
Algorithms for Model Checking (2IW55)
Lecture 11

Timed Verification: Timed Automata
Background material: Chapter 16, 17 and

handout R. Alur, “Timed Automata”

Tim Willemse
(timw@win.tue.nl)

http://www.win.tue.nl/∼timw
HG 6.81

1/28

Outline

1 Timed Systems

2 Timed Automata

3 Summary

4 Exercise

2/28

Timed Systems

So far, we have only considered untimed systems.

Timing is of crucial importance for many systems:
controllers found in airplanes (landing gear, collision avoidance).
controllers found in cars (airbag, future drive-by-wire systems).
communication protocols (re-routing upon timeouts).

Functional correctness is only one of many aspect:

the correct timing of an event is crucial.

timing influences behaviour: the passing of time may disable events.

Which model of time to use:

Discrete time.

Continuous time.

3/28

Timed Systems

In discrete time, time has a discrete nature:

Time can be described by natural numbers

A special tick action is used to model the advance of a single time unit

Advantage: standard temporal logic can be used to express timing properties: The
next-operator measures time.

Example

A timeout is set two time units after a message is sent:

A G (sent→ X X (timeout))

Discrete time is mainly used for synchronous systems, such as hardware.

4/28

Timed Systems

Simplicity is the key advantage to discrete time:

We can reuse mixed Kripke Structures: timed transitions are labelled with a tick
action.

We can check properties using existing languages such as CTL∗.

This means that traditional model checking algorithms are applicable.

Main disadvantages of discrete time:

delay between any pair of actions is a multiple of an a priori fixed minimal delay.

model is therefore only accurate up-to this minimal delay.
finding the minimal delay is difficult in practice:

how to find the minimal delay in a distributed, asynchronous system?

5/28

Timed Systems

In continuous time, time has a continuous nature:

Time can be described by a dense domain, such as real numbers

State changes can happen at any point in time

Example

An event on that must take place between time 0 and time 10 can be executed at time
0.000001, 1, e, π, . . .:

0.000001 . . . 1 . . . e . . . π . . . 10

. . .
on on on on

Problem: there are infinitely many moments on which action on can happen. How to
check that it happens before time t?

6/28

Timed Systems

Approach by Alur and Dill:

Restrict expressive power of the temporal logic. .Timed CTL

Describe timed systems symbolically . Timed Automata

Compute a finite representation of the infinite state spaceRegion Automata

→ We will be looking at the subproblem of reachability

7/28

Outline

1 Timed Systems

2 Timed Automata

3 Summary

4 Exercise

8/28

Timed Automata

off on

location

switch

A Timed Automaton:

has vertices called locations,

has edges called switches which are labelled with actions (not shown),

Intuition: executing a switch consumes no time, i.e. it is instantaneous.

time progresses in locations.

9/28

Timed Automata

off on

x ≥ 1

y = 4
z ≤ 2

guards

. . .

Has real-valued clocks x, y, z, . . ., which all advance with the same speed,

Has guards indicating when an edge may be taken.

Intuition: Guards express at which moments in time a transition is enabled.

Enabledness depends on the constraints on clocks.

10/28

Timed Automata

off
x ≤ 2

on
y ≤ 4

x ≥ 1

{z}

y = 4

{x}

z ≤ 2
{x, y}

location invariant

resets

. . .

Switches can reset clocks upon execution, i.e. set some clocks to 0.

Time can only increase as long as the location invariant holds.

A switch must be taken before the invariant becomes invalid.

11/28

Timed Automata

Example

The following timed automaton models a simple lamp with three locations: off, low and
bright. If a button is pressed the lamp is turned on for at most ten time-units. If the
button is pressed again, the lamp is turned off. However, if the button is pressed rapidly,
the lamp becomes bright.

off low
y ≤ 10

bright

y ≤ 10

press {y}

y = 10

press, y ≥ 2

press, y < 2

press

y = 10

12/28

Timed Automata

Timing constraints are provided by clock constraints:

φ ::= true | x ≤ c | c ≤ x | x < c | c < x | φ ∧ φ

c ∈N are constants (sometimes rational numbers);

x, y ∈ C are clocks
As usual:

x ∈ [c, ∞) is short for x ≥ c;
x ∈ [c1, c2) is short for x ≥ c1 ∧ x < c2

The set of clock constraints over a set of clocks C is denoted C(C).

13/28

Timed Automata

A timed automaton is a tuple

T = 〈L, L0, Act, C,−→, ι〉

L is a finite set of locations; L0 ⊆ L is a non-empty set of initial locations

Act is the set of actions

C is a finite set of clock variables

−→⊆ L× C(C)× Act× 2C × L is the set of switches

ι : L→ C(C) is the invariant assignment function

14/28

Timed Automata

A clock constraint φ contains free variables

The truth of a clock constraint φ depends on the values of the clocks

A clock valuation ν for a set C of clocks is a function ν : C→ R≥0

Clock constraints are evaluated in the context of a clock valuation ν:
[[true]]ν = true
[[x < c]]ν = ν(x) < c
[[c < x]]ν = c < ν(x)
[[x ≤ c]]ν = ν(x) ≤ c
[[c ≤ x]]ν = c ≤ ν(x)
[[φ1 ∧ φ2]]ν = [[φ1]]ν and [[φ2]]ν

We write ν|= φ iff [[φ]]ν = true.

Clock valuation update: ν + d is defined as: (ν + d)(x) = ν(x) + d for all d ∈ R≥0.

Clock valuation reset: [ν]R is defined as: [ν]R(x) = 0 if x ∈ R, else ν(x).

15/28

Timed Automata

Example

Let x, y be clocks and ν : {x, y} → R≥0 a clock valuation.

if ν(x) = 2 and ν(y) = π, then x < 3∧ y ≥ 3 holds

the clock constraint x > 2 is valid whenever ν(x) > 2.

the clock constraint x ≥ 2∧ x ≤ 2 is only valid whenever ν(x) = 2.

Some extensions to clock constraints:

x− y ∼ c for some inequality ∼,
¬φ for clock constraints φ

16/28

Timed Automata

Example

The effect of a lower bound guarding a switch:

true
x ≤ 2
{x}

2 4 6 8 10

2

4

value
of x

time

17/28

Timed Automata

Example

The effect of a lower bound and upper bound guarding a switch:

true
2 ≤ x ≤ 3
{x}

2 4 6 8 10

2

3

4

value
of x

time

18/28

Timed Automata

Example

The effect of an invariant:

x ≤ 3
true
{x}

2 4 6 8 10

2

3

4

value
of x

time

19/28

Timed Automata

Example

The effect of an invariant and guard combined:

x ≤ 3
x ≥ 2
{x}

2 4 6 8 10

2

3

4

value
of x

time

20/28

Timed Automata

Example

Switches that reset different clocks can cause an arbitrary difference between clock values.
This is impossible to describe in a discrete time setting.

true

x ≥ 2
{x}

y ≥ 2
{y}

2 4 6 8 10

2

3

4

value
of x and y

time

x
y

21/28

Timed Automata

Let T = 〈L, L0, Act, C,−→, ι〉 be a Timed Automaton. Its semantics is defined as a timed
transition system: [[T]] = 〈S, S0, Act,→, 7→〉

S = {(l, ν) | l ∈ L∧ ν : C→ R≥0 ∧ ν|= ι(l)}, i.e. all combinations of locations and
clock valuations that do not violate the location invariant.

S = {(l, ν) | l ∈ L0 ∧ ν : C→ R≥0 ∧ ν|= ι(l)}.
−→⊆ S× Act× S is defined as follows:

l
g a R−−−→ l′ ν|= g∧ ι(l) ν′ = [ν]R ν′|= ι(l′)

(l, ν) a−→ (l′, ν′)

7→⊆ S×R≥0 × S is defined as follows:

ν|= ι(l) ∀0 ≤ d′ ≤ d : ν + d′|= ι(l)

(l, ν) d7→ (l, ν + d)

22/28

Timed Automata

Lemma

Let ι(l) be a location invariant. Then for all d ∈ R≥0 and all ν:

ν|= ι(l) and ν + d|= ι(l) implies ∀0 ≤ d′ ≤ d : ν + d′|= ι(l)

The proof follows by a structural induction on ι(l).
This means that for location invariants, we can simplify the rule for timed transition
relations:

ν|= ι(l) ν + d|= ι(l)

(l, ν) d7→ (l, ν + d)

23/28

Timed Automata

Recalling intuition:

A switch l
g a R−−−→ l′ means that:

action a is enabled whenever guard g evaluates to true.
upon executing the switch, we move from location l to location l′ and reset all clocks in
R to zero.
only locations l′ that can be reached with clock values that satisfy the location invariant.

an invariant ι(l) limits the time that can be spent in location l.
staying in location l only is allowed as long as the invariant evaluates to true.
before the invariant becomes invalid location l must be left.
if no switch is enabled when the invariant becomes invalid no further progress is possible.

24/28

Outline

1 Timed Systems

2 Timed Automata

3 Summary

4 Exercise

25/28

Summary

Timed Systems can be modelled by discrete time or continuous time.

For discrete time, existing model checking can be reused.

For continuous time, a new model is introduced: Timed Automata.

Timed Automata give rise to infinite transition systems.

Timed Automata can model systems that cannot be described by means of discrete
time.

26/28

Outline

1 Timed Systems

2 Timed Automata

3 Summary

4 Exercise

27/28

Exercise

Consider the following Timed Automaton.

off
x ≤ 2

on
x ≤ 4

on, x ≥ 1

{x}

off, x = 4

{x}

repeat
x ≤ 2

Explain which switches can be executed.

Is there a possibility that the Timed Automaton enters a state in which time cannot
progress anymore?

Give the Timed Transition System for the Timed Automaton.

28/28

	Timed Systems
	Timed Automata
	Summary
	Exercise

