Technische Universiteit
Eindhoven
University of Technology

Algorithms for Model Checking (2IW55)
Lecture 9
Data Abstraction
Chapter 13

Tim Willemse
(timw@win.tue.nl)
http://www.win.tue.nl/~timw
HG 6.81

department of tics and computing science

Technische Universiteit
Eindhoven
University of Technology

Outline

© Recap

department of i puting science

Technische Universiteit
Eindhoven
University of Technology

Recap

We have seen:
o If M1 = Ma (M1 and Ma are bisimilar), then M; and My satisfy
the same CTL* formulae
o If My T My (Ms simulates M), then all ACTL* formulae that are valid for M>
hold for M7 as well

Consider a specification S with a very large state space M;
The question is how to compute an M; such that:

e M; C My (i.e., useful for ACTL* formulae)
o Moy is smaller than My
e generation of Mj is not required

Method: data abstraction

ics and computing science

Technische Universiteit
Eindhoven
University of Technology

Recap

Recall that the system specification is given by formulae from first-order predicate logic.

A specification is a tuple (V, D, S, R), where:

V is a set of variables vy, ..., v,

D is the domain of these variables

The formula So(V') represents the initial states

Let V' be a copy of the variables: v1,..., v},
The formula R(V, V") represents the transition relation:

o V denotes the value of variables before the transition
o V'’ denotes the value of variables after the transition

Conventions:
o (V) denotes a first-order formula with all free variables among V.

@ Given a valuation a : V — D, the semantics of ¢ under « is written as
[¢la € {true, false}.

ting science

Technische Universiteit
Eindhoven
University of Technology

Recap

Semantics of a first-order predicate logic specification.

Given a specification (V, D, So, R), we get the underlying Kripke Structure (alias state
space) (AP, S, So, R, L) as follows:

@ The set of states S of the Kripke Structure will be the set of valuations a: V' — D
@ The atomic propositions AP will be of the form v = d, where v € V and d € D

@ The set of initial states Sy will be the valuations «, such that [So]a is true

e Let a,3:V — D be valuations. Define 3'(v;) = B(v;) for all v; € V. There is a
transition R(a, 8) if [R](awU ') is true

o Finally, the set of labels of state a is L(«x) := {v1 = a(v1),...,vn = a(vn)}

Technische Universiteit
Eindhoven
University of Technology

Outline

© Data Abstraction

department of i puting science

Technische Universiteit
Eindhoven
University of Technology

Data Abstraction

Idea of Data Abstraction:

o State variables range over some domain D

@ D is now called the concrete domain
@ A data abstraction consists of:

o An abstract domain A
o A surjective mapping h: D — A

o Example:

o Concrete domain: natural numbers N
o Abstract domain: {even, odd}
e h(2n) =even, h(2n+ 1) = odd

@ Abstract interpretation: evaluating an expression directly in the abstract domain
o For this, all concrete operations must be mimicked by abstract operations

o In the example: m + n can be computed directly as mF7 if we set:

even+even = even | odd+odd = even

evenFodd = odd oddFeven = odd

ics and computing science

Technische Universiteit
Eindhoven
University of Technology

Data Abstraction

Let Kripke Structure (AP, S, So, R, L) be given, where S = [V — D] (i.e., the set of
functions V' — D).

Let abstract domain A with h: D — A be given:
@ The idea will be:

o replace concrete data by abstract values
o collapse states with the same abstract value

@ The price to be paid is that we can now only express properties on abstract values.
o Let ¥ denote the abstract version of variable v, ranging over A
o Change the set of atomic propositions: AP := {t=alveV,aec A}
o Change the labelling: L'(s) :={...,0; = h(s),...}
o We now compare the concrete M’ = (273, S, So, R, L) with the abstract
M, = (AP, S,, S5, Ry, L) defined next.

ics and computing science

Technische Universiteit

Eindhoven

University of Technology
Data Abstraction

Given a concrete M’ = (A?’, S, So, R, L"), we define abstract M, = (ZP, Sry S, Rey Ly):

o We want to collapse (identify) states with the same labels, so we define:

Sy = {L(8) | 8 €S} (=[V — A])

o Of course, L,(s,) := sy
o M, must simulate M’, so it should reflect all initial states:

So(sr) iff 3s € So: L'(s) = sr

@ M, must simulate M’, so it should reflect all transitions. So define R, (s, t,) iff

Js,t € S: s, =L'(s) Atr = L'(t) A R(s,t)

Technische Universiteit

Eindhoven

University of Technology
Data Abstraction

Problem: constructing M.,. requires M'.
Given specification (V, D, Sy, R), and data abstraction (A, h), we want a specification for
M,.

~

@ Notation: write [¢](V) to abbreviate the ideal abstraction of ¢(V):

[B)(01,...,05) ==
Fvi,..oyvn: h(vi) =01 A Ah(vn) =Un Ad(v1,...,0n)

o Then the ideal abstract specification is defined as (V, A, [So](V), [R](V, V7))

@ Crucial property achieved by this construction:

¢(57 t)
& h(s) = h(s) Ah(t) = h(t) A ¢(s,t)
= Jui,v2: h(vi) = h(s) A h(v2) = h(t) A ¢(v1,v2)
< [Bl(h(s), h(t))

@ However, due to all the existential quantifications, this abstraction is costly to
generate.

department of m atics and computing science

Technische Universiteit
Eindhoven
University of Technology

Data Abstraction

o Idea: generate a cheaper approximation by pushing the quantifications inside
Assume that Sg and R are in positive normal form. We define A(¢), the abstract
interpretation of ¢ as follows:
o A(P(z1,...,zn)) = [Pl(Z1,...,Zn)
A(-P(z1, .., 2n)) = [P, - 7)
A(d1 A ¢2) = A1) A A(g2)
A1V ¢2) = A(d1) V A(g2)
A(3z. ¢) = 35.A(¢)
A(Vz. ¢) = VZ.A(8)
By induction on ¢, one can show that [¢] = A(¢) (Here we use that h is
surjectivel)

o Note: not necessarily A(¢) = [¢]

@ So, given the specification (V, D, So, R}, we define its abstract version to be

(V, A, A(S0), A(R))

© © ¢ 6 ¢

department of m tics and computing science

Technische Universiteit
Eindhoven
University of Technology

Data Abstraction

Correctness of abstract interpretation
o Let M’ be the Kripke Structure over 1373 induced by specification (V, D, Sy, R)
o Let M, be the Kripke Structure from the abstract specification <1A/7 A, A(So), A(R))
e Claim: M' C M,
o Proof: Let s = {v1 =di,...,v, =dpn} and sq = {01 = a1,...,0n = an}
The following H is a simulation relation:

H(s,80)=V1<i<n: h(d)) =a;

o By definition, the (abstract) labels coincide

o Let s — tin M’. Then R(s,t) holds. Hence, [R](h(s), h(t)) holds, and therefore
A(R(h(s),h(t))) holds. So, h(s) — h(t) is a transition in M.

o Note that H(s, h(s)) holds for all s.

o Similarly, if s € Sp, then s € A(Sp).

@ Hence, abstract interpretation is sound for ACTL".

atics and computing science

Technische Universiteit
Eindhoven
University of Technology

Outline

© Conclusion

department of i puting science

Technische Universiteit
Eindhoven
University of Technology

Conclusion

o Data abstraction transforms a specification S (with KS M) to a more abstract
specification S” (with KS M)

o By a careful construction, we know that M T M’

o For ACTL* properties, M’ |= ¢ implies M |= ¢, so generation of M can be avoided

@ This technique is important to reduce big state spaces, and essential when state
spaces become infinite

@ Hence for applying model checking to software systems, data abstraction is a crucial
technique

@ However, finding the right abstraction is a creative step, as hard as finding e.g.,
correct invariants. So this approach to verification is not completely mechanical

@ In practice, a bunch of standard abstractions are used. Their power is quite limited on
complicated programs

ting science

	Recap
	Data Abstraction
	Conclusion

