
Algorithms for Model Checking (2IW55)
Lecture 9

Data Abstraction
Chapter 13

Tim Willemse
(timw@win.tue.nl)

http://www.win.tue.nl/∼timw
HG 6.81

1/14

Outline

1 Recap

2 Data Abstraction

3 Conclusion

2/14

Recap

We have seen:
If M1 ≡M2 (M1 and M2 are bisimilar), then M1 and M2 satisfy
the same CTL∗ formulae
If M1 vM2 (M2 simulates M1), then all ACTL∗ formulae that are valid for M2

hold for M1 as well

Consider a specification S with a very large state space M1

The question is how to compute an M2 such that:
M1 vM2 (i.e., useful for ACTL∗ formulae)
M2 is smaller than M1

generation of M1 is not required

Method: data abstraction

3/14

Recap

Recall that the system specification is given by formulae from first-order predicate logic.

A specification is a tuple 〈V,D,S,R〉, where:

V is a set of variables v1, . . . , vn
D is the domain of these variables

The formula S0(V) represents the initial states

Let V ′ be a copy of the variables: v′1, . . . , v′n
The formula R(V, V ′) represents the transition relation:

V denotes the value of variables before the transition
V ′ denotes the value of variables after the transition

Conventions:

φ(V) denotes a first-order formula with all free variables among V .

Given a valuation α : V → D, the semantics of φ under α is written as
[[φ]]α ∈ {true, false}.

4/14

Recap

Semantics of a first-order predicate logic specification.

Given a specification 〈V,D,S0,R〉, we get the underlying Kripke Structure (alias state
space) 〈AP, S, S0, R, L〉 as follows:

The set of states S of the Kripke Structure will be the set of valuations α : V → D

The atomic propositions AP will be of the form v = d, where v ∈ V and d ∈ D
The set of initial states S0 will be the valuations α, such that [[S0]]α is true

Let α, β : V → D be valuations. Define β′(v′i) = β(vi) for all vi ∈ V . There is a
transition R(α, β) if [[R]](α ∪ β′) is true

Finally, the set of labels of state α is L(α) := {v1 = α(v1), . . . , vn = α(vn)}

5/14

Outline

1 Recap

2 Data Abstraction

3 Conclusion

6/14

Data Abstraction

Idea of Data Abstraction:

State variables range over some domain D

D is now called the concrete domain
A data abstraction consists of:

An abstract domain A
A surjective mapping h : D → A

Example:
Concrete domain: natural numbers N
Abstract domain: {even, odd}
h(2n) = even, h(2n+ 1) = odd

Abstract interpretation: evaluating an expression directly in the abstract domain

For this, all concrete operations must be mimicked by abstract operations

In the example: m̂+ n can be computed directly as bmb+bn if we set:

evenb+even = even oddb+odd = even

evenb+odd = odd oddb+even = odd

7/14

Data Abstraction

Let Kripke Structure 〈AP, S, S0, R, L〉 be given, where S = [V → D] (i.e., the set of
functions V → D).

Let abstract domain A with h : D → A be given:
The idea will be:

replace concrete data by abstract values
collapse states with the same abstract value

The price to be paid is that we can now only express properties on abstract values.
Let bv denote the abstract version of variable v, ranging over A
Change the set of atomic propositions: dAP := {bv = a | v ∈ V, a ∈ A}
Change the labelling: L′(s) := {. . . , bvi = h(s), . . .}

We now compare the concrete M ′ = 〈cAP, S, S0, R, L
′〉 with the abstract

Mr = 〈cAP, Sr, Sr0 , Rr, Lr〉 defined next.

8/14

Data Abstraction
Given a concrete M ′ = 〈cAP, S, S0, R, L

′〉, we define abstract Mr = 〈cAP, Sr, Sr0 , Rr, Lr〉:
We want to collapse (identify) states with the same labels, so we define:

Sr := {L′(s) | s ∈ S} . (= [bV → A])

Of course, Lr(sr) := sr

Mr must simulate M ′, so it should reflect all initial states:

Sr0(sr) iff ∃s ∈ S0 : L′(s) = sr

Mr must simulate M ′, so it should reflect all transitions. So define Rr(sr, tr) iff

∃s, t ∈ S : sr = L′(s) ∧ tr = L′(t) ∧R(s, t)

R

Rr

h h

sr tr

s t

9/14

Data Abstraction
Problem: constructing Mr requires M ′.
Given specification 〈V,D,S0,R〉, and data abstraction (A, h), we want a specification for
Mr.

Notation: write [φ](bV) to abbreviate the ideal abstraction of φ(V):

[φ](bv1, . . . ,cvn) :=
∃v1, . . . , vn : h(v1) = bv1 ∧ · · · ∧ h(vn) = cvn ∧ φ(v1, . . . , vn)

Then the ideal abstract specification is defined as 〈bV ,A, [S0](bV), [R](bV ,cV ′)〉
Crucial property achieved by this construction:

φ(s, t)
⇔ h(s) = h(s) ∧ h(t) = h(t) ∧ φ(s, t)
⇒ ∃v1, v2 : h(v1) = h(s) ∧ h(v2) = h(t) ∧ φ(v1, v2)
⇔ [φ](h(s), h(t))

However, due to all the existential quantifications, this abstraction is costly to
generate.

10/14

Data Abstraction

Idea: generate a cheaper approximation by pushing the quantifications inside
Assume that S0 and R are in positive normal form. We define A(φ), the abstract
interpretation of φ as follows:

A(P (x1, . . . , xn)) = [P](cx1, . . . , cxn)
A(¬P (x1, . . . , xn)) = [¬P](cx1, . . . , cxn)
A(φ1 ∧ φ2) = A(φ1) ∧ A(φ2)
A(φ1 ∨ φ2) = A(φ1) ∨ A(φ2)
A(∃x. φ) = ∃bx.A(φ)
A(∀x. φ) = ∀bx.A(φ)

By induction on φ, one can show that [φ] =⇒ A(φ) (Here we use that h is
surjective!)

Note: not necessarily A(φ) =⇒ [φ]

So, given the specification 〈V,D,S0,R〉, we define its abstract version to be
〈bV ,A,A(S0),A(R)〉

11/14

Data Abstraction

Correctness of abstract interpretation

Let M ′ be the Kripke Structure over cAP, induced by specification 〈V,D,S0,R〉
Let Mα be the Kripke Structure from the abstract specification 〈bV ,A,A(S0),A(R)〉
Claim: M ′ vMα

Proof: Let s = {v1 = d1, . . . , vn = dn} and sα = { bv1 = a1, . . . ,cvn = an}
The following H is a simulation relation:

H(s, sα) = ∀1 ≤ i ≤ n : h(di) = ai

By definition, the (abstract) labels coincide
Let s→ t in M ′. Then R(s, t) holds. Hence, [R](h(s), h(t)) holds, and therefore
A(R(h(s), h(t))) holds. So, h(s)→ h(t) is a transition in Mα.
Note that H(s, h(s)) holds for all s.
Similarly, if s ∈ S0, then s ∈ A(S0).

Hence, abstract interpretation is sound for ACTL∗.

12/14

Outline

1 Recap

2 Data Abstraction

3 Conclusion

13/14

Conclusion

Data abstraction transforms a specification S (with KS M) to a more abstract
specification S′ (with KS M ′)

By a careful construction, we know that M vM ′

For ACTL∗ properties, M ′ |= φ implies M |= φ, so generation of M can be avoided

This technique is important to reduce big state spaces, and essential when state
spaces become infinite

Hence for applying model checking to software systems, data abstraction is a crucial
technique

However, finding the right abstraction is a creative step, as hard as finding e.g.,
correct invariants. So this approach to verification is not completely mechanical

In practice, a bunch of standard abstractions are used. Their power is quite limited on
complicated programs

14/14

	Recap
	Data Abstraction
	Conclusion

