Algorithms for Model Checking (2IW55)
 Lecture 11
 Timed Verification: Timed Automata
 Background material: Chapter 16, 17 and handout R. Alur, "Timed Automata"

Tim Willemse
(timw@win.tue.nl)
http://www.win.tue.nl/~timw
HG 6.81

Outline

(1) Timed Systems

(2) Timed Automata

(3) Summary
(4) Exercise

Timed Systems

So far, we have only considered untimed systems.

- Timing is of crucial importance for many systems:
- controllers found in airplanes (landing gear, collision avoidance).
- controllers found in cars (airbag, future drive-by-wire systems).
- communication protocols (re-routing upon timeouts).

Functional correctness is only one of many aspect:

- the correct timing of an event is crucial.
- timing influences behaviour: the passing of time may disable events.

Which model of time to use:

- Discrete time.
- Continuous time.

Timed Systems

In discrete time, time has a discrete nature:

- Time can be described by natural numbers
- A special tick action is used to model the advance of a single time unit Advantage: standard temporal logic can be used to express timing properties: The next-operator measures time.

Example

A timeout is set two time units after a message is sent:
A G (sent $\rightarrow X X($ timeout $))$

Discrete time is mainly used for synchronous systems, such as hardware.

Simplicity is the key advantage to discrete time:

- We can reuse mixed Kripke Structures: timed transitions are labelled with a tick action.
- We can check properties using existing languages such as CTL*.

This means that traditional model checking algorithms are applicable.

Main disadvantages of discrete time:

- delay between any pair of actions is a multiple of an a priori fixed minimal delay.
- model is therefore only accurate up-to this minimal delay.
- finding the minimal delay is difficult in practice:
- how to find the minimal delay in a distributed, asynchronous system?

Timed Systems
In continuous time, time has a continuous nature:

- Time can be described by a dense domain, such as real numbers
- State changes can happen at any point in time

Example

An event on that must take place between time 0 and time 10 can be executed at time $0.000001,1, e, \pi, \ldots$:

Problem: there are infinitely many moments on which action on can happen. How to check that it happens before time t ?

Technische Universiteit

Timed Systems

Approach by Alur and Dill:

- Restrict expressive power of the temporal logic................................imed CTL
- Describe timed systems symbolically

Timed Automata

- Compute a finite representation of the infinite state spaceRegion Automata
\rightarrow We will be looking at the subproblem of reachability

Outline
(1) Timed Systems
(2) Timed Automata
(3) Summary
(4) Exercise

Timed Automata

A Timed Automaton:

- has vertices called locations,
- has edges called switches which are labelled with actions (not shown),
- Intuition: executing a switch consumes no time, i.e. it is instantaneous.
- time progresses in locations.

Technische Universiteit

Timed Automata

- Has real-valued clocks x, y, z, \ldots, which all advance with the same speed,
- Has guards indicating when an edge may be taken.
- Intuition: Guards express at which moments in time a transition is enabled.
- Enabledness depends on the constraints on clocks.

Technische Universiteit

Timed Automata

- Switches can reset clocks upon execution, i.e. set some clocks to 0 .
- Time can only increase as long as the location invariant holds.
- A switch must be taken before the invariant becomes invalid.

Technische Universiteit

Timed Automata

Example

The following timed automaton models a simple lamp with three locations: off, low and bright. If a button is pressed the lamp is turned on for at most ten time-units. If the button is pressed again, the lamp is turned off. However, if the button is pressed rapidly, the lamp becomes bright.

Timed Automata

Timing constraints are provided by clock constraints:

$$
\phi::=\operatorname{true}|x \leq c| c \leq x|x<c| c<x \mid \phi \wedge \phi
$$

- $c \in \mathbb{N}$ are constants (sometimes rational numbers);
- $x, y \in C$ are clocks
- As usual:
- $x \in[c, \infty)$ is short for $x \geq c$;
- $x \in\left[c_{1}, c_{2}\right)$ is short for $x \geq c_{1} \wedge x<c_{2}$

The set of clock constraints over a set of clocks C is denoted $\mathcal{C}(C)$.

Technische Universiteit

Timed Automata

A timed automaton is a tuple

$$
\mathcal{T}=\left\langle L, L_{0}, A c t, C, \longrightarrow, \iota\right\rangle
$$

- L is a finite set of locations; $L_{0} \subseteq L$ is a non-empty set of initial locations
- Act is the set of actions
- C is a finite set of clock variables
- $\longrightarrow \subseteq L \times \mathcal{C}(C) \times \operatorname{Act} \times 2^{C} \times L$ is the set of switches
- $\iota: L \rightarrow \mathcal{C}(C)$ is the invariant assignment function

Timed Automata

- A clock constraint ϕ contains free variables
- The truth of a clock constraint ϕ depends on the values of the clocks
- A clock valuation v for a set C of clocks is a function $v: C \rightarrow \mathbb{R}_{\geq 0}$
- Clock constraints are evaluated in the context of a clock valuation v :
- $[\text { true }]_{v}=$ true
- $[x<c]_{v}=v(x)<c$
- $[c<x]_{v}=c<v(x)$
- $[x \leq c]_{v}=v(x) \leq c$
- $[c \leq x]_{v}=c \leq v(x)$
- $\left[\phi_{1} \wedge \phi_{2}\right]_{v}=\left[\phi_{1}\right]_{v}$ and $\left[\phi_{2}\right]_{v}$
- We write $v=\phi$ iff $[\phi]_{v}=$ true.
- Clock valuation update: $v+d$ is defined as: $(v+d)(x)=v(x)+d$ for all $d \in \mathbb{R}_{\geq 0}$.
- Clock valuation reset: $[v]_{R}$ is defined as: $[v]_{R}(x)=0$ if $x \in R$, else $v(x)$.

Technische Universiteit

Timed Automata

Example

Let x, y be clocks and $v:\{x, y\} \rightarrow \mathbb{R}_{\geq 0}$ a clock valuation.

- if $v(x)=2$ and $v(y)=\pi$, then $x<3 \wedge y \geq 3$ holds
- the clock constraint $x>2$ is valid whenever $v(x)>2$.
- the clock constraint $x \geq 2 \wedge x \leq 2$ is only valid whenever $v(x)=2$.

Some extensions to clock constraints:

- $x-y \sim c$ for some inequality \sim,
- $\neg \phi$ for clock constraints ϕ

Technische Universiteit
 University of Technology

Timed Automata

Example

The effect of a lower bound guarding a switch:

Technische Universiteit
 University of Technology

Timed Automata

Example

The effect of a lower bound and upper bound guarding a switch:

Technische Universiteit
 University of Technology

Timed Automata

Example

The effect of an invariant:

Technische Universiteit
 University of Technology

Timed Automata

Example

The effect of an invariant and guard combined:

Timed Automata

Example

Switches that reset different clocks can cause an arbitrary difference between clock values. This is impossible to describe in a discrete time setting.

Timed Automata

Let $\mathcal{T}=\left\langle L, L_{0}, A c t, C, \longrightarrow, \iota\right\rangle$ be a Timed Automaton. Its semantics is defined as a timed transition system: $[\mathcal{T}]=\left\langle S, S_{0}, A c t, \rightarrow, \mapsto\right\rangle$

- $S=\left\{(l, v) \mid l \in L \wedge v: C \rightarrow \mathbb{R}_{\geq 0} \wedge v \models \iota(l)\right\}$, i.e. all combinations of locations and clock valuations that do not violate the location invariant.
- $S=\left\{(l, v) \mid l \in L_{0} \wedge v: C \rightarrow \mathbb{R}_{\geq 0} \wedge v \equiv \iota(l)\right\}$.
- $\longrightarrow \subseteq S \times A c t \times S$ is defined as follows:

$$
\frac{l \xrightarrow{g a R} l^{\prime} \quad v \equiv g \wedge \iota(l) \quad v^{\prime}=[v]_{R} \quad v^{\prime} \models \iota\left(l^{\prime}\right)}{(l, v) \xrightarrow{a}\left(l^{\prime}, v^{\prime}\right)}
$$

- $\mapsto \subseteq S \times \mathbb{R}_{\geq 0} \times S$ is defined as follows:

$$
\frac{v \equiv \iota(l) \quad \forall 0 \leq d^{\prime} \leq d: v+d^{\prime} \models \iota(l)}{(l, v) \stackrel{d}{\mapsto}(l, v+d)}
$$

Timed Automata

Lemma

Let $l(l)$ be a location invariant. Then for all $d \in \mathbb{R}_{\geq 0}$ and all v :

$$
v \models \iota(l) \text { and } v+d \models \iota(l) \text { implies } \forall 0 \leq d^{\prime} \leq d: v+d^{\prime} \models \iota(l)
$$

- The proof follows by a structural induction on $l(l)$.
- This means that for location invariants, we can simplify the rule for timed transition relations:

$$
\frac{v \models \iota(l) \quad v+d \models \iota(l)}{(l, v) \stackrel{d}{\mapsto}(l, v+d)}
$$

Timed Automata

Recalling intuition:

- A switch $l \xrightarrow{g a R} l^{\prime}$ means that:
- action a is enabled whenever guard g evaluates to true.
- upon executing the switch, we move from location l to location l^{\prime} and reset all clocks in R to zero.
- only locations l^{\prime} that can be reached with clock values that satisfy the location invariant.
- an invariant $l(l)$ limits the time that can be spent in location l.
- staying in location l only is allowed as long as the invariant evaluates to true.
- before the invariant becomes invalid location l must be left.
- if no switch is enabled when the invariant becomes invalid no further progress is possible.

Outline

(1) Timed Systems

(2) Timed Automata
(3) Summary

4 Exercise

Summary

- Timed Systems can be modelled by discrete time or continuous time.
- For discrete time, existing model checking can be reused.
- For continuous time, a new model is introduced: Timed Automata.
- Timed Automata give rise to infinite transition systems.
- Timed Automata can model systems that cannot be described by means of discrete time.

Outline

(1) Timed Systems

(2) Timed Automata
(3) Summary
(4) Exercise

Exercise

Consider the following Timed Automaton.

- Explain which switches can be executed.
- Is there a possibility that the Timed Automaton enters a state in which time cannot progress anymore?
- Give the Timed Transition System for the Timed Automaton.

