Parity games

Material: Chapter 3 of "An experimental study of algorithms and optimisations for parity games, with an application to Boolean Equation Systems", MSc thesis, July 2009, Jeroen Keiren

Jeroen J.A. Keiren
jkeiren@win.tue.nl
http://www.win.tue.nl/~jkeiren
HG 6.81

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

Technische Universiteit

Why parity games?

- BES can blow up exponentially (see e.g. Mader, section 6.4.2)
- Semantics of BES hard to understand
- Alternative model:
- additional insights
- other algorithms
- graph model more intuitive and easier to understand
- Algorithms still exponential

Parity games

- Parity games are graph games played by two players, Even and Odd;
- Each vertex v is owned by either player Even or player Odd;
- Each vertex v is assigned integer priority $p(v)$;
- A player does a step in the game if a token is on a vertex owned by that player;
- A play (denoted π) is an infinite sequence of steps.

Definition (Parity game)

A parity game Γ is a four tuple $\left(V, E, p,\left(V_{E v e n}, V_{O d d}\right)\right)$, where (V, E) is a directed graph, with vertices V and total edge relation E, $p: V \rightarrow \boldsymbol{N}$ is a priority function, and $\left(V_{E v e n}, V_{O d d}\right)$ is a partitioning of V.

Example of a parity game

Example

Winning a parity game

Definition (Winner)

Let $\pi=v_{1} v_{2} v_{3} \ldots$ be a play, and let $\inf (\pi)$ denote the set of priorities occurring infinitely often in π. Play π is winning for player Even iff $\min (\inf (\pi))$ is even.

Example

Legend: $\quad \square \stackrel{\text { Odd Even }}{ }$

- Play $s_{1} s_{2}^{\omega}$ won by player ???;
- Play $\left(s_{1} s_{2} s_{1} s_{3}\right)^{\omega}$ won by player ???.

Winning a parity game

Definition (Winner)

Let $\pi=v_{1} v_{2} v_{3} \ldots$ be a play, and let $\inf (\pi)$ denote the set of priorities occurring infinitely often in π. Play π is winning for player Even iff $\min (\inf (\pi))$ is even.

Example

- Play $s_{1} s_{2}^{\omega}$ won by player Even;
- Play $\left(s_{1} s_{2} s_{1} s_{3}\right)^{\omega}$ won by player ???.

Technische Universiteit

Winning a parity game

Definition (Winner)

Let $\pi=v_{1} v_{2} v_{3} \ldots$ be a play, and let $\inf (\pi)$ denote the set of priorities occurring infinitely often in π. Play π is winning for player Even iff $\min (\inf (\pi))$ is even.

Example

- Play $s_{1} s_{2}^{\omega}$ won by player Even;
- Play $\left(s_{1} s_{2} s_{1} s_{3}\right)^{\omega}$ won by player $O d d$.

Technische Universiteit Eindhoven
 University of Technology

Strategies

Definition (Strategy)

A strategy for Player is a partial function $\psi_{\text {Player }}: V^{*} V \rightarrow V$ that decides the vertex the token is played to based on the history of the vertices that has veen visited.

- A play $\pi=v_{1} v_{2} v_{3} \ldots$ is consistent with strategy $\psi_{\text {Player }}$ for Player iff every $v_{i} \in \pi$ such that $v_{i} \in V_{\text {Player }}$ is immediately followed by $v_{i+1}=\psi_{\text {Player }}\left(v_{1} \ldots v_{i}\right)$.

Definition (Winning)

Strategy $\psi_{\text {Player }}$ is a winning strategy for Player from set $W \subseteq V$ if every play starting from a vertex in W, consistent with $\psi_{\text {Player }}$ is winning for Player.

Technische Universiteit

Memoryless strategies

Theorem

For finding winning strategies it suffices to look at history free (also memoryless) strategies, i.e. strategies $\psi_{\text {Player }}: V \rightarrow V$ in which vertex v_{i} always gets the same successor v_{i+1}, independend of the path by which v_{i} is reached.

Example: Memoryless strategy

Example (Strategy)

Let $\psi_{\text {Even }}\left(s_{2}\right)=s_{2}, \psi_{\text {Even }}\left(s_{3}\right)=s_{1}$, and $\psi_{\text {Odd }}\left(s_{1}\right)=s_{3}$. Then:

- $\psi_{\text {Even }}$ is winning from ???, and
- $\psi_{O d d}$ is winning from ???.

Observe that $\psi_{\text {Even }}$ and $\psi_{\text {Odd }}$ are memoryless.

Example: Memoryless strategy

Example (Strategy)

Let $\psi_{\text {Even }}\left(s_{2}\right)=s_{2}, \psi_{\text {Even }}\left(s_{3}\right)=s_{1}$, and $\psi_{\text {Odd }}\left(s_{1}\right)=s_{3}$. Then:

- $\psi_{\text {Even }}$ is winning from $\left\{s_{2}\right\}$, and
- $\psi_{O d d}$ is winning from $\left\{s_{1}, s_{3}\right\}$.

Observe that $\psi_{\text {Even }}$ and $\psi_{O d d}$ are memoryless.

Technische Universiteit

Boolean Equation Systems

Recall the definition of BES:

Definition (Boolean Equation System)

Given a set Var of propositional variables. A Boolean Expression is defined by:

$$
f::=X \mid \text { true } \mid \text { false }|f \wedge f| f \vee f
$$

A Boolean Equation is an equation of the form $\sigma X=f$, where $X \in \operatorname{Var}, \sigma \in\{\mu, \nu\}$ and f is a Boolean Expression.
A Boolean Equation System is a sequence of Boolean Equations:

$$
\mathcal{E}::=\varepsilon \mid(\sigma X=f) \mathcal{E}
$$

Notation

- Lowest rank alway 0 or 1 ;
- rank (X) indicates in which block of like-signed equations X occurs;
- $\operatorname{rank}(X)$ is odd iff X is defined in a μ-equation;
- $\operatorname{rank}(X)$ inductively defined on structure of BES;
- op (X) indicates top-level boolean operator of equation for X.

Example (Rank/Op)

$$
\begin{aligned}
\mu X & =X \wedge(Y \vee Z) \\
\nu Y & =W \vee(X \wedge Y) \\
\mu Z & =\text { false } \\
\mu W & =Z \vee(Z \vee W)
\end{aligned}
$$

Notation

- Lowest rank alway 0 or 1 ;
- $\operatorname{rank}(X)$ indicates in which block of like-signed equations X occurs;
- $\operatorname{rank}(X)$ is odd iff X is defined in a μ-equation;
- $\operatorname{rank}(X)$ inductively defined on structure of BES;
- op (X) indicates top-level boolean operator of equation for X.

Example (Rank/Op)

rank(_) op(_)

(1) $\wedge \mu X=X \wedge(Y \vee Z)$
(2) $\vee \nu Y=W \vee(X \wedge Y)$
(3) $\perp \mu Z=$ false
(3) $\vee \mu W=Z \vee(Z \vee W)$

Boolean Equation Systems in SRF

We say that a BES is in Standard Recursive Form (SRF) if all right hand sides of Boolean Equations adhere to the following syntax:

$$
f:=X|\bigvee F| \bigwedge F
$$

- X is a proposition variable;
- F is a non-empty set of proposition variables.

Observe that:

- All BESs can be transformed into an equivalent BES in SRF;
- This transformation can be done in polynomial time.

Example

Consider the following BES:

$$
\begin{aligned}
& \mu X=X \wedge(Y \vee Z) \\
& \nu Y=W \vee(X \wedge Y) \\
& \mu Z=\text { false } \\
& \mu W=Z \vee(Z \vee W)
\end{aligned}
$$

Transformation to SRF

Example

Consider the following BES:

$$
\begin{aligned}
& \mu X=X \wedge(Y \vee Z) \\
& \nu Y=W \vee(X \wedge Y) \\
& \mu Z=\text { false } \\
& \mu W=Z \vee(Z \vee W)
\end{aligned}
$$

This corresponds to the following BES in SRF:

$$
\begin{aligned}
\mu X & =X \wedge X^{\prime} \\
\mu X^{\prime} & =Y \vee Z \\
\nu Y & =W \vee Y^{\prime} \\
\nu Y^{\prime} & =X \wedge Y \\
\mu Z & =Z^{\prime} \\
\mu Z^{\prime} & =Z^{\prime} \\
\mu W & =Z \vee(Z \vee W)
\end{aligned}
$$

Technische Universiteit

Correspondence of parity game to BES

Parity games correspond to closed BESs in SRF.

Definition (Parity game to BES)

Let $\left(V, E, p,\left(V_{E v e n}, V_{O d d}\right)\right)$ be a parity game. Construct the corresponding closed BES in SRF as follows:

$$
\begin{cases}\sigma X_{v}=\bigwedge\left\{X_{v^{\prime}} \mid\left(v, v^{\prime}\right) \in E\right\} & \text { if } v \in V_{\text {Odd }} \\ \sigma X_{v}=\bigvee\left\{X_{v^{\prime}} \mid\left(v, v^{\prime}\right) \in E\right\} & \text { if } v \in V_{E v e n}\end{cases}
$$

where $\sigma=\mu$ if $p(v)$ is odd, and $\sigma=\nu$ otherwise. Note that for vertices v and u with $p(v)<p(u)$ it holds that X_{v} occurs before X_{u} in the BES.

Parity game to BES example

Example (Parity game to BES)

Legend: $\quad \begin{aligned} & \text { Odd Even } \\ & \diamond\end{aligned}$
Corresponds to the following BES:

Parity game to BES example

Example (Parity game to BES)

Legend: $\quad \begin{aligned} & \text { Odd Even } \\ & \diamond\end{aligned}$
Corresponds to the following BES:

$$
\begin{aligned}
\mu X_{s_{1}} & =X_{s_{2}} \wedge X_{s_{3}} \\
\nu X_{s_{2}} & =X_{s_{2}} \vee X_{s_{1}} \\
\mu X_{s_{3}} & =X_{s_{1}} \vee X_{s_{3}}
\end{aligned}
$$

Dependency graph of a BES in SRF

Let \mathcal{E} be a BES, then

- bnd (\mathcal{E}) are all variables occurring at the lhs of an equation in \mathcal{E};
- $\operatorname{occ}(\mathcal{E})$ are all variables occurring at the rhs of an equation in \mathcal{E};
- occ (f) are all variables occurring in formula f.

Definition (Dependency graph)

Let \mathcal{E} be a BES. Its dependency graph $\mathcal{G}_{\mathcal{E}}$ is defined as (V, E), where:

- $V=\operatorname{bnd}(\mathcal{E})$
- $(X, Y) \in E$ iff there is $\sigma X=f$ in \mathcal{E} with $Y \in \operatorname{occ}(f)$

Dependency graph example

Example (Dependency graph)

Consider the following BES:

$$
\begin{aligned}
\mu X & =X \wedge X^{\prime} \\
\mu X^{\prime} & =Y \vee Z \\
\nu Y & =W \vee Y^{\prime} \\
\nu Y^{\prime} & =X \wedge Y \\
\mu Z & =Z^{\prime} \\
\mu Z^{\prime} & =Z^{\prime} \\
\mu W & =Z \vee(Z \vee W)
\end{aligned}
$$

Its dependency graph is:

Dependency graph example

Example (Dependency graph)

Consider the following BES: Its dependency graph is:

$$
\begin{aligned}
\mu X & =X \wedge X^{\prime} \\
\mu X^{\prime} & =Y \vee Z \\
\nu Y & =W \vee Y^{\prime} \\
\nu Y^{\prime} & =X \wedge Y \\
\mu Z & =Z^{\prime} \\
\mu Z^{\prime} & =Z^{\prime} \\
\mu W & =Z \vee(Z \vee W)
\end{aligned}
$$

Correspondence of BES to parity game

Closed BESs in SRF correspond to parity games.

Definition (BES to parity game)

Let \mathcal{E} be a closed BES in SRF. This corresponds to the parity game $\Gamma=\left(V, E, p,\left(V_{E v e n}, V_{\text {Odd }}\right)\right)$, where

- (V, E) is the dependency graph $\mathcal{G}_{\mathcal{E}}$ of \mathcal{E},
- $p(X)=\operatorname{rank}(X)$ for all variables $X \in \operatorname{bnd}(E)$,
- $V_{O d d}=\{X \mid \operatorname{op}(X)=\wedge\}$, so all conjunctive equations are assigned to $V_{O d d}$, and
- $V_{\text {Even }}=V \backslash V_{O d d}$, all other equations are assigned to $V_{\text {Even }}$.

BES to Parity game example

Example (BES to parity game)

Consider the following BES:

$$
\begin{aligned}
\mu X & =X \wedge X^{\prime} \\
\mu X^{\prime} & =Y \vee Z \\
\nu Y & =W \vee Y^{\prime} \\
\nu Y^{\prime} & =X \wedge Y \\
\mu Z & =Z^{\prime} \\
\mu Z^{\prime} & =Z^{\prime} \\
\mu W & =Z \vee(Z \vee W)
\end{aligned}
$$

Its parity game is:

BES to Parity game example

Example (BES to parity game)

Its parity game is:
Consider the following BES:

$$
\begin{aligned}
\mu X & =X \wedge X^{\prime} \\
\mu X^{\prime} & =Y \vee Z \\
\nu Y & =W \vee Y^{\prime} \\
\nu Y^{\prime} & =X \wedge Y \\
\mu Z & =Z^{\prime} \\
\mu Z^{\prime} & =Z^{\prime} \\
\mu W & =Z \vee(Z \vee W)
\end{aligned}
$$

Intuition

Intuitively, the correspondence between BES and parity game is as follows:

- Variable X in BES \mathcal{E} is true, iff player Even has a winning strategy from corresponding vertex V_{X} in the parity game for \mathcal{E}.
- Variable X in BES \mathcal{E} is false, iff player $O d d$ has a winning strategy from corresponding vertex V_{X} in the parity game for \mathcal{E}.

Technische Universiteit

Transformations on parity games

- Self-loop elimination

- Priority compaction

In case priority 4 does not occur in the parity game. Evenness must be preserved!

Transformations on parity games

- Priority propagation:

Evenness of priorities may change!

Exercise

Consider the following modal μ-calculus formula f :

$$
\phi \equiv \nu X . \mu Y .(([r] X \wedge[s] X \wedge(\nu Z .\langle\bar{s}\rangle Z)) \vee([r] Y \wedge[s] Y))
$$

- Translate the model checking question $M \vDash f$ to a BES.
- Transform the resulting BES into a parity game.
- Give a winning strategy for player Even from $X_{s_{0}}$.

