Technische Universiteit
Eindhoven
University of Technology

Algorithms for Model Checking (2IW55)

Lecture 7
Boolean Equation Systems
Background material: Chapter 3 and 6 of
A. Mader, “Verification of Modal Properties using Boolean Equation Systems”, Ph.D.
thesis, 1997

Tim Willemse
(timw@win.tue.nl)
http://www.win.tue.nl/~timw
HG 6.81

department of tics and computing science

Technische Universiteit
Eindhoven
University of Technology

Outline

© Boolean Equation Systems

department of i puting science

Technische Universiteit
Eindhoven
University of Technology

Boolean Equation Systems

@ Boolean Equation Systems are a versatile formal framework for verification.

@ Boolean Equation Systems are systems of fixed point equations.
Given a set Var of propositional variables. A Boolean Expression is defined by:

fo=X|true|false | fAF| VS

A Boolean Equation is an equation of the form o X = f, where X € Var, o € {u,v} and
f is a Boolean Expression. A Boolean Equation System is a sequence of Boolean
Equations:

Eu=e|(cX=f)€&

Note:
@ Negation is not allowed, in order to ensure monotonicity.

@ The order of equations is important. Intuitively, the topmost sign has priority.

dep entof m ics and computing science

Technische Universiteit

Eindhoven

University of Technology
Boolean Equation Systems

@ A variable W that occurs in a Boolean Expression of a BES £ is called bound, if
there is an equation for W in &, otherwise W is called free.

o If propositional variables are bound uniquely, the BES is well-formed; we only
consider well-formed BESs.

o If £ contains no free variables, £ is closed, otherwise it is open.

department of m ics and computing science

Technische Universiteit

Eindhoven

University of Technology
Boolean Equation Systems

@ A variable W that occurs in a Boolean Expression of a BES £ is called bound, if
there is an equation for W in &, otherwise W is called free.

o If propositional variables are bound uniquely, the BES is well-formed; we only
consider well-formed BESs.

o If £ contains no free variables, £ is closed, otherwise it is open.

Example

An example of a closed BES &£ with three propositional variables X, Y and Z:
WX =XAY)VZ) WY =XAY) (uZ=2ZANX)

An example of an open BES F with two propositional variables X and Y:
(WX =YVZ) (WY =X AY)

An example of a BES that is not well-formed:

(nX = X) (vX = X)

department of m atics and computing science

Technische Universiteit
Eindhoven
University of Technology

Boolean Equation Systems

Intuitive semantics:
o Let Val be the set of all functions f : Var — {false, true}
@ The solution of a BES is a valuation: n: Val
o Let [f](n) denote the value of boolean expression f under valuation 7.
@ For the solution 7 of a BES &, we wish n(X) = [f](n) for all equations X = f in £.

@ Also, we want the smallest (for 1) or greatest (for v) solution, where topmost
equation signs take priority over equation signs that follow.

Given a BES &, we define [€] : Val — Val by recursion on &.
[](n) =1
(X = f) Eln) = [E]nIX := [f1(nu)]) where 5, = [E](n[X := false])

[(vX = 1) &) = [E](nIX := [f1(nu)]) where n, := [€](n[X := true])

department of m tics and computing science

Technische Universiteit
Eindhoven
University of Technology

Outline

© Model Checking using BESs

department of m ics and computing science

Technische Universiteit
Eindhoven
University of Technology

Model Checking using BESs

Transformation of the p-calculus model checking problem to BES

@ Given is the following model checking problem:

e a closed p-calculus formula o X. f in Positive Normal Form and,
o a Mixed Kripke Structure M = (S, s, Act, R, L).

o We define a BES £ with the following property:

i.e. formula o X. f holds in state s if and only if the solution for X yields true.
@ This BES is defined as follows:
o For each subformula 0. X.g and for each state s € S, we add the following equation:
ocXs = RHS(s,9)

o The order of the equations respects the subterm ordering in the original formula ¢ X. f.

department of tics and computing science

Technische Universiteit

Eindhoven

University of Technology
Model Checking using BESs

The Right-Hand Side of an equation is defined inductively on the structure of the
pu~calculus formula:

RHS(s, p) = pe€L(s)

RHS(s,X) = X

RHS(s,fNg) = RHS(s,f)NRHS(s,9)
RHS(s,fVg) = RHS(s,f)VRHS(s,9)
RHS(s,[alf) = Nes {RHS(t,f) | s =t}
RHS(s,(a)f) = V,es {RHS(t,f) | s =t}
RHS(s,uX. f) = X,

RHS(s,vX. f) = X,

conventions: Nics® = true and V/, o 0 = false

department of mathematics and computing science 8/18

Technische Universiteit
e Eindhoven
University of Technology

Model Checking using BESs

Example

HS(1, [a]X) = RHS(2, X)ARHS(3, X) = Xa A X.
RHS((b)Y)=RHS(1, Y)VRHS(2, Y) =Y, VY>.
RHS(3,(b)Y) = false (empty disjunction!)

RHS(1, [al{b)uZ. Z)

RHS(2, (byuZ. Z) N RHS(3, (byuZ. Z)\
(RHS(1, pZ.Z)V RHS(3, nZz.Z)) A false

= (Z1V Z3) Nfalse

@ Translation of pX.(b)true V (a)X to BES:

(uX1 = X3V X2) (uXo = true) (uX3 = false)

department of mathematics and computing science 9/18

Technische Universiteit

Eindhoven

University of Technology
Model Checking using BESs

Example

p-calculus formula: vX.([a]X A vY.uZ.((b)Y V (a)Z))
Translates to the following BES:
I/X1 = X3 AN Yl
vXe = XoAYs
vXs; = XuAYs
vXy = trueAYy

l/Yl = Z1
VYg = Zz
I/Y3 = Z3
vYy = Zu
L pZ = YoV Zs
uZzs = falseV Z,
uZzs = falseV Z,
uZzZy = YsVfalse

department of ma tics and computing science

Technische Universiteit
Eindhoven
University of Technology

Outline

© Solving BESs

department of m ics and computing science

Technische Universiteit
Eindhoven
University of Technology

Solving BESs

@ We reduced the model checking problem M, s |= f to the solution of a BES with
O(|M] x |f]) equations.

@ We now want a fast procedure to solve such BESs.
@ An extremely tedious way to solve a BES is to unfold its semantics.

@ A very appealing solution is to solve it by GauR Elimination.

ics and computing science

Technische Universiteit

Eindhoven

University of Technology
Solving BESs

GauR Elimination uses the following 4 basic operations to solve a BES:

@ local solution: eliminate X in its defining equation:

Eo (WX =f) & becomes & (uX = [f[X := false]) &
& (WX =f) & becomes & (vX = f[X :=true]) &

@ Substitute definitions backwards:

S0 (X =XVY)& (02Y =Y AX) &
becomes: & (X =XV (Y AX)) & (02Y =Y AX) &

@ Substitute closed equations forward:

&o (GlX = true) &1 (O'QY =Y A X)gz
becomes: & (01X = true) &1 (o2 =Y Atrue) &

@ Boolean simplication: At least the following:

bAtrue — b bV true — true b A false — false bV false — b

department of m atics and computing science

Technische Universiteit
Eindhoven
University of Technology

Solving BESs

Example

(WX =XVY) WY =XV (YAZ) (WZ=Y AZ)
local —

(uX =false VY) (vY = X V (true A Z)) (uZ =Y A false)
simplifications —

(X =Y) (vY =XV 2)) (uZ = false)
substitution backwards —

(uX =Y) (vY = X Vfalse) (uZ = false)
simplifications —

(X =Y) (vY = X) (uZ = false)
substitution backwards —

(X = X) (vY = X) (uZ = false)
local —

(uX = false) (vY = X) (uZ = false)
substitution forwards —

(uX = false) (vY = false) (uZ = false)

department of m tics and computing science

Technische Universiteit

Eindhoven

University of Technology
Solving BESs

GauB Elimination is a decision procedure for computing the solution to a BES.
Input: a BES (61X1 = f1) ... (60nXn = fn). Returns: the solution for X.

for i = n downto 1 do
if o; = p then f; := f;[X; := false]
else fz = fl [Xz = true]
end if
forj =1to:—1do f]' = f][Xl = fz]
end for

end for

Note:

@ Invariants of the outer loop:
e f; contains only variables X; with j <i.
e forall i < j <mn, X; does not occur in f;.
@ Upon termination (i = 0), 01X = fi1 is closed and evaluates to true or false.

@ One could forward-substitute the solution for X7 and repeat the procedure to solve
X, etcetera.

dep entof m ics and computing science

Technische Universiteit
Eindhoven
University of Technology

Solving BESs

Complexity of GauR Elimination.

o Note that in O(n?) substitutions, we obtain the final answer for X;.

@ However, f1 can have O(2") different copies of e, as subterms, so intermediate
expressions could become exponentially big.

o Practical efficiency increases a lot if one keeps all intermediate terms simplified all the
time.

@ GauR Elimination can be sped up if a forward dependency analysis is conducted
(so-called local model checking).

@ Precise efficiency depends heavily on the set of simplification rules.

@ Precise complexity of GauR Elimination is yet unknown.

ics and computing science

Technische Universiteit
Eindhoven
University of Technology

Outline

@ Exercise

department of i puting science

Technische Universiteit
Eindhoven
University of Technology

Exercise

Consider the following u-Calculus formula f:

vX.([a]X AvY.pZ.((b)Y V (a)Z))

@ Use the Emerson-Lei algorithm for computing whether M, s1 = f.

@ Translate the model checking question M |= f to a BES; indicate how M, s = ¢
corresponds to the variables in the BES.

@ Solve the BES by Gaull Elimination.

department of m atics and computing science

	Boolean Equation Systems
	Model Checking using BESs
	Solving BESs
	Exercise

