAlphaSet , Psx )
#p r i n t (” update : ” , Vnew)

return Vnew ;

# Get the p r e d e c e s s o r s e t o f V, g iven a s e t o f v e r t i c e s and a lpha
def getPre (V, alphaSet , notAlphaSet , Psx ) :

Vpre = set ( )
for x in alphaSet :

i f Psx [ x ] == True :
for sx in succ [ x ] :

i f Psx [ sx ] == True and sx in V:
Vpre . add ( x )
break

for x in notAlphaSet :
i f Psx [ x ] == True :

empty = True
subset = True
for sx in succ [ x ] :

i f Psx [ sx ] == True and sx not in V:
empty = False
subset = False
break

e l i f Psx [ sx ] == True :
empty = False

i f subset and not empty :
Vpre . add ( x )

return V |Vpre ;

# Check i f (V, a lpha ) i s c l o s e d in game Ps
def isClosedInGame (V, alphaSet , notAlphaSet , Psx ) :

for x in alphaSet . i n t e r s e c t i o n (V) :
oneInPs = False
oneInV = False
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for sx in succ [ x ] :
i f Psx [ sx ] == True :

oneInPs = True
i f sx in V:

oneInV = True
break

i f oneInPs and not oneInV :
return False ;

for x in notAlphaSet . i n t e r s e c t i o n (V) :
for sx in succ [ x ] :

i f Psx [ sx ] == True and not sx in V :
return False ;

return True ;

s t a r t C r e a t i n g = proce s s t ime ( )
# read p a r i t y game document
pGFile = open( ”D:\Documents\School \ Jaar 5 \Q2 Seminar\PG\ chatbox2 . pg so lve r ” , ” r ” )

# i n i t i a l i z e a l l r e q u i r e d data s t r u c t u r e s
Lines = pGFile . r e a d l i n e s ( ) [ 1 : ]
numVertices = len ( Lines )
Ps = l i s t ( )
Ps0 = set ( )
Ps1 = set ( )
Pr = set ( )
pr = [ None ] ∗ numVertices
succ = l i s t ( )
numPr io r i t i e s = len ( Pr )

# parse data from f i l e i n t o data s t r u c t u r e s
for x in range ( numVertices ) :

ve r tex = Lines [ x ] . s p l i t ( ” ” )
Ps . append ( True )
Pr . add ( int ( f loat ( ver tex [ 1 ] ) ) )
pr [ x ] = int ( f loat ( ver tex [ 1 ] ) )
i f ver tex [ 2 ] == ”0” :

Ps0 . add ( int ( f loat ( ver tex [ 0 ] ) ) )
else :

Ps1 . add ( int ( f loat ( ver tex [ 0 ] ) ) )
succX = set ( )
for s in range (3 , len ( ver tex )−1) :

succX . add ( int ( f loat ( ver tex [ s ] [ : − 1 ] ) ) )
succX . add ( int ( f loat ( ver tex [ len ( ver tex ) −1 ] [ : −2 ] ) ) )
#add t h i s s e t to the l i s t o f s u c c e s s o r s per v e r t e x
succ . append ( frozenset ( succX ) )

rema in ingVer t i c e s = len ( Ps )
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countPair s = 1 ;
countCa l l s = 0 ;

# run the a l go r i th m
s t a r tA lg = proce s s t ime ( )
f indDominionPair ( Ps [ : ] , pr [ : ] , max( Pr ) )
end = proce s s t ime ( )
print ( ”number o f dominion p a i r s : ” , countPairs )
print ( ”number o f r e c u r s i v e c a l l s : ” , countCa l l s )
print ( ” t o t a l time e lapsed : ” , end − s t a r t C r e a t i n g )
print ( ” time needed f o r par s ing data : ” , s t a r tA lg − s t a r t C r e a t i n g )
print ( ” time needed f o r a lgor i thm : ” , end − s t a r tA lg )

B BDD-based Priority Promotion implementation

from dd import a u t o r e f as bdd
from copy import deepcopy
from time import proce s s t ime

s t a r t C r e a t i n g = proce s s t ime ( )

#c r e a t e BDD’ s
Var = bdd .BDD( )
Var . d e c l a r e ( ”x” , ”x ’ ” , ”y” , ”y ’ ” , ”z” , ”z ’ ” , ”w” , ”w ’ ” )
s = ( ” (˜ x /\ y /\ z /\ w) \/ ”

” ( x /\ y /\ z /\ w) \/ ”
” ( x /\ y /\ z /\ ˜w) \/ ”
” ( x /\ y /\ ˜z /\ ˜w) \/”
” (˜ x /\ ˜y /\ z /\ w) \/”
” ( x /\ ˜y /\ z /\ w) \/ ”
” ( x /\ ˜y /\ z /\ ˜w) \/”

” ( x /\ ˜y /\ ˜z /\ ˜w) \/”
” (˜ x /\ ˜y /\ ˜z /\ ˜w) ” )

VO = Var . add expr ( s )
VC = Var . add expr ( s )

t = ( ” (˜ x /\ y /\ z /\ w) \/ ”
” ( x /\ y /\ z /\ w) \/”
” (˜ x /\ ˜y /\ z /\ w) \/”
” ( x /\ ˜y /\ z /\ w) \/ ”
” ( x /\ ˜y /\ ˜z /\ ˜w) \/”

” (˜ x /\ ˜y /\ ˜z /\ ˜w) ” )
V odd = Var . add expr ( t )
V even = VO & ˜ V odd

PO 0 = Var . add expr ( ” ( x /\ ˜y /\ z /\ w) ” )
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PC 0 = Var . add expr ( ” ( x /\ ˜y /\ z /\ w) ” )
PO 1 = Var . add expr ( ” ( x /\ y /\ ˜z /\ ˜w ) \/ ( x /\ ˜y /\ ˜z /\ ˜w) ” )
PC 1 = Var . add expr ( ” ( x /\ y /\ ˜z /\ ˜w ) \/ ( x /\ ˜y /\ ˜z /\ ˜w) ” )
PO 2 = Var . add expr ( ” (˜ x /\ y /\ z /\ w) \/ (˜ x /\ ˜y /\ ˜z /\ ˜w) ” )
PC 2 = Var . add expr ( ” (˜ x /\ y /\ z /\ w) \/ (˜ x /\ ˜y /\ ˜z /\ ˜w) ” )
PO 3 = Var . add expr ( ” ( x /\ y /\ z /\ ˜w) ” )
PC 3 = Var . add expr ( ” ( x /\ y /\ z /\ ˜w) ” )
PO 4 = Var . add expr ( ” (˜ x /\ ˜y /\ z /\ w) ” )
PC 4 = Var . add expr ( ” (˜ x /\ ˜y /\ z /\ w) ” )
PO 5 = Var . add expr ( ” ( x /\ ˜y /\ z /\ ˜w) ” )
PC 5 = Var . add expr ( ” ( x /\ ˜y /\ z /\ ˜w) ” )
PO 6 = Var . add expr ( ” ( x /\ y /\ z /\ w) ” )
PC 6 = Var . add expr ( ” ( x /\ y /\ z /\ w) ” )

# c r e a t e d i c t i o n a r y f o r p r i o r i t i e s
curPr = {0 : PC 0 , 1 : PC 1 , 2 : PC 2 , 3 : PC 3 , 4 : PC 4 , 5 : PC 5 , 6 : PC 6}
or igPr = {0 : PO 0 , 1 : PO 1 , 2 : PO 2 , 3 : PO 3 , 4 : PO 4 , 5 : PO 5 , 6 : PO 6}

u = ( ” ( (˜ x /\ y /\ z /\ w) => ( (˜ x ’ /\ y ’ /\ z ’ /\ w ’) \/ (˜ x ’ /\ ˜y ’ /\ z ’ /\ w ’ ) ) ) /\ ”
” ( ( x /\ y /\ z /\ w) => ( (˜ x ’ /\ y ’ /\ z ’ /\ w ’) \/ ( x ’ /\ y ’ /\ z ’ /\ ˜w ’ ) ) ) /\ ”
” ( ( x /\ y /\ z /\ ˜w) => ( ( x ’ /\ ˜y ’ /\ z ’ /\ ˜w ’ ) \/ ( x ’ /\ y ’ /\ ˜z ’ /\ ˜w ’ ) ) ) /\ ”
” ( ( x /\ y /\ ˜z /\ ˜w) => ( ( x ’ /\ y ’ /\ ˜z ’ /\ ˜w ’ ) \/ ( x ’ /\ y ’ /\ z ’ /\ ˜w ’ ) ) ) /\ ”
” ( (˜ x /\ ˜y /\ z /\ w) => ( (˜ x ’ /\ y ’ /\ z ’ /\ w ’) \/ ( x ’ /\ ˜y ’ /\ z ’ /\ w ’ ) ) ) /\ ”
” ( ( x /\ ˜y /\ z /\ w) => ( ( x ’ /\ ˜y ’ /\ z ’ /\ w ’) \/ ( x ’ /\ y ’ /\ z ’ /\ w ’ ) ) ) /\ ”
” ( ( x /\ ˜y /\ z /\ ˜w) => ( ( x ’ /\ ˜y ’ /\ z ’ /\ w ’) \/ ( x ’ /\ y ’ /\ z ’ /\ ˜w ’ ) ) ) /\ ”

” ( ( x /\ ˜y /\ ˜z /\ ˜w) => ( ( x ’ /\ ˜y ’ /\ z ’ /\ ˜w ’ ) \/ (˜ x ’ /\ ˜y ’ /\ ˜z ’ /\ ˜w ’ ) ) ) /\ ”
” ( (˜ x /\ ˜y /\ ˜z /\ ˜w) => ( (˜ x ’ /\ ˜y ’ /\ ˜z ’ /\ ˜w ’ ) \/ ( x ’ /\ ˜y ’ /\ ˜z ’ /\ ˜w ’ ) ) ) /\ ”

” ( ( x /\ y /\ ˜z /\ w) => FALSE) /\ ”
” ( ( x /\ ˜y /\ ˜z /\ w) => FALSE) /\ ”
” ( (˜ x /\ y /\ z /\ ˜w) => FALSE) /\ ”
” ( (˜ x /\ y /\ ˜z /\ w) => FALSE) /\ ”
” ( (˜ x /\ y /\ ˜z /\ ˜w) => FALSE) /\ ”
” ( (˜ x /\ ˜y /\ z /\ ˜w) => FALSE) /\ ”
” ( (˜ x /\ ˜y /\ ˜z /\ w) => FALSE) ” )

E = Var . add expr (u)

unprime = {”x ’ ” : ”x” , ”y ’ ” : ”y” , ”z ’ ” : ”z” , ”w ’ ” : ”w”}
prime = {”x” : ”x ’ ” , ”y” : ”y ’ ” , ”z” : ”z ’ ” , ”w” : ”w ’ ”}
qvars = {”x ’ ” , ”y ’ ” , ”z ’ ” , ”w ’ ”}
yvars = {”x” , ”y” , ”z” , ”w”}

countCa l l s = 0 ;
countPair s = 1 ;
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# main loop
def f indDominionPair (p) :

global VO, VC, E, V even , V odd , curPr , or igPr , countPairs , countCa l l s
countCa l l s = countCa l l s + 1
# g e t i n i t i a l U
U = curPr [ p ] & VC
alpha = p%2
i f alpha == 0 :

a lphaSet = V even
notAlphaSet = V odd

else :
a lphaSet = V odd
notAlphaSet = V even

# g e t a t t r a c t o r s e t o f U
U = getAtr (U, VC, alphaSet , notAlphaSet )

# CHECK IF U CLOSED IN TOTAL GAME
# c r e a t e escape s e t o f U ( f o r not a lpha )
predU = getPred (U)
predVOnotU = getPred (VO & ˜ U)
# f i n d a l l a lpha nodes in U t h a t are not in Pre (U)
a = alphaSet & U & ˜ predU
# f i n d a l l non−a lpha nodes in U t h a t are in Pre (VO\U)
na = notAlphaSet & U & predVOnotU
# combine both
escTota l = a | na

i f escTota l == Var . f a l s e :
# c l o s e d in t o t a l game : g e t i t s a t t r a c t o r s e t
dom = getAtr (U, VO, alphaSet , notAlphaSet )
print ( ” found dominion : ” , dom. to expr ( ) , ” f o r p laye r : ” , alpha )
# check i f t h e r e are v e r t i c e s not in dominion
r e s = VO & ˜ dom
i f not r e s == Var . f a l s e :

# cont inue wi th next dominion
countPair s = countPairs + 1
VO = r e s
VC = r e s
maxP = getMaxPr (VC)
f indDominionPair (maxP)

else :
print ( ” a lgor i thm complete ” )

return ;

# CHECK IF CLOSED IN SUBGAME
# c r e a t e escape s e t o f U ( f o r not a lpha )
predU = getPred (U)
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predVCnotU = getPred (VC & ˜ U)
# f i n d a l l a lpha nodes in U t h a t are not in Pre (U)
a1 = alphaSet & U & ˜ predU
# f i n d a l l a lpha nodes in U t h a t are in Pre (VC\U)
a2 = alphaSet & U & predVCnotU
# f i n d a l l a lpha nodes t h a t MUST l e a v e U
a = a2 & a1
# f i n d a l l non−a lpha nodes in U t h a t are in Pre (VC\U)
na = notAlphaSet & U & predVCnotU

# combine both s e t s
escSub = a | na
i f escSub == Var . f a l s e :

# c l o s e d in subgame : g e t I and newP
I = getSuc ( notAlphaSet & U) & ˜ U & VO
newP = getMinPr ( I )
# g e t union o f PCp f o r a l l p < newP
union = Var . f a l s e
for k in sorted ( curPr ) :

i f k < newP :
union = union | curPr [ k ]

else :
break

# f o r a l l v e r t i c e s wi th p < newP r e s e t p r i o r i t y
for k in sorted ( curPr ) :

i f k < newP :
curPr [ k ] = or igPr [ k ] & union & ˜ U

else :
break

# promote a l l v e r t i c e s in U to newP
curPr [ newP ] = curPr [ newP ] | U
# g e t new s e t o f v e r t i c e s
VC = Var . f a l s e
for k in sorted ( curPr ) :

i f k <= newP :
VC = (VC | curPr [ k ] ) & VO

else :
break

else :
# open in subgame
newP = 0 ;
# promote a l l v e r t i c e s in U to p r i o r i t y p
curPr [ p ] = curPr [ p ] | U
# remove t h e s e v e r t i c e s from ot her p r i o r i t y groups . . .
#. . . and f i n d new max p r i o r i t y
for k in curPr :

i f k != p :

Seminar Formal System Analysis L. Sanchez



TU/e, Department of Mathematics and Computer Science 26

curPr [ k ] = curPr [ k ] & ˜ U
i f k > newP and k < p and not curPr [ k ] & VO == Var . f a l s e :

newP = k
# f i n d new s e t o f v e r t i c e s
VC = VC & ˜ U

return f indDominionPair (newP ) ;

def getPred ( z ) :
global E, qvars , prime
# rename the v a r i a b l e s in z to t h e i r primed v e r s i o n
next z = Var . l e t ( prime , z )
# f i n d a l l moves to a node in z
w = E & next z
# e x i s t e n t i a l q u a n t i f i c a t i o n over x ’ , y ’ , z ’ . . .
# . . . to f i n d a l l nodes t h a t can move i n t o z
return Var . quant i fy (w, qvars , f o r a l l=Fal se )

def getSuc ( z ) :
global E, yvars , unprime
# f i n d a l l moves from a node in z
w = E & z
# e x i s t e n t i a l q u a n t i f i c a t i o n over x , y , z . . .
# . . . to f i n d a l l nodes t h a t some node in U can move to
sucz = Var . quant i fy (w, yvars , f o r a l l=Fal se )
# rename the v a r i a b l e s in z to t h e i r o r i g i n a l v e r s i o n
return Var . l e t ( unprime , sucz )

def getAtr (U, V, aS , naS ) :
# s t a r t from empty s e t
q = U
qold = Var . f a l s e
# f i x p o i n t reached ?
while q != qold :

qold = q
predQ = getPred ( q )
predVnotU = getPred (V & ˜ U)
# t ak e a l l non−a lpha nodes t h a t cannot make a move i n t o VC\U
na = naS & ˜ predVnotU
# t ak e a l l non a lpha nodes in na . . .
# . . . and a l l a lpha nodes t h a t are in the current game
# note s i n c e na not in Pre (VC\U) na must be in Pre (U)
predq = ( na | ( predQ & aS ) ) & V
q = q | predq | U

return q

def getMinPr (V) :
global curPr
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Keys = l i s t ( curPr . keys ( ) )
Keys . s o r t ( r e v e r s e=False )
# i f t h e r e i s no v e r t e x in V with the curren t l o w e s t p r i o r i t y . . .
#. . . c o n s i d e r next l o w e s t p r i o r i t y
for k in Keys :

i f curPr [ k ] & V != Var . f a l s e :
newP = k
break

return newP

def getMaxPr (V) :
global curPr
Keys = l i s t ( curPr . keys ( ) )
Keys . s o r t ( r e v e r s e=True )
# i f t h e r e i s no v e r t e x in V with the curren t l o w e s t p r i o r i t y . . .
#. . . c o n s i d e r next l o w e s t p r i o r i t y
for k in Keys :

i f curPr [ k ] & V != Var . f a l s e :
newP = k
break

return newP

# run the a l go r i th m
s t a r tA lg = proce s s t ime ( )
f indDominionPair ( getMaxPr (VC) )
end = proce s s t ime ( )
print ( ”number o f dominion p a i r s : ” , countPairs )
print ( ”number o f r e c u r s i v e c a l l s : ” , countCa l l s )
print ( ” t o t a l time e lapsed : ” , end − s t a r t C r e a t i n g )
print ( ” time needed f o r c r e a t i n g BDDS: ” , s t a r tA lg − s t a r t C r e a t i n g )
print ( ” time needed f o r a lgor i thm : ” , end − s t a r tA lg )

C Test case mini

par i t y 9 ;
0 6 1 3 , 4 ;
1 5 0 3 , 8 ;
2 4 1 4 , 8 ;
3 3 0 1 , 6 ;
4 2 1 2 , 4 ;
5 2 1 5 , 7 ;
6 1 0 3 , 6 ;
7 1 1 1 , 5 ;
8 0 1 0 , 8 ;

D Test case mini2
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par i t y 7 ;
0 5 1 1 ;
1 6 0 3 , 5 ;
2 4 0 1 ;
3 1 1 0 , 4 ;
4 2 1 1 , 6 ;
5 3 1 2 , 4 ;
6 2 0 3 , 5 ;
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