
Algorithms for Model Checking (2IW55)
Lecture 1

The temporal logics CTL∗, CTL and LTL: syntax and semantics

Tim Willemse
(timw@win.tue.nl)

http://www.win.tue.nl/∼timw
HG 6.81

1/23

Outline

1 Motivation

2 Kripke Structures

3 Temporal Logics
CTL∗

CTL and LTL

4 Exercise

2/23

Motivation

Model checking is an automated verification method. It can be used to check that a
requirement holds for a model of a system.

A (software or hardware) system is usually modelled in a particular specification
language

The requirements are specified as properties in some temporal logic

As an intermediate step, a state space is generated from the specification. This is
a graph, representing all possible behaviours

A model checking algorithm decides whether the property holds for the model:
the property can be verified or refuted. Sometimes, witnesses or counter examples
can be provided

In practice, model checking proves to be an effective method to detect many bugs in
early design phases

3/23

Motivation

Complexity of model checking arises from:

State space explosion: the state space is usually much larger than the specification

Expressive logics have complex model checking algorithms

Ways to deal with the state space explosion:

equivalence reduction: remove states with identical potentials from a state space

on-the-fly: integrate the generation and verification phases, to prune the state
space

symbolic model checking: represent sets of states by clever data structures

partial-order reduction: ignore some executions, because they are covered by
others

abstraction: remove details by working on conservative over-approximation

4/23

Outline

1 Motivation

2 Kripke Structures

3 Temporal Logics
CTL∗

CTL and LTL

4 Exercise

5/23

Kripke Structures

The behaviour of a system is modelled by a graph consisting of:

nodes, representing states of the system (e.g. the value of a program counter,
variables, registers, stack/heap contents, etc.)

edges, representing state transitions of the system (e.g. events, input/output
actions, internal computations)

Information can be put in states or on transitions (or both). There are two prevailing
models, which will be used interchangeably in these lectures:

Kripke Structures (KS): information on states, called atomic propositions

Labelled Transition Systems (LTS): information on edges, called action labels

Today: only Kripke Structures

6/23

Kripke Structures

Let AP be a set of atomic propositions. A Kripke Structure over AP is a structure
M = 〈S, S0, R, L〉, where

S is a finite set of states

S0 ⊆ S is a non-empty set of initial states

R ⊆ S × S is a total binary relation on S, representing the set of transitions.
totality: for all s ∈ S, there exists t ∈ S, such that (s, t) ∈ R.
L:S → 2AP, labels each state with the set of atomic propositions that hold in
that state

Conventions:

Sometimes S0 is irrelevant and dropped; sometimes it is a single state, in which
case it is written as s0
Instead of (s, t) ∈ R, we write sRt

7/23

Kripke Structures

s0

s2

s1 s3

{p, q}

{q}

{p}

This is a Kripke Structure over AP, M =
〈S, S0, R, L〉 as follows:

AP = {p, q}
S = {s0, s1, s2, s3}
S0 = {s0}
R = {(s0, s1), (s1, s0), (s1, s3),

(s3, s3), (s0, s2), (s2, s1)}
L(s0) = ∅, L(s1) = {p, q}
L(s2) = {q}, L(s3) = {p}

Note: without the self-loop (s3, s3), R
would not be total and we would not have
a Kripke structure

8/23

Kripke Structures

s0

s2

s1 s3

{p, q}

{q}

{p}

Terminology
Given a fixed Kripke Structure M =
〈S,R,L〉.

A path π is an infinite sequence
of states s0 s1 . . . such that for
all i ∈ N: si ∈ S and siRsi+1

Given a path π = s0 s1 s2 . . .
π(i) denotes the i-th state
(counting from 0): si

πi denotes the suffix of π
starting at i: si si+1 . . .

path(s) denotes the set of paths
starting at s: {π | π(0) = s}

In the Kripke Structure above:
(s0 s2 s1)

ω ∈ path(s0), ((s0 s2 s1)
ω)(3) = s0, ((s0 s2 s1)

ω)3 = (s0 s2 s1)
ω

9/23

Outline

1 Motivation

2 Kripke Structures

3 Temporal Logics
CTL∗

CTL and LTL

4 Exercise

10/23

Temporal Logics: CTL∗

CTL∗ is the Full Computation Tree Logic

CTL∗ formulae express properties over states or paths

CTL∗ has the following temporal operators, which are used to express properties
of paths: neXt, Future, Globally, Until, Releases
The operators have the following intuitive meaning:

X f : f holds in the next state in this path
F f : f holds somewhere in this path
G f : f holds everywhere on this path
[f U g]: g holds somewhere on this path, and f holds in all preceding states
[f R g]: g holds as long as f did not hold before

Example

F G p versus G F p: almost always versus infinitely often

11/23

Temporal Logics: CTL∗

CTL∗ consists of:

Atomic propositions (AP)

Boolean connectives: ¬ (not), ∨ (or), ∧ (and)

Temporal operators (on paths, see previous slide)

Path quantifiers (on states, see below)

Path quantifiers are capable of expressing properties on a system’s branching structure:

for All paths versus there Exists a path

Path quantifiers have the following intuitive meaning:

A f : f holds for all paths from this state

E f : f holds for at least one path from this state

12/23

Temporal Logics: CTL∗

CTL∗ state formulae (S) and path formulae (P) are defined simultaneously by
induction:

S ::= true | false | AP | ¬S | S ∧ S | S ∨ S | E P | A P
P ::= S | ¬P | P ∧ P | P ∨ P | X P | F P | G P | [P U P] | [P R P]

Summarising:
State formulae (S) are:

constants true and false and atomic propositions (basis)
Boolean combinations of state formulae
quantified path formulae

Path formulae (P) are:
state formulae (basis)
Boolean combinations of path formulae
temporal combinations of path formulae

13/23

Temporal Logics: CTL∗

The semantics of CTL∗ state formulae and path formulae is defined relative to a fixed
Kripke Structure M = 〈S, S0, R, L〉 over AP:

For state formulae:

s |= true
s 6|= false
s |= p iff p ∈ L(s)
s |= ¬f iff s 6|= f
s |= f ∧ g iff s |= f and s |= g
s |= f ∨ g iff s |= f or s |= g
s |= E f iff for some π ∈ path(s), π |= f
s |= A f iff for all π ∈ path(s), π |= f

14/23

Temporal Logics: CTL∗

The semantics of CTL∗ state formulae and path formulae is defined relative to a fixed
Kripke Structure M = 〈S, S0, R, L〉 over AP:

For path formulae:

π |= f iff π(0) |= f (if f is a state formula)
π |= ¬f iff π 6|= f
π |= f ∧ g iff π |= f and π |= g
π |= f ∨ g iff π |= f or π |= g
π |= X f iff π1 |= f
π |= F f iff for some i ≥ 0, πi |= f
π |= G f iff for all i ≥ 0, πi |= f
π |= [f U g] iff ∃i ≥ 0. πi |= g ∧ ∀j < i. πj |= f
π |= [f R g] iff ∀j ≥ 0. ((∀i < j. πi 6|= f)⇒ πj |= g)

14/23

Temporal Logics: CTL∗

A property f is satisfied by a Kripke Structure M = 〈S, S0, R, L〉, denoted M |= f , iff
∀s ∈ S0. M, s |= f .

Equivalence between two CTL∗ properties is defined as follows:

f ≡ g iff ∀M ∀s .(M, s |= f ⇔ M, s |= g)

According to the semantics, we can derive several dualities:

¬G f ≡ F (¬f)

¬¬f ≡ f
¬(f ∧ g) ≡ ¬f ∨ ¬g
¬A f ≡ E (¬f)

¬[f R g] ≡ [(¬f) U (¬g)]
¬X f ≡ X (¬f)

F f ≡ [true U f]

So all CTL∗ properties can be expressed using only: ¬, true,∨,X , [U],E

15/23

Temporal Logics: CTL and LTL

Two simpler sublogics of CTL∗ are defined:
LTL: linear time logic

checks temporal operators along single paths
pro: -counter examples are easy: “lasso”

-nice automata-theoretic algorithm
typical tool: SPIN

CTL: computation tree logic
branching time logic
temporal operators should be preceded by path quantifiers
pro: -efficient model checking algorithm

-amenable to symbolic techniques
typical tool: nuSMV

The expressive power of LTL and CTL is incomparable.

16/23

Temporal Logics: CTL and LTL

LTL state formulae (S) and path formulae (P):

S ::= A P
P ::= true | false | AP | ¬P | P ∧ P | P ∨ P

| X P | F P | G P | [P U P] | [P R P]

Summarising:
The only state formulae are:

all-quantified path formulae (hence, the A is sometimes omitted)
Path formulae are:

constants true and false and atomic propositions
Boolean combinations of path formulae
temporal combinations of path formulae

Example

LTL expressions: A F G p, A (¬(G F p) ∨ F q); not in LTL: A F A G p, A G E F p

Question: A F G p
?≡ A F A G p

17/23

Temporal Logics: CTL and LTL

CTL state formulae (S) and path formulae (P):

S ::= true | false | AP | ¬S | S ∨ S | E P | A P
P ::= X S | F S | G S | [S U S] | [S R S]

Summarising:
State formulae are:

constants true and false and atomic propositions
Boolean combinations of state formulae
quantified path formulae

The only path formulae are:
temporal combinations of state formulae

Example

CTL expressions: A G E F p, E [p U (E X q)];
not in CTL: A F G p, A X X p, E [p U (X q)]

Question: A X X p
?≡ A X A X p

18/23

Temporal Logics: CTL and LTL

Alternative view: CTL has only state formulae, with the following ten temporal
combinators:

A X and E X : for all/some next state

A F and E F : inevitably and potentially

A G and E G : invariantly and potentially always

A [U] and E [U]: for all/some paths, until

A [R] and E [R]: for all/some paths, releases

E F black E G black A F black A G black

19/23

Temporal Logics: CTL and LTL

For CTL, only the following operators are needed:

Boolean connectives: ¬, ∨ and constants true and AP

Temporal combinations: E X , E G , E [U]

Standard transformations (derived from CTL∗):

E F f ≡ E [true U f]

A X f ≡ ¬E X (¬f)

A G f ≡ ¬E F (¬f)

A F f ≡ ¬E G (¬f)

A [f R g] ≡ ¬E [(¬f) U (¬g)]
E [f R g] ≡ ¬A [(¬f) U (¬g)]

To remove A [U], note that:
1 [f R g] ≡ [g U (f ∧ g)] ∨ G g

2 A [f U g] ≡ ¬E [(¬f) R (¬g)]
3 E (f ∨ g) ≡ E f ∨ E g

from this, we obtain A [f U g] ≡ ¬E [(¬g) U (¬(f ∨ g))] ∧ ¬E G (¬g)

20/23

Temporal Logics: CTL and LTL

Example (CTL versus LTL)

M1

p

p

pp

M2

p

p

p

M1 |= A F (p ∧ X p) but M1 6|= A F (p ∧ A X p)

M2 6|= A F (p ∧ X p) but M2 |= A F (p ∧ E X p)

This shows that the LTL-formula A F (p ∧ X p) is not equivalent to one of the CTL
formulae A F (p ∧ A X p) or A F (p ∧ E X p).

Actually: A F (p ∧ X p) is not expressible in CTL (does not follow from these
observations)

21/23

Outline

1 Motivation

2 Kripke Structures

3 Temporal Logics
CTL∗

CTL and LTL

4 Exercise

22/23

Exercise

s0

s1

s2

s3

{p, q}

{q}

{p}

CTL∗ formulae: p, E [q R p], E F G p, A G F p,
A G E F p, A G F (p ∧ X q), A G (¬q ∨ F p),
A ((G p) ∨ (F q))

For each formula, indicate whether it is in LTL and/or CTL

Determine for each formula in which states of the above Kripke Structure it holds

23/23

	Motivation
	Kripke Structures
	Temporal Logics
	CTL*
	CTL and LTL

	Exercise

