

Algorithms for Model Checking (2IW55) Lecture 9 Data Abstraction Chapter 13

Tim Willemse (timw@win.tue.nl) http://www.win.tue.nl/~timw HG 6.81

department of mathematics and computing science

Outline

2 Data Abstraction

Recap

- We have seen:
 - If $M_1\equiv M_2$ (M_1 and M_2 are bisimilar), then M_1 and M_2 satisfy the same CTL* formulae
 - If $M_1 \sqsubseteq M_2$ (M_2 simulates M_1), then all ACTL* formulae that are valid for M_2 hold for M_1 as well
- $\bullet\,$ Consider a specification S with a very large state space M_1
- The question is how to compute an M_2 such that:
 - $M_1 \sqsubseteq M_2$ (i.e., useful for ACTL^{*} formulae)
 - M_2 is smaller than M_1
 - generation of M_1 is not required
- Method: data abstraction

Recap

Recall that the system specification is given by formulae from first-order predicate logic.

A specification is a tuple $\langle V, D, S, \mathcal{R} \rangle$, where:

- V is a set of variables v_1, \ldots, v_n
- $\bullet \ D$ is the domain of these variables
- The formula $\mathcal{S}_0(V)$ represents the initial states
- $\bullet \ {\rm Let} \ V'$ be a copy of the variables: v_1',\ldots,v_n'
- The formula $\mathcal{R}(V,V')$ represents the transition relation:
 - V denotes the value of variables before the transition
 - ${\ensuremath{\, \bullet }}\xspace V'$ denotes the value of variables after the transition

Conventions:

- $\phi(V)$ denotes a first-order formula with all free variables among V.
- Given a valuation $\alpha: V \to D$, the semantics of ϕ under α is written as $[\phi]\alpha \in \{\text{true}, \text{false}\}.$

Semantics of a first-order predicate logic specification.

Given a specification $\langle V, D, S_0, \mathcal{R} \rangle$, we get the underlying Kripke Structure (alias state space) $\langle AP, S, S_0, R, L \rangle$ as follows:

- $\bullet\,$ The set of states S of the Kripke Structure will be the set of valuations $\alpha:V\to D$
- The atomic propositions AP will be of the form v = d, where $v \in V$ and $d \in D$
- The set of initial states S_0 will be the valuations α , such that $[S_0]\alpha$ is true
- Let $\alpha, \beta: V \to D$ be valuations. Define $\beta'(v'_i) = \beta(v_i)$ for all $v_i \in V$. There is a transition $R(\alpha, \beta)$ if $[\mathcal{R}](\alpha \cup \beta')$ is true
- Finally, the set of labels of state α is $L(\alpha) := \{v_1 = \alpha(v_1), \dots, v_n = \alpha(v_n)\}$

Outline

2 Data Abstraction

department of mathematics and computing science

Idea of Data Abstraction:

- $\bullet\,$ State variables range over some domain D
- D is now called the concrete domain
- A data abstraction consists of:
 - An abstract domain A
 - A surjective mapping $h: D \to A$
- Example:
 - Concrete domain: natural numbers ${\cal N}$
 - Abstract domain: $\{even, odd\}$
 - h(2n) = even, h(2n+1) = odd
- Abstract interpretation: evaluating an expression directly in the abstract domain
- For this, all concrete operations must be mimicked by abstract operations
- In the example: $\widehat{m+n}$ can be computed directly as $\widehat{m+n}$ if we set:

$even \widehat{+} even = even$	$odd\hat{+}odd = even$
$even \widehat{+} odd = odd$	$odd\hat{+}even = odd$

Let Kripke Structure $\langle AP, S, S_0, R, L \rangle$ be given, where $S = [V \rightarrow D]$ (i.e., the set of functions $V \rightarrow D$).

Let abstract domain A with $h: D \rightarrow A$ be given:

- The idea will be:
 - replace concrete data by abstract values
 - collapse states with the same abstract value

• The price to be paid is that we can now only express properties on abstract values.

- Let \hat{v} denote the abstract version of variable v, ranging over A
- Change the labelling: $L'(s) := \{\dots, \widehat{v_i} = h(s), \dots\}$
- We now compare the concrete $M' = \langle \widehat{AP}, S, S_0, R, L' \rangle$ with the abstract $M_r = \langle \widehat{AP}, S_r, S_0^r, R_r, L_r \rangle$ defined next.

TUe Technische Universiteit Eindhoven University of Technology

Data Abstraction

Given a concrete $M' = \langle \widehat{AP}, S, S_0, R, L' \rangle$, we define abstract $M_r = \langle \widehat{AP}, S_r, S_0^r, R_r, L_r \rangle$:

• We want to collapse (identify) states with the same labels, so we define:

 $S_r := \{L'(s) \mid s \in S\} \dots (= [\widehat{V} \to A])$

- Of course, $L_r(s_r) := s_r$
- M_r must simulate M', so it should reflect all initial states:

 $S_0^r(s_r)$ iff $\exists s \in S_0 : L'(s) = s_r$

• M_r must simulate M', so it should reflect all transitions. So define $R_r(s_r, t_r)$ iff

 $\exists s, t \in S : s_r = L'(s) \land t_r = L'(t) \land R(s, t)$

Problem: constructing M_r requires M'. Given specification $\langle V, D, S_0, \mathcal{R} \rangle$, and data abstraction (A, h), we want a specification for

- M_r .
 - Notation: write $[\phi](\widehat{V})$ to abbreviate the ideal abstraction of $\phi(V)$:

$$\begin{aligned} [\phi](\widehat{v_1},\ldots,\widehat{v_n}) &:= \\ \exists v_1,\ldots,v_n : \ h(v_1) = \widehat{v_1} \wedge \cdots \wedge h(v_n) = \widehat{v_n} \wedge \phi(v_1,\ldots,v_n) \end{aligned}$$

- Then the ideal abstract specification is defined as $\langle \hat{V}, A, [S_0](\hat{V}), [\mathcal{R}](\hat{V}, \widehat{V'}) \rangle$
- Crucial property achieved by this construction:

$$\begin{aligned} \phi(s,t) \\ \Leftrightarrow \quad h(s) = h(s) \wedge h(t) = h(t) \wedge \phi(s,t) \\ \Rightarrow \quad \exists v_1, v_2 : \ h(v_1) = h(s) \wedge h(v_2) = h(t) \wedge \phi(v_1,v_2) \\ \Leftrightarrow \quad [\phi](h(s),h(t)) \end{aligned}$$

• However, due to all the existential quantifications, this abstraction is costly to generate.

- Idea: generate a cheaper approximation by pushing the quantifications inside
- Assume that S_0 and \mathcal{R} are in positive normal form. We define $\mathcal{A}(\phi)$, the abstract interpretation of ϕ as follows:

•
$$\mathcal{A}(P(x_1,\ldots,x_n)) = [P](\widehat{x_1},\ldots,\widehat{x_n})$$

•
$$\mathcal{A}(\neg P(x_1,\ldots,x_n)) = [\neg P](\widehat{x_1},\ldots,\widehat{x_n})$$

•
$$\mathcal{A}(\phi_1 \land \phi_2) = \mathcal{A}(\phi_1) \land \mathcal{A}(\phi_2)$$

• $\mathcal{A}(\phi_1 \lor \phi_2) = \mathcal{A}(\phi_1) \lor \mathcal{A}(\phi_2)$

$$\mathcal{A}(\phi_1 \lor \phi_2) = \mathcal{A}(\phi_1) \lor \mathcal{A}(\phi_2)$$

$$\mathcal{A}(\exists x. \phi) = \exists x. \mathcal{A}(\phi)$$

•
$$\mathcal{A}(\forall x. \phi) = \forall \widehat{x}. \mathcal{A}(\phi)$$

- By induction on ϕ , one can show that $[\phi] \implies \mathcal{A}(\phi)$ (Here we use that h is surjective!)
- Note: not necessarily $\mathcal{A}(\phi) \implies [\phi]$
- So, given the specification $\langle V, D, \mathcal{S}_0, \mathcal{R} \rangle$, we define its abstract version to be $\langle \widehat{V}, A, \mathcal{A}(\mathcal{S}_0), \mathcal{A}(\mathcal{R}) \rangle$

Correctness of abstract interpretation

- Let M' be the Kripke Structure over \widehat{AP} , induced by specification $\langle V, D, S_0, \mathcal{R} \rangle$
- Let M_{α} be the Kripke Structure from the abstract specification $\langle \widehat{V}, A, \mathcal{A}(\mathcal{S}_0), \mathcal{A}(\mathcal{R}) \rangle$
- Claim: $M' \sqsubseteq M_{\alpha}$
- Proof: Let $s = \{v_1 = d_1, \dots, v_n = d_n\}$ and $s_\alpha = \{\widehat{v_1} = a_1, \dots, \widehat{v_n} = a_n\}$ The following H is a simulation relation:

 $H(s, s_{\alpha}) = \forall 1 \le i \le n : \ h(d_i) = a_i$

- By definition, the (abstract) labels coincide
- Let $s \to t$ in M'. Then $\mathcal{R}(s,t)$ holds. Hence, $[\mathcal{R}](h(s),h(t))$ holds, and therefore $\mathcal{A}(\mathcal{R}(h(s),h(t)))$ holds. So, $h(s) \to h(t)$ is a transition in M_{α} .
- Note that H(s, h(s)) holds for all s.
- Similarly, if $s \in S_0$, then $s \in A(S_0)$.
- Hence, abstract interpretation is sound for ACTL*.

Outline

2 Data Abstraction

department of mathematics and computing science

Conclusion

- Data abstraction transforms a specification S (with KS M) to a more abstract specification S' (with KS M')
- $\bullet\,$ By a careful construction, we know that $M\sqsubseteq M'$
- For ACTL* properties, $M' \models \phi$ implies $M \models \phi$, so generation of M can be avoided
- This technique is important to reduce big state spaces, and essential when state spaces become infinite
- Hence for applying model checking to software systems, data abstraction is a crucial technique
- However, finding the right abstraction is a creative step, as hard as finding e.g., correct invariants. So this approach to verification is not completely mechanical
- In practice, a bunch of standard abstractions are used. Their power is quite limited on complicated programs