

Parity games

Material: Chapter 3 of "An experimental study of algorithms and optimisations for parity games, with an application to Boolean Equation Systems", MSc thesis, July 2009, Jeroen Keiren

> Jeroen J.A. Keiren jkeiren@win.tue.nl http://www.win.tue.nl/~jkeiren HG 6.81

Department of Mathematics and Computer Science Technische Universiteit Eindhoven

Why parity games?

- BES can blow up exponentially (see e.g. Mader, section 6.4.2)
- Semantics of BES hard to understand
- Alternative model:
 - additional insights
 - other algorithms
 - graph model more intuitive and easier to understand
- Algorithms still exponential

Parity games

- Parity games are graph games played by two players, *Even* and *Odd*;
- Each vertex v is owned by either player Even or player Odd;
- Each vertex v is assigned integer priority p(v);
- A player does a step in the game if a token is on a vertex owned by that player;
- A play (denoted π) is an infinite sequence of steps.

Definition (Parity game)

A parity game Γ is a four tuple $(V, E, p, (V_{Even}, V_{Odd}))$, where (V, E) is a directed graph, with vertices V and total edge relation E, $p: V \to \mathbf{N}$ is a priority function, and (V_{Even}, V_{Odd}) is a partitioning of V.

Example of a parity game

Winning a parity game

Definition (Winner)

Let $\pi = v_1 v_2 v_3 \dots$ be a play, and let $\inf(\pi)$ denote the set of priorities occurring infinitely often in π . Play π is winning for player *Even* iff $\min(\inf(\pi))$ is even.

5/22

department of mathematics and computing science

Winning a parity game

Definition (Winner)

Let $\pi = v_1 v_2 v_3 \dots$ be a play, and let $\inf(\pi)$ denote the set of priorities occurring infinitely often in π . Play π is winning for player *Even* iff $\min(\inf(\pi))$ is even.

department of mathematics and computing science

Winning a parity game

Definition (Winner)

Let $\pi = v_1 v_2 v_3 \dots$ be a play, and let $\inf(\pi)$ denote the set of priorities occurring infinitely often in π . Play π is winning for player *Even* iff $\min(\inf(\pi))$ is even.

Strategies

Definition (Strategy)

A strategy for *Player* is a partial function $\psi_{Player}: V^*V \to V$ that decides the vertex the token is played to based on the history of the vertices that has veen visited.

• A play $\pi = v_1 v_2 v_3 \dots$ is consistent with strategy ψ_{Player} for *Player* iff every $v_i \in \pi$ such that $v_i \in V_{Player}$ is immediately followed by $v_{i+1} = \psi_{Player}(v_1 \dots v_i)$.

Definition (Winning)

Strategy ψ_{Player} is a winning strategy for Player from set $W \subseteq V$ if every play starting from a vertex in W, consistent with ψ_{Player} is winning for Player.

Memoryless strategies

Theorem

For finding winning strategies it suffices to look at history free (also memoryless) strategies, i.e. strategies $\psi_{Player}: V \to V$ in which vertex v_i always gets the same successor v_{i+1} , independend of the path by which v_i is reached.

Example: Memoryless strategy

Example (Strategy)

Let $\psi_{Even}(s_2) = s_2, \psi_{Even}(s_3) = s_1$, and $\psi_{Odd}(s_1) = s_3$. Then:

- ψ_{Even} is winning from ???, and
- ψ_{Odd} is winning from ???.

Observe that ψ_{Even} and ψ_{Odd} are memoryless.

Example: Memoryless strategy

Example (Strategy)

Let $\psi_{Even}(s_2) = s_2, \psi_{Even}(s_3) = s_1$, and $\psi_{Odd}(s_1) = s_3$. Then:

- ψ_{Even} is winning from $\{s_2\}$, and
- ψ_{Odd} is winning from $\{s_1, s_3\}$.

Observe that ψ_{Even} and ψ_{Odd} are memoryless.

Boolean Equation Systems

Recall the definition of BES:

Definition (Boolean Equation System)

Given a set Var of propositional variables. A Boolean Expression is defined by:

$$f ::= X \mid \mathsf{true} \mid \mathsf{false} \mid f \land f \mid f \lor f$$

A Boolean Equation is an equation of the form $\sigma X = f$, where $X \in Var$, $\sigma \in \{\mu, \nu\}$ and f is a Boolean Expression. A Boolean Equation System is a sequence of Boolean Equations:

$$\mathcal{E} ::= \varepsilon \mid (\sigma X = f) \mathcal{E}$$

Notation

- Lowest rank alway 0 or 1;
- rank(X) indicates in which block of like-signed equations X occurs;
- rank(X) is odd iff X is defined in a μ -equation;
- rank(X) inductively defined on structure of BES;
- op(X) indicates top-level boolean operator of equation for X.

Example (Rank/Op)

$$\begin{array}{rcl} \mu X &=& X \wedge (Y \vee Z) \\ \nu Y &=& W \vee (X \wedge Y) \\ \mu Z &=& \mathsf{false} \\ \mu W &=& Z \vee (Z \vee W) \end{array}$$

Notation

- Lowest rank alway 0 or 1;
- rank(X) indicates in which block of like-signed equations X occurs;
- $\operatorname{rank}(X)$ is odd iff X is defined in a μ -equation;
- rank(X) inductively defined on structure of BES;
- op(X) indicates top-level boolean operator of equation for X.

Example (Rank/Op)

$$\begin{array}{rrr} \mathsf{rank}(_) & \mathsf{op}(_) \\ (1) & \wedge & \mu X &= X \wedge (Y \lor Z) \\ (2) & \lor & \nu Y &= W \lor (X \wedge Y) \\ (3) & \bot & \mu Z &= \mathsf{false} \\ (3) & \lor & \mu W &= Z \lor (Z \lor W) \end{array}$$

Boolean Equation Systems in SRF

We say that a BES is in Standard Recursive Form (SRF) if all right hand sides of Boolean Equations adhere to the following syntax:

$$f := X \mid \bigvee F \mid \bigwedge F$$

- X is a proposition variable;
- F is a non-empty set of proposition variables.

Observe that:

- All BESs can be transformed into an equivalent BES in SRF;
- This transformation can be done in polynomial time.

Transformation to SRF

Example

Consider the following BES:

$$\begin{array}{rcl} \mu X &=& X \wedge (Y \vee Z) \\ \nu Y &=& W \vee (X \wedge Y) \\ \mu Z &=& \mathsf{false} \\ \mu W &=& Z \vee (Z \vee W) \end{array}$$

Transformation to SRF

Example

Consider the following BES:

This corresponds to the following BES in SRF:

$$\begin{array}{lll} \mu X &=& X \wedge (Y \vee Z) \\ \nu Y &=& W \vee (X \wedge Y) \\ \mu Z &=& \mathsf{false} \\ \mu W &=& Z \vee (Z \vee W) \end{array}$$

$$\mu X = X \land X'$$

$$\mu X' = Y \lor Z$$

$$\nu Y = W \lor Y'$$

$$\nu Y' = X \land Y$$

$$\mu Z = Z'$$

$$\mu Z' = Z'$$

$$\mu W = Z \lor (Z \lor W)$$

Correspondence of parity game to BES

Parity games correspond to closed BESs in SRF.

Definition (Parity game to BES)

Let $(V, E, p, (V_{Even}, V_{Odd}))$ be a parity game. Construct the corresponding closed BES in SRF as follows:

$$\begin{cases} \sigma X_v = \bigwedge \{ X_{v'} \mid (v, v') \in E \} & \text{if } v \in V_{Odd} \\ \sigma X_v = \bigvee \{ X_{v'} \mid (v, v') \in E \} & \text{if } v \in V_{Even} \end{cases}$$

where $\sigma = \mu$ if p(v) is odd, and $\sigma = \nu$ otherwise. Note that for vertices v and u with p(v) < p(u) it holds that X_v occurs before X_u in the BES.

Parity game to BES example

Parity game to BES example

Example (Parity game to BES) Odd Even Legend:

Corresponds to the following BES:

$$\begin{array}{ll} \mu X_{s_1} &= X_{s_2} \wedge X_{s_3} \\ \nu X_{s_2} &= X_{s_2} \vee X_{s_1} \\ \mu X_{s_3} &= X_{s_1} \vee X_{s_3} \end{array}$$

Dependency graph of a BES in SRF

Let ${\mathcal E}$ be a BES, then

- \bullet $\mbox{bnd}(\mathcal{E})$ are all variables occurring at the lhs of an equation in $\mathcal{E};$
- \bullet $\mathsf{occ}(\mathcal{E})$ are all variables occurring at the rhs of an equation in $\mathcal{E};$
- occ(f) are all variables occurring in formula f.

Definition (Dependency graph)

Let $\mathcal E$ be a BES. Its dependency graph $\mathcal G_{\mathcal E}$ is defined as (V, E), where:

•
$$V = \mathsf{bnd}(\mathcal{E})$$

• $(X,Y)\in E$ iff there is $\sigma X=f$ in ${\mathcal E}$ with $Y\in {\rm occ}(f)$

Dependency graph example

Example (Dependency graph)

Consider the following BES:

$$\mu X = X \wedge X'$$

$$\mu X' = Y \lor Z$$

$$\nu Y = W \lor Y'$$

$$\nu Y' = X \wedge Y$$

$$\mu Z = Z'$$

$$\mu W = Z \lor (Z \lor W)$$

Its dependency graph is:

Dependency graph example

Example (Dependency graph)

Consider the following BES: Its dependency graph is:

$$\mu X = X \land X'$$

$$\mu X' = Y \lor Z$$

$$\nu Y = W \lor Y'$$

$$\nu Y' = X \land Y$$

$$\mu Z = Z'$$

$$\mu Z' = Z'$$

$$\mu W = Z \lor (Z \lor W)$$

Correspondence of BES to parity game

Closed BESs in SRF correspond to parity games.

Definition (BES to parity game)

Let $\mathcal E$ be a closed BES in SRF. This corresponds to the parity game $\Gamma=(V,E,p,(V_{Even},V_{Odd})),$ where

- (V, E) is the dependency graph $\mathcal{G}_{\mathcal{E}}$ of \mathcal{E} ,
- $p(X) = \operatorname{rank}(X)$ for all variables $X \in \operatorname{bnd}(E)$,
- $V_{Odd} = \{X \mid \mathrm{op}(X) = \wedge\}$, so all conjunctive equations are assigned to V_{Odd} , and
- $V_{Even} = V \setminus V_{Odd}$, all other equations are assigned to V_{Even} .

BES to Parity game example

Example (BES to parity game)

Consider the following BES:

$$\mu X = X \wedge X'$$

$$\mu X' = Y \lor Z$$

$$\nu Y = W \lor Y'$$

$$\nu Y' = X \wedge Y$$

$$\mu Z = Z'$$

$$\mu W = Z \lor (Z \lor W)$$

Its parity game is:

BES to Parity game example

Example (BES to parity game)

Its parity game is:

Consider the following BES:

$$\mu X = X \land X'$$

$$\mu X' = Y \lor Z$$

$$\nu Y = W \lor Y'$$

$$\nu Y' = X \land Y$$

$$\mu Z = Z'$$

$$\mu Z' = Z'$$

$$\mu W = Z \lor (Z \lor W)$$

department of mathematics and computing science

Intuition

Intuitively, the correspondence between BES and parity game is as follows:

- Variable X in BES \mathcal{E} is true, iff player *Even* has a winning strategy from corresponding vertex V_X in the parity game for \mathcal{E} .
- Variable X in BES \mathcal{E} is false, iff player Odd has a winning strategy from corresponding vertex V_X in the parity game for \mathcal{E} .

Transformations on parity games

• Self-loop elimination

• Priority compaction

 $\rightarrow \underbrace{5} \longrightarrow to \rightarrow \underbrace{3} \longrightarrow$

In case priority 4 does not occur in the parity game. Evenness must be preserved!

Transformations on parity games

• Priority propagation:

Evenness of priorities may change!

Consider the following modal μ -calculus formula f:

 $\phi \equiv \nu X.\mu Y.(([r]X \land [s]X \land (\nu Z.\langle \overline{s} \rangle Z)) \lor ([r]Y \land [s]Y))$

- Translate the model checking question $M \vDash f$ to a BES.
- Transform the resulting BES into a parity game.
- Give a winning strategy for player Even from X_{s_0} .