
Algorithms for Model Checking (2IW55)
Lecture 7

Boolean Equation Systems
Background material: Chapter 3 and 6 of

A. Mader, “Verification of Modal Properties using Boolean Equation Systems”, Ph.D.
thesis, 1997

Tim Willemse
(timw@win.tue.nl)

http://www.win.tue.nl/∼timw
HG 6.81

1/18



Outline

1 Boolean Equation Systems

2 Model Checking using BESs

3 Solving BESs

4 Exercise

2/18



Boolean Equation Systems

Boolean Equation Systems are a versatile formal framework for verification.

Boolean Equation Systems are systems of fixed point equations.

Given a set V ar of propositional variables. A Boolean Expression is defined by:

f ::= X | true | false | f ∧ f | f ∨ f

A Boolean Equation is an equation of the form σX = f , where X ∈ V ar, σ ∈ {µ, ν} and
f is a Boolean Expression. A Boolean Equation System is a sequence of Boolean
Equations:

E ::= ε | (σX = f) E

Note:

Negation is not allowed, in order to ensure monotonicity.

The order of equations is important. Intuitively, the topmost sign has priority.

3/18



Boolean Equation Systems

A variable W that occurs in a Boolean Expression of a BES E is called bound, if
there is an equation for W in E , otherwise W is called free.

If propositional variables are bound uniquely, the BES is well-formed; we only
consider well-formed BESs.

If E contains no free variables, E is closed, otherwise it is open.

4/18



Boolean Equation Systems

A variable W that occurs in a Boolean Expression of a BES E is called bound, if
there is an equation for W in E , otherwise W is called free.

If propositional variables are bound uniquely, the BES is well-formed; we only
consider well-formed BESs.

If E contains no free variables, E is closed, otherwise it is open.

Example

An example of a closed BES E with three propositional variables X, Y and Z:

(µX = (X ∧ Y ) ∨ Z) (νY = X ∧ Y ) (µZ = Z ∧X)

An example of an open BES F with two propositional variables X and Y :

(µX = Y ∨ Z) (νY = X ∧ Y )

An example of a BES that is not well-formed:

(µX = X) (νX = X)

4/18



Boolean Equation Systems

Intuitive semantics:

Let V al be the set of all functions f : V ar → {false, true}
The solution of a BES is a valuation: η : V al

Let [f ](η) denote the value of boolean expression f under valuation η.

For the solution η of a BES E , we wish η(X) = [f ](η) for all equations σX = f in E .
Also, we want the smallest (for µ) or greatest (for ν) solution, where topmost
equation signs take priority over equation signs that follow.

Given a BES E , we define [[E ]] : V al→ V al by recursion on E .8>>>><>>>>:
[[ε]](η) := η

[[(µX = f) E ]](η) := [[E ]](η[X := [f ](ηµ)]) where ηµ := [[E ]](η[X := false])

[[(νX = f) E ]](η) := [[E ]](η[X := [f ](ηµ)]) where ην := [[E ]](η[X := true])

5/18



Outline

1 Boolean Equation Systems

2 Model Checking using BESs

3 Solving BESs

4 Exercise

6/18



Model Checking using BESs

Transformation of the µ-calculus model checking problem to BES

Given is the following model checking problem:
a closed µ-calculus formula σX. f in Positive Normal Form and,
a Mixed Kripke Structure M = 〈S, s0,Act, R, L〉.

We define a BES E with the following property:

([[E ]](η))(Xs) = true iff M, s |= σX. f

i.e. formula σX. f holds in state s if and only if the solution for Xs yields true.

This BES is defined as follows:
For each subformula σX.g and for each state s ∈ S, we add the following equation:

σXs = RHS(s, g)

The order of the equations respects the subterm ordering in the original formula σX. f .

7/18



Model Checking using BESs

The Right-Hand Side of an equation is defined inductively on the structure of the
µ-calculus formula:

RHS(s, p) = p ∈ L(s)
RHS(s,X) = Xs

RHS(s, f ∧ g) = RHS(s, f) ∧RHS(s, g)
RHS(s, f ∨ g) = RHS(s, f) ∨RHS(s, g)

RHS(s, [a]f) =
V
t∈S {RHS(t, f) | s a−→ t}

RHS(s, 〈a〉f) =
W
t∈S {RHS(t, f) | s a−→ t}

RHS(s, µX. f) = Xs
RHS(s, νX. f) = Xs

conventions:
V
t∈S ∅ = true and

W
t∈S ∅ = false

8/18



Model Checking using BESs

Example

1

3

2

aa

b

b

RHS(1, [a]X) = RHS(2, X)∧RHS(3, X) = X2 ∧X3.

RHS(2, 〈b〉Y ) = RHS(1, Y ) ∨RHS(2, Y ) = Y1 ∨ Y2.

RHS(3, 〈b〉Y ) = false (empty disjunction!)

RHS(1, [a]〈b〉µZ. Z)
= RHS(2, 〈b〉µZ. Z) ∧RHS(3, 〈b〉µZ. Z)∧
= (RHS(1, µZ.Z) ∨RHS(3, µZ.Z)) ∧ false
= (Z1 ∨ Z3) ∧ false

Translation of µX.〈b〉true ∨ 〈a〉X to BES:

(µX1 = X3 ∨X2) (µX2 = true) (µX3 = false)

9/18



Model Checking using BESs

Example

1

3

2

4

b

a a

a

b

µ-calculus formula: νX.
`
[a]X ∧ νY.µZ.(〈b〉Y ∨ 〈a〉Z)

´
Translates to the following BES:

νX1 = X3 ∧ Y1

νX2 = X2 ∧ Y2

νX3 = X4 ∧ Y3

νX4 = true ∧ Y4

νY1 = Z1

νY2 = Z2

νY3 = Z3

νY4 = Z4

µZ1 = Y2 ∨ Z3

µZ2 = false ∨ Z2

µZ3 = false ∨ Z4

µZ4 = Y3 ∨ false

10/18



Outline

1 Boolean Equation Systems

2 Model Checking using BESs

3 Solving BESs

4 Exercise

11/18



Solving BESs

We reduced the model checking problem M, s |= f to the solution of a BES with
O(|M | × |f |) equations.

We now want a fast procedure to solve such BESs.

An extremely tedious way to solve a BES is to unfold its semantics.

A very appealing solution is to solve it by Gauß Elimination.

12/18



Solving BESs

Gauß Elimination uses the following 4 basic operations to solve a BES:

local solution: eliminate X in its defining equation:

E0 (µX = f) E1 becomes E0 (µX = [f [X := false]) E1
E0 (νX = f) E1 becomes E0 (νX = f [X := true]) E1

Substitute definitions backwards:

E0 (σ1X = X ∨ Y ) E1 (σ2Y = Y ∧X) E2
becomes: E0 (σ1X = X ∨ (Y ∧X)) E1 (σ2Y = Y ∧X) E2

Substitute closed equations forward:

E0 (σ1X = true) E1 (σ2Y = Y ∧X)E2
becomes: E0 (σ1X = true) E1 (σ2Y = Y ∧ true) E2

Boolean simplication: At least the following:

b ∧ true→ b b ∨ true→ true b ∧ false→ false b ∨ false→ b

13/18



Solving BESs

Example

(µX = X ∨ Y ) (νY = X ∨ (Y ∧ Z)) (µZ = Y ∧ Z)
local →

(µX = false ∨ Y ) (νY = X ∨ (true ∧ Z)) (µZ = Y ∧ false)
simplifications →

(µX = Y ) (νY = X ∨ Z)) (µZ = false)
substitution backwards →

(µX = Y ) (νY = X ∨ false) (µZ = false)
simplifications →

(µX = Y ) (νY = X) (µZ = false)
substitution backwards →

(µX = X) (νY = X) (µZ = false)
local →

(µX = false) (νY = X) (µZ = false)
substitution forwards →

(µX = false) (νY = false) (µZ = false)

14/18



Solving BESs

Gauß Elimination is a decision procedure for computing the solution to a BES.

Input: a BES (σ1X1 = f1) . . . (σnXn = fn). Returns: the solution for X1.

for i = n downto 1 do
if σi = µ then fi := fi[Xi := false]
else fi := fi[Xi := true]
end if
for j = 1 to i− 1 do fj := fj [Xi := fi]
end for

end for
Note:

Invariants of the outer loop:
fi contains only variables Xj with j ≤ i.
for all i < j ≤ n, Xj does not occur in fj .

Upon termination (i = 0), σ1X1 = f1 is closed and evaluates to true or false.

One could forward-substitute the solution for X1 and repeat the procedure to solve
X2, etcetera.

15/18



Solving BESs

Complexity of Gauß Elimination.

Note that in O(n2) substitutions, we obtain the final answer for X1.

However, f1 can have O(2n) different copies of en as subterms, so intermediate
expressions could become exponentially big.

Practical efficiency increases a lot if one keeps all intermediate terms simplified all the
time.

Gauß Elimination can be sped up if a forward dependency analysis is conducted
(so-called local model checking).

Precise efficiency depends heavily on the set of simplification rules.

Precise complexity of Gauß Elimination is yet unknown.

16/18



Outline

1 Boolean Equation Systems

2 Model Checking using BESs

3 Solving BESs

4 Exercise

17/18



Exercise

s1

s3

s2

s4

b

a

a

a
a

b

a

Consider the following µ-Calculus formula f :

νX.
`
[a]X ∧ νY.µZ.(〈b〉Y ∨ 〈a〉Z)

´

Use the Emerson-Lei algorithm for computing whether M, s1 |= f .

Translate the model checking question M |= f to a BES; indicate how M, s |= φ
corresponds to the variables in the BES.

Solve the BES by Gauß Elimination.

18/18


	Boolean Equation Systems
	Model Checking using BESs
	Solving BESs
	Exercise

