
The Recursive Algorithm for Parity games
Material: ”Recursive Solving of Parity Games Requires

Exponential Time”, Oliver Friedmann

Jeroen J.A. Keiren
jkeiren@win.tue.nl

http://www.win.tue.nl/∼jkeiren
HG 6.81

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

1/21

Parity games

Recall:

Definition (Parity game)

A parity game Γ is a four tuple (V,E, p, (VEven , VOdd)), where:

(V,E) is a directed graph,

E is a total edge relation,

p : V → IN assigns priorities to vertices, and

(VEven , VOdd) is a partitioning of V

A player does a step in the game if a token is on a vertex owned
by that player;

A play (denoted π) is an infinite sequence of steps.

2/21

Notation

Let G = (V,E, p, (VEven , VOdd)) be a parity game.
We use the following notation:

0 for Even, 1 for Odd
1− Even is Odd , 1−Odd is Even
vE = {v′ | (v, v′) ∈ E}
G \ U is parity game G restricted to the vertices outside U .
Formally G \ U = (V ′, E′, p′, (V ′Even , V

′
Odd)), with

V ′ = V \ U ,
E′ = E ∩ (V \ U)2,
p′(v) = p(v) for v ∈ V \ U ,
V ′
Even = VEven \ U , and
V ′
Odd = VOdd \ U

3/21

Strategies

A strategy for Player is a partial function
ψPlayer :V ∗ × VPlayer → V .

A play π = v1v2v3 . . . is consistent with strategy ψPlayer for
Player iff every vi ∈ π such that vi ∈ VPlayer is immediately
followed by vi+1 = ψPlayer (v1 . . . vi).

Definition (Memoryless strategy)

A memoryless strategy for Player is a partial function
ψPlayer :VPlayer → V that decides the vertex the token is played to
based on the current vertex.

4/21

Winning a parity game

Let π = v1v2v3 . . . be a play:

inf(π) denotes set of priorities occurring infinitely often in π;

π is winning for player Even iff min(inf(π)) is even;

Definition (Winning strategy)

Strategy ψPlayer is a winning strategy for Player from set W ⊆ V if
every play starting from a vertex in W , consistent with ψPlayer is
winning for Player .

There is a memoryless winning strategy for Player from W ⊆ V
iff there is a winning strategy for Player from W .

5/21

Goal

Let G = (V,E, p, (VEven , VOdd)) be a parity game.

There is a unique partition (WEven ,WOdd) of V such that:

Even has winning strategy ψEven from WEven , and
Odd has winning strategy ψOdd from WOdd .

Goal of parity game algorithms

Compute partitioning (WEven ,WOdd) with strategies ψEven and ψOdd

of V , such that ψEven is winning for player Even from WEven and
ψOdd is winning for player Odd from WOdd .

6/21

Attractor sets

The attractor set for Player and set U ⊆ V is the set of vertices
such that Player can force any play to reach U .

Definition

Let U ⊆ V . We define the attractor sets inductively as follows:

Attr0
Player (G,U) = U

Attrk+1
Player (G,U) = Attrk

Player (G,U)
∪(VPlayer ∩ {v | vE ∩Attrk

Player (G,U) 6= ∅})
∪(V1−Player ∩ {v | vE ⊆ Attrk

Player (G,U)})

AttrPlayer (G,U) =
⋃

k∈N Attrk
Player (G,U)

7/21

Example of attractor sets

Example

Consider parity game G:

1X

1X ′

2 Y ′

2 Y

3

Z
3Z ′ 3 W

Legend:
Odd Even

Compute:

Attr0(G, {Z})
Attr1(G, {W})

8/21

Example of attractor sets

Example

Consider parity game G:

1X

1X ′

2 Y ′

2 Y

3

Z
3Z ′ 3 W

Legend:
Odd Even

Compute:

Attr0(G, {Z})
= {Z,X ′,W}
Attr1(G, {W}) = {W,Y }

8/21

Observations

V
A

U

VEven

VOdd

Let U ⊆ V . Let A = AttrEven(G,U).

Even cannot escape from V \A. If it
could, there would be an edge
(v, v′) ∈ E, such that v ∈ VEven \A,
and v′ ∈ A, but then by definition also
v ∈ A, which is not the case.

Odd cannot escape from A. If it could,
there would be an edge (v, v′) ∈ E,
such that v ∈ VOdd ∩A, and v′ 6∈ A,
but then by definition v 6∈ A.

9/21

Observations

V
A

U
XOdd

V

XOdd

B
YOdd

YEven

Let U ⊆ V . Let A = AttrEven(G,U).
Assume:

XOdd is winning set for Odd on G \A;

B = AttrOdd (G,XOdd);

YEven is winning set for Even on G \B;

YOdd is winning set for Odd on G \B.

Then:

Player Even can never leave B;

Player Odd can never leave V \B;

A winning strategy for player Odd in
G \ (V \B) from VOdd ∩B is also a
winning strategy for player Odd in G
from VOdd ∩B.

10/21

Recursive algorithm (McNaughton ’93, Zielonka ’98)

Recursively solve a parity game: Recursive(G). Returns partitioning
(WEven ,WOdd) such that Even wins from WEven , and Odd wins
from WOdd .

Base case:

1: if VG = ∅ then
2: WEven ← ∅
3: WOdd ← ∅
4: return (WEven ,WOdd)
5: end if

11/21

Inductive case (1):

6: m← min{p(v) | v ∈ V } (* Paper: max; assumes max parity game model,

we use min parity games *)

7: Player ← m mod 2
8: U ← {v ∈ V | p(v) = m}
9: A← AttrPlayer (G,U)

10: (XEven , XOdd)← Recursive(G \A)
11: if X1−Player = ∅ then
12: WPlayer ← A ∪XPlayer

13: W1−Player ← ∅
14: else
15: . . .
19: end if
20: return (WEven ,WOdd)

12/21

Inductive case (2):

6: m← min{p(v) | v ∈ V }
7: Player ← m mod 2
8: U ← {v ∈ V | p(v) = m}
9: A← AttrPlayer (G,U)

10: (XEven , XOdd)← Recursive(G \A)
11: if X1−Player = ∅ then
12: . . .
14: else
15: B ← Attr1−Player (G,X1−Player)
16: (YEven , YOdd)← Recursive(G \B)
17: WPlayer ← YPlayer

18: W1−Player ← B ∪ Y1−Player

19: end if
20: return (WEven ,WOdd)

13/21

Example (Recursive(G))

Consider parity game G:

1X

1X ′

2 Y ′

2 Y

3

Z
3Z ′ 3 W

Legend:
Odd Even

6: m← 1
7: Player ← Odd
8: U ← {v ∈ V | p(v) = 1} = {X, X′}
9: A← AttrOdd (G, U) = {X, X′}
10: (XEven , XOdd)← Recursive(G \ {X, X′})

14/21

Example (Recursive(G \ {X, X ′}))

Consider parity game
G \ {X,X ′}:

2 Y ′

2 Y

3

Z
3Z ′ 3 W

Legend:
Odd Even

6: m← 2
7: Player ← Even
8: U ← {v ∈ V \ {X, X′} | p(v) = 2} = {Y, Y ′}
9: A← AttrEven (G \ {X, X′}, U) = {Y, Y ′}
10: (XEven , XOdd)← Recursive(G \ {X, X′, Y, Y ′})

15/21

Example (Recursive(G \ {X, X ′, Y, Y ′}))

Consider parity game
G \ {X,X ′, Y, Y ′}:

3

Z
3Z ′ 3 W

Legend:
Odd Even

6: m← 3
7: Player ← Odd
8: U ← {v ∈ V \ {X, X′, Y, Y ′} | p(v) = 3} =
{W, Z, Z′}

9: A← AttrOdd (G \ {X, X′, Y, Y ′}, U) = {W, Z, Z′}
10: (XEven , XOdd)← Recursive(G \ V) = (∅, ∅)
11: if XEven = ∅ then
12: WOdd ← A ∪XOdd = A = {W, Z, Z′}
13: WEven ← ∅
14: else
15: . . .
19: end if
20: return (WEven , WOdd) = (∅, {W, Z, Z′})

16/21

Example (Recursive(G \ {X, X ′}))

Consider parity game
G \ {X,X ′}:

2 Y ′

2 Y

3

Z
3Z ′ 3 W

Legend:
Odd Even

6: m← 2
7: Player ← Even
8: U ← {v ∈ V \ {X, X′} | p(v) = 2} = {Y, Y ′}
9: A← AttrEven (G \ {X, X′}, U) = {Y, Y ′}
10: (XEven , XOdd) ← Recursive(G \
{X, X′, Y, Y ′}) = (∅, {Z, Z′, W})

11: if XOdd = ∅ then
12: . . .
14: else
15: B ← AttrOdd (G, XOdd) = {Y, Y ′, Z, Z′, W}
16: (YEven , YOdd)← Recursive(G \ V) = (∅, ∅)
17: WEven ← YEven = ∅
18: WOdd ← B ∪ YOdd = B = {Y, Y ′, Z, Z′, W}
19: end if
20: return (WEven , WOdd) = (∅, {Y, Y ′, Z, Z′, W})

17/21

Example (Recursive(G))

Consider parity game G:

1X

1X ′

2 Y ′

2 Y

3

Z
3Z ′ 3 W

Legend:
Odd Even

6: m← 1
7: Player ← Odd
8: U ← {v ∈ V | p(v) = 1} = {X, X′}
9: A← AttrOdd (G, U) = {X, X′}
10: (XEven , XOdd) ← Recursive(G \ {X, X′}) =

(∅, {Y, Y ′, Z, Z′, W})
11: if XEven = ∅ then
12: WOdd ← A∪XEven = {X, X′, Y, Y ′, Z, Z′, W}
13: WEven ← ∅
14: else
15: . . .
19: end if
20: return (WEven , WOdd) =

(∅, {X, X′, Y, Y ′, Z, Z′, W})

18/21

Example (Recursive(G))

Consider parity game G:

1X

1X ′

2 Y ′

2 Y

3

Z
3Z ′ 3 W

Legend:
Odd Even

So, player Odd wins from all vertices!

18/21

Complexity

Let G = (V,E, p, (VEven , VOdd) be a parity game;
n = |V |, e = |E|, d = max{p(v) | v ∈ V }.

Worst-case running time complexity:

O(e · nd)

Lowerbound on worst-case:

Ω(fib(n)) = Ω((
1 +
√

5
2

)n)

19/21

Complexity

Let G = (V,E, p, (VEven , VOdd) be a parity game;
n = |V |, e = |E|, d = max{p(v) | v ∈ V }.

Algorithm with best known upper bound: Big step algorithm due
to Schewe, with complexity

O(d · nd/3)

Big step combines recursive algorithm with small progress
measures;

Small progress measures will be discussed first lecture in January

20/21

Exercise

Consider the following parity game:

1
s1

2

s2
3

s3 Legend:
Odd Even

Compute the winning sets WEven ,WOdd for players Even and
Odd in this parity game using the recursive algorithm.

Translate this parity game to BES and solve the BES using
Gauss elimination.

21/21

	Parity games

