

Algorithms for Model Checking (2IW55)

Lecture 7 Boolean Equation Systems Background material: Chapter 3 and 6 of A. Mader, "Verification of Modal Properties using Boolean Equation Systems", Ph.D. thesis, 1997

> Tim Willemse (timw@win.tue.nl) http://www.win.tue.nl/~timw HG 6.81

Outline

Boolean Equation Systems

2 Model Checking using BESs

3 Solving BESs

4 Exercise

- Boolean Equation Systems are a versatile formal framework for verification.
- Boolean Equation Systems are systems of fixed point equations.

Given a set Var of propositional variables. A Boolean Expression is defined by:

 $f ::= X \mid \mathsf{true} \mid \mathsf{false} \mid f \land f \mid f \lor f$

A Boolean Equation is an equation of the form $\sigma X = f$, where $X \in Var$, $\sigma \in \{\mu, \nu\}$ and f is a Boolean Expression. A Boolean Equation System is a sequence of Boolean Equations:

 $\mathcal{E} ::= \varepsilon \mid (\sigma X = f) \mathcal{E}$

Note:

- Negation is not allowed, in order to ensure monotonicity.
- The order of equations is important. Intuitively, the topmost sign has priority.

- A variable W that occurs in a Boolean Expression of a BES \mathcal{E} is called bound, if there is an equation for W in \mathcal{E} , otherwise W is called free.
- If propositional variables are bound uniquely, the BES is well-formed; we only consider well-formed BESs.
- If ${\mathcal E}$ contains no free variables, ${\mathcal E}$ is closed, otherwise it is open.

- A variable W that occurs in a Boolean Expression of a BES \mathcal{E} is called bound, if there is an equation for W in \mathcal{E} , otherwise W is called free.
- If propositional variables are bound uniquely, the BES is well-formed; we only consider well-formed BESs.
- If ${\mathcal E}$ contains no free variables, ${\mathcal E}$ is closed, otherwise it is open.

Example

An example of a closed BES \mathcal{E} with three propositional variables X, Y and Z:

$$(\mu X = (X \land Y) \lor Z) \ (\nu Y = X \land Y) \ (\mu Z = Z \land X)$$

An example of an open BES \mathcal{F} with two propositional variables X and Y:

 $(\mu X = Y \lor Z) \ (\nu Y = X \land Y)$

An example of a BES that is not well-formed:

 $(\mu X = X) \ (\nu X = X)$

Intuitive semantics:

- Let Val be the set of all functions $f: Var \to \{ false, true \}$
- $\bullet~$ The solution of a BES is a valuation: $\eta:Val$
- Let $[f](\eta)$ denote the value of boolean expression f under valuation η .
- For the solution η of a BES \mathcal{E} , we wish $\eta(X) = [f](\eta)$ for all equations $\sigma X = f$ in \mathcal{E} .
- Also, we want the smallest (for μ) or greatest (for ν) solution, where topmost equation signs take priority over equation signs that follow.

Given a BES \mathcal{E} , we define $[\mathcal{E}]: Val \to Val$ by recursion on \mathcal{E} .

$$\begin{split} & [\mathcal{E}](\eta) & := \eta \\ & [(\mu X = f) \ \mathcal{E}](\eta) & := [\mathcal{E}](\eta[X := [f](\eta_{\mu})]) \text{ where } \eta_{\mu} := [\mathcal{E}](\eta[X := \mathsf{false}]) \\ & [(\nu X = f) \ \mathcal{E}](\eta) & := [\mathcal{E}](\eta[X := [f](\eta_{\mu})]) \text{ where } \eta_{\nu} := [\mathcal{E}](\eta[X := \mathsf{true}]) \end{split}$$

Outline

Boolean Equation Systems

2 Model Checking using BESs

3 Solving BESs

4 Exercise

Transformation of the μ -calculus model checking problem to BES

- Given is the following model checking problem:
 - a closed μ -calculus formula σX . f in Positive Normal Form and,
 - a Mixed Kripke Structure $M = \langle S, s_0, Act, R, L \rangle$.
- \bullet We define a BES ${\mathcal E}$ with the following property:

 $([\mathcal{E}](\eta))(X_s) =$ true iff $M, s \models \sigma X. f$

i.e. formula σX . f holds in state s if and only if the solution for X_s yields true.

- This BES is defined as follows:
 - For each subformula $\sigma X.g$ and for each state $s \in S$, we add the following equation:

 $\sigma X_s = RHS(s,g)$

• The order of the equations respects the subterm ordering in the original formula $\sigma X.~f.$

The Right-Hand Side of an equation is defined inductively on the structure of the μ -calculus formula:

$RHS(s,p) \\ RHS(s,X)$	=	$p \in L(s) \\ X_s$
$RHS(s, f \land g) \ RHS(s, f \lor g)$	=	$\begin{array}{l} RHS(s,f) \wedge RHS(s,g) \\ RHS(s,f) \vee RHS(s,g) \end{array}$
$RHS(s, [a]f)$ $RHS(s, \langle a \rangle f)$	=	$ \begin{array}{l} \bigwedge_{t \in S} \; \{RHS(t,f) \mid s \xrightarrow{a} t\} \\ \bigvee_{t \in S} \; \{RHS(t,f) \mid s \xrightarrow{a} t\} \end{array} $
$RHS(s, \mu X. f)$ $RHS(s, \nu X. f)$	=	X_s X_s
conventions:		$igwedge_{t\in S} \emptyset = true \; and \; igvee_{t\in S} \emptyset = false$

Example

- $RHS(1, [a]X) = RHS(2, X) \wedge RHS(3, X) = X_2 \wedge X_3.$
- $RHS(2, \langle b \rangle Y) = RHS(1, Y) \lor RHS(2, Y) = Y_1 \lor Y_2.$

- $RHS(3, \langle b \rangle Y) =$ false (empty disjunction!)
- $RHS(1, [a]\langle b \rangle \mu Z. Z)$
 - $= RHS(2, \langle b \rangle \mu Z. Z) \wedge RHS(3, \langle b \rangle \mu Z. Z) \wedge$
 - $= \quad (RHS(1, \ \mu Z.Z) \lor RHS(3, \ \mu Z.Z)) \land \mathsf{false}$
 - $= (Z_1 \vee Z_3) \wedge \mathsf{false}$
- Translation of $\mu X.\langle b \rangle$ true $\vee \langle a \rangle X$ to BES:

$$(\mu X_1 = X_3 \lor X_2) \ (\mu X_2 = \mathsf{true}) \ (\mu X_3 = \mathsf{false})$$

Example

 μ -calculus formula: $\nu X.([a]X \wedge \nu Y.\mu Z.(\langle b \rangle Y \vee \langle a \rangle Z))$ Translates to the following BES:

νX_1	=	$X_3 \wedge Y_1$
νX_2	=	$X_2 \wedge Y_2$
νX_3	=	$X_4 \wedge Y_3$
νX_4	=	$true \wedge Y_4$
νY_1	=	Z_1
νY_2	=	Z_2
νY_3	=	Z_3
νY_4	=	Z_4
μZ_1	=	$Y_2 \vee Z_3$
μZ_2	=	false $\lor Z_2$
μZ_3	=	false $\lor Z_4$
μZ_4	=	$Y_3 \lor false$

department of mathematics and computing science

Outline

Boolean Equation Systems

2 Model Checking using BESs

3 Solving BESs

4 Exercise

- We reduced the model checking problem $M,s\models f$ to the solution of a BES with $\mathcal{O}(|M|\times|f|)$ equations.
- We now want a fast procedure to solve such BESs.
- An extremely tedious way to solve a BES is to unfold its semantics.
- A very appealing solution is to solve it by Gauß Elimination.

Solving BESs

Gauß Elimination uses the following 4 basic operations to solve a BES:

• local solution: eliminate X in its defining equation:

 $\begin{array}{ll} \mathcal{E}_0 \ (\mu X = f) \ \mathcal{E}_1 & \text{becomes} & \mathcal{E}_0 \ (\mu X = [f[X := \mathsf{false}]) \ \mathcal{E}_1 \\ \mathcal{E}_0 \ (\nu X = f) \ \mathcal{E}_1 & \text{becomes} & \mathcal{E}_0 \ (\nu X = f[X := \mathsf{true}]) \ \mathcal{E}_1 \end{array}$

• Substitute definitions backwards:

$$\begin{array}{l} \mathcal{E}_0 \ (\sigma_1 X = X \lor \underline{Y}) \ \mathcal{E}_1 \ (\sigma_2 Y = Y \land X) \ \mathcal{E}_2 \\ \text{becomes:} \quad \mathcal{E}_0 \ (\sigma_1 X = X \lor (\underline{Y} \land \underline{X})) \ \mathcal{E}_1 \ (\sigma_2 Y = Y \land X) \ \mathcal{E}_2 \end{array}$$

• Substitute closed equations forward:

$$\begin{array}{l} \mathcal{E}_0 \ (\sigma_1 X = \mathsf{true}) \ \mathcal{E}_1 \ (\sigma_2 Y = Y \wedge X) \mathcal{E}_2 \\ \mathsf{becomes:} \quad \mathcal{E}_0 \ (\sigma_1 X = \mathsf{true}) \ \mathcal{E}_1 \ (\sigma_2 Y = Y \wedge \mathsf{true}) \ \mathcal{E}_2 \end{array}$$

• Boolean simplication: At least the following:

 $b \wedge \mathsf{true} \to b \qquad b \vee \mathsf{true} \to \mathsf{true} \qquad b \wedge \mathsf{false} \to \mathsf{false} \qquad b \vee \mathsf{false} \to b$

Solving BESs

Example

	$(\mu X = \mathbf{X} \lor Y) \ (\nu Y = X \lor (\mathbf{Y} \land Z)) \ (\mu Z = Y \land \mathbf{Z})$
$local \to$	$(\mu X = false \lor Y) \ (\nu Y = X \lor (true \land Z)) \ (\mu Z = Y \land false)$
simplifications \rightarrow	
substitution backwards \rightarrow	$(\mu X = Y) \ (\nu Y = X \lor Z)) \ (\mu Z = \text{false})$
-ilifications	$(\mu X = Y) \ (\nu Y = X \lor false) \ (\mu Z = false)$
simplifications →	$(\mu X = Y) \ (\nu Y = X) \ (\mu Z = false)$
substitution backwards \rightarrow	$(\mu X - \mathbf{X}) (\nu Y - X) (\mu Z - false)$
$local \to$	$(\mu X - X)(\nu T - X)(\mu Z - hasc)$
substitution forwards \rightarrow	$(\mu X = false) \ (\nu Y = X) \ (\mu Z = false)$
	$(\mu X = false) \ (\nu Y = false) \ (\mu Z = false)$

Solving BESs

Gauß Elimination is a decision procedure for computing the solution to a BES. Input: a BES ($\sigma_1 X_1 = f_1$) ... ($\sigma_n X_n = f_n$). Returns: the solution for X_1 .

for i = n downto 1 do if $\sigma_i = \mu$ then $f_i := f_i[X_i := \text{false}]$ else $f_i := f_i[X_i := \text{true}]$ end if for j = 1 to i - 1 do $f_j := f_j[X_i := f_i]$ end for end for

Note:

- Invariants of the outer loop:
 - f_i contains only variables X_j with $j \leq i$.
 - for all $i < j \le n$, X_j does not occur in f_j .
- Upon termination (i = 0), $\sigma_1 X_1 = f_1$ is closed and evaluates to true or false.
- One could forward-substitute the solution for X_1 and repeat the procedure to solve X_2 , etcetera.

Complexity of Gauß Elimination.

- Note that in $\mathcal{O}(n^2)$ substitutions, we obtain the final answer for X_1 .
- However, f_1 can have $\mathcal{O}(2^n)$ different copies of e_n as subterms, so intermediate expressions could become exponentially big.
- Practical efficiency increases a lot if one keeps all intermediate terms simplified all the time.
- Gauß Elimination can be sped up if a forward dependency analysis is conducted (so-called local model checking).
- Precise efficiency depends heavily on the set of simplification rules.
- Precise complexity of Gauß Elimination is yet unknown.

2 Model Checking using BESs

3 Solving BESs

department of mathematics and computing science

Exercise

Consider the following μ -Calculus formula f: $\nu X.([a]X \wedge \nu Y.\mu Z.(\langle b \rangle Y \vee \langle a \rangle Z))$

- Use the Emerson-Lei algorithm for computing whether $M, s_1 \models f$.
- Translate the model checking question $M \models f$ to a BES; indicate how $M, s \models \phi$ corresponds to the variables in the BES.
- Solve the BES by Gauß Elimination.