

Algorithms for Model Checking (2IW55)

Lecture 8

Equivalences and Pre-orders: State Space Reduction and Preservation of Properties Chapter 11, 11.1

Tim Willemse

(timw@win.tue.nl) http://www.win.tue.nl/~timw HG 6.81

Outline

- Equivalences
- Pre-orders
- Bisimulation Reduction
- Summarising

Complexity of model checking arises from:

- State space explosion: the state space is usually much larger than the specification
- Expressive logics have complex model checking algorithms

Ways to deal with the state space explosion:

- equivalence reduction: remove states with identical potentials from a state space
 - on-the-fly: integrate the generation and verification phases, to prune the state space
 - symbolic model checking: represent sets of states by clever data structures
 - partial-order reduction: ignore some executions, because they are covered by others
 - abstraction: remove details by working on conservative over-approximation

- A state space reduction reduces model checking complexity.
- Of course, the reduced state space must preserve (an interesting class of) temporal properties.
- This is often characterised by an equivalence relation on Kripke Structures:
 - reduction must yield an 'equivalent" model.
 - "equivalent" models must satisfy the same properties.
- Different instances of this scheme:
 - trace equivalence preserves LTL formulae.
 - strong bisimulation preserves CTL* (and μ -calculus) formulae.
 - simulation preserves ACTL* (and universal μ -calculus) formulae.
 - branching bisimulation preserves CTL*-X formulae.

Let two Kripke Structures over AP be given:

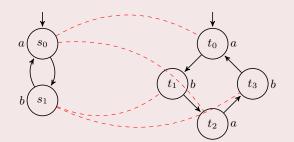
- \bullet $M = \langle S, R, S_0, L \rangle$ and
- $M' = \langle S', R', S'_0, L' \rangle$

Definition (Strong Bisimulation)

A relation $B \subseteq S \times S'$ is a strong bisimulation relation (also zig-zag relation) iff for every $s \in S$ and $s' \in S'$ with sBs':

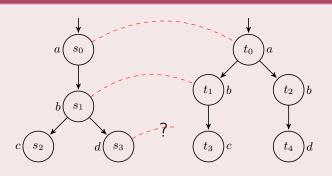
- L(s) = L'(s')
- for all $s_1 \in S$, if sRs_1 , then there exists $s_1' \in S'$ such that $s'R's_1'$ and s_1Bs_1'
- for all $s_1' \in S'$, if $s'R's_1'$, then there exists $s_1 \in S$ such that sRs_1 and s_1Bs_1'

Example

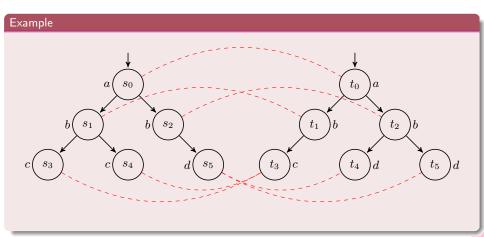


- unwinding and duplication preserves bisimulation
- Sensitive to the moment of choice

Example



- unwinding and duplication preserves bisimulation
- Sensitive to the moment of choice



- unwinding and duplication preserves bisimulation
- Sensitive to the moment of choice

Let two Kripke Structures over AP be given:

- \bullet $M = \langle S, R, S_0, L \rangle$ and
- $M' = \langle S', R', S'_0, L' \rangle$

Definition (bisimilarity)

Two states $s \in S$ and $s' \in S'$ are bisimilar, if for some bisimulation relation B, sBs'. The Kripke Structures M and M' are bisimilar (notation: $M \equiv M'$) iff there exists a bisimulation relation B, "containing initial states", i.e.:

- $\forall s_0 \in S_0 \ \exists s_0' \in S_0' \ : s_0 B s_0'$
- $\forall s_0' \in S_0' \ \exists s_0 \in S_0 : s_0 Bs_0'$

Note:

- bisimilarity is an equivalence relation
- the union of bisimulation relations is again a bisimulation relation
- "bisimilarity" itself is the greatest bisimulation relation

Strong bisimulation preserves CTL*:

- Recall the CTL* semantics:
 - $M, s \models f$: state formula f holds in state s,
- $M, \pi \models f$: path formula f holds along path π . • Recall that $M \models f$ iff for all $s_0 \in S_0$, $M, s_0 \models f$.

Theorem (14)

If $M \equiv M'$ (i.e. M and M' are bisimilar), then for every CTL^* state formula f:

$$M \models f$$
 iff $M' \models f$

Practical consequence: In order to check $M \models f$, it is safe and sufficient to:

- lacktriangledown Reduce M to M' modulo bisimilarity,
- **2** Check whether $M' \models f$.

Proof sketch:

Given a relation B, we define that path π corresponds to path π' iff: $\forall i. \ \pi(i) \ B \ \pi'(i)$

Lemma (31)

If B is a bisimulation relation and s B s' (correction to Lemma 31), then for every $\pi \in \mathsf{path}(s)$ there exists a corresponding path $\pi' \in \mathsf{path}(s')$ (and vice versa).

Next, with structural induction on CTL* formula f one can show: if s and s' are bisimilar and π and π' correspond, then:

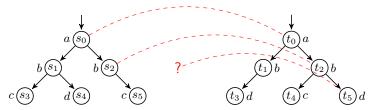
- \bullet $s \models f$ if and only if $s' \models f$
- \bullet $\pi \models f$ if and only if $\pi' \models f$

From this, the theorem follows:

for all M, M' and CTL* formulae f: if $M \equiv M'$ then $M \models f$ iff $M' \models f$.

Theorem (reverse)

If $M \not\equiv M'$ then there exists a formula f in CTL , such that $M \models f$ and $M' \not\models f$.



- Note that both systems have the same paths.
- There is no bisimulation relation between these two systems containing the initial states.
- Indeed, the following CTL formula holds in (the initial state of) the right system, but not on the left: A X $(b \land E \times d)$
- We will see later that using E is essential.

Outline

- Equivalences
- 2 Pre-orders
- Bisimulation Reduction
- Summarising

- bisimilar models have the same behaviour, so they make true exactly the same properties.
- Idea: If we allow to really forget information, we may:
 - reduce the state space further, but:
 - preserve only a smaller class of formulae.
- ullet We say that system M' simulates system M if M' has at least the behaviour of M.

Let two Kripke Structures be given:

- $M = \langle AP, S, R, S_0, L \rangle$ and
- $M' = \langle AP', S', R', S'_0, L' \rangle$, with $AP' \subseteq AP$.

Definition (Simulation Relation)

A relation $H \subseteq S \times S'$ is a simulation relation iff for every $s \in S$ and $s' \in S'$ with $s \mid H \mid s'$:

- $L(s) \cap AP' = L'(s')$
- for all s_1 , if $s R s_1$, then there exists s'_1 such that $s'R's'_1$ and $s_1 H s'_1$.

Definition (Simulation)

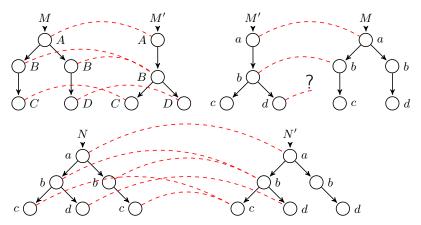
M' simulates M (written: $M \sqsubseteq M'$) iff there exists a simulation relation H, such that

$$\forall s_0 \in S_0. \ \exists s_0' \in S_0'. \ s_0 \ H \ s_0'$$

This defines an equivalence relation as follows: $M \sim M'$ iff $M \sqsubseteq M'$ and $M' \sqsubseteq M$.

Note:

- \sqsubseteq is a pre-order on Kripke Structures (i.e. it is reflexive and transitive, but not necessarily symmetric).
- Warning:
 - it is possible that $M \sim M'$ but still $M \not\equiv M'$
 - In words: if two systems simulate each other, they need not be bisimilar.
 - ullet Intuitively: the two simulations may use a different H, while a bisimulation requires one B.



- $M \sqsubseteq M'$ but not $M' \sqsubseteq M$;
- $N \sim N'$ but $N \not\equiv N'$.

Definition (ACTL*)

ACTL* (see p.31) is the fragment of CTL* with only universal path quantifiers, no existential path quantifiers.

Note:

- This only makes sense for formulae in positive normal form, i.e. negations only occur directly in front of atomic propositions.
- Examples: A F Gp, A G $(p \to \mathsf{A} \ \mathsf{X} \ q)$ are in ACTL*, but A G $(p \to \mathsf{E} \ \mathsf{X} \ q)$ is not. Careful: (A G p) \to (A G q) is not in ACTL*, because actually:

$$\begin{array}{ccc} (\mathsf{A} \; \mathsf{G} \; p) \to (\mathsf{A} \; \mathsf{G} \; q) \equiv & \neg (\mathsf{A} \; \mathsf{G} \; p) \vee (\mathsf{A} \; \mathsf{G} \; q) \\ \equiv & (\mathsf{E} \; \mathsf{F} \; \neg p) \vee (\mathsf{A} \; \mathsf{G} \; q) \end{array}$$

Simulation preserves ACTL*:

Theorem

If $M \sqsubseteq M'$ (i.e. M' simulates M), then for every ACTL* state formula f over AP':

if
$$M' \models f$$
 then $M \models f$

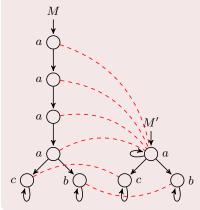
Practical consequence: In order to check $M \models f$, it is safe to find an approximation M' with $M \sqsubseteq M'$ and check that $M' \models f$.

However: if $M' \not\models f$, we obtain no information about $M \models f$ — it may or may not hold.

In the previous example, we had: $N \sim N'$ but $N \not\equiv N'$. Hence:

- ullet N and N' satisfy the same ACTL* formulae
- ullet N and N' do not satisfy the same CTL formulae
- They can only be distinguished using operator E .

Example



- Observe that $M \sqsubseteq M'$ with H indicated left.
- Note that $M' \models A G (a \lor b \lor c)$ and hence $M \models A G (a \lor b \lor c)$.
- Note that $M' \not\models A \vdash F(b \lor c)$, but actually $M \models A \vdash F(b \lor c)$. This shows that some information is really lost.
- Note: $M \models A \times a$ but $M' \not\models A \times a$ (wrong direction) conclusion: $M' \not\sqsubseteq M$.
- Note: $M' \models E \times b$, but $M \not\models E \times b$ (not in ACTL*).

Outline

- Equivalences
- 2 Pre-orders
- Bisimulation Reduction
- Summarising

Bisimulation Reduction

Computing Bisimulation Equivalence:

Let two Kripke Structures be given:

- $M = \langle AP, S, R, S_0, L \rangle$ and
- $M' = \langle AP, S', R, S'_0, L' \rangle$.

Define a sequence of relations s B_i^* s' iff s and s' cannot be distinguished within i steps:

- $s B_0^* s'$ if and only if L(s) = L'(s).
- $s B_{n+1}^* s'$ if and only if:
 - \bigcirc $s B_n^* s'$, and
 - \bullet $\forall s_1$ with $R(s,s_1)$, $\exists s_1'$ with s' R' s_1' and s_1 B_n^* s_1' . \bullet $\forall s_1'$ with $R'(s',s_1')$, $\exists s_1$ with s R s_1 and s_1 B_n^* s_1' .
- Let $B^* := \bigcap_i B_i^*$

Clearly, $B_i^* \supseteq B_{i+1}^*$, so B^* can be computed by fixed point iteration.

Actually, this can be implemented symbolically by OBDDs

Bisimulation Reduction

- Actually: B^* is the largest bisimulation between M and M'.
- So: if s and s' are bisimilar, then s B^* s'.
- To test if $M \equiv M'$: check if for each $s_0 \in S_0$ there exists an $s_0' \in S_0'$ such that $s_0 \ B^* \ s_0'$.
- By carefully splitting equivalence classes, the procedure can run in $\mathcal{O}(|R| \times \log(|S|))$ time (Paige-Tarjan).
- Similar ideas apply to checking $M \sqsubseteq M'$.

The algorithm can be modified for state space reduction as follows:

- The equivalence classes of B^* form the states of the reduced state space (minimal modulo bisimulation).
- The transitions between two classes are derived from the transitions between elements of these classes.

Outline

- Equivalences
- 2 Pre-orders
- Bisimulation Reduction
- Summarising

Summarising

- Bisimulation is an equivalence relation.
- Bisimulation preserves CTL* formulae.
- Simulation is a pre-order.
- Simulation preserves ACTL* formulae only, and only in one direction.
- Simulation allows for more reduction but sometimes crucial information is lost.
- Bisimulation and Simulation reduction can be computed in polynomial time.

Possible improvement: Instead of:

- generating state space
- reducing state space
- model checking reduced state space,

it would be better to generate a smaller state space immediately.