The Recursive Algorithm for Parity games
 Material: "Recursive Solving of Parity Games Requires Exponential Time", Oliver Friedmann

Jeroen J.A. Keiren
jkeiren@win.tue.nl
http://www.win.tue.nl/~jkeiren HG 6.81

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

Parity games

Recall:

Definition (Parity game)

A parity game Γ is a four tuple $\left(V, E, p,\left(V_{\text {Even }}, V_{O d d}\right)\right)$, where:

- (V, E) is a directed graph,
- E is a total edge relation,
- $p: V \rightarrow \mathbf{N}$ assigns priorities to vertices, and
- $\left(V_{\text {Even }}, V_{O d d}\right)$ is a partitioning of V
- A player does a step in the game if a token is on a vertex owned by that player;
- A play (denoted π) is an infinite sequence of steps.

Notation

Let $G=\left(V, E, p,\left(V_{\text {Even }}, V_{\text {Odd }}\right)\right)$ be a parity game.
We use the following notation:

- 0 for Even, 1 for Odd
- 1 - Even is Odd, $1-O d d$ is Even
- $v E=\left\{v^{\prime} \mid\left(v, v^{\prime}\right) \in E\right\}$
- $G \backslash U$ is parity game G restricted to the vertices outside U. Formally $G \backslash U=\left(V^{\prime}, E^{\prime}, p^{\prime},\left(V_{\text {Even }}^{\prime}, V_{\text {Odd }}^{\prime}\right)\right)$, with
- $V^{\prime}=V \backslash U$,
- $E^{\prime}=E \cap(V \backslash U)^{2}$,
- $p^{\prime}(v)=p(v)$ for $v \in V \backslash U$,
- $V_{\text {Even }}^{\prime}=V_{\text {Even }} \backslash U$, and
- $V_{O d d}^{\prime}=V_{O d d} \backslash U$

Technische Universiteit

Strategies

- A strategy for Player is a partial function $\psi_{\text {Player }}: V^{*} \times V_{\text {Player }} \rightarrow V$.
- A play $\pi=v_{1} v_{2} v_{3} \ldots$ is consistent with strategy $\psi_{\text {Player }}$ for Player iff every $v_{i} \in \pi$ such that $v_{i} \in V_{\text {Player }}$ is immediately followed by $v_{i+1}=\psi_{\text {Player }}\left(v_{1} \ldots v_{i}\right)$.

Definition (Memoryless strategy)

A memoryless strategy for Player is a partial function $\psi_{\text {Player }}: V_{\text {Player }} \rightarrow V$ that decides the vertex the token is played to based on the current vertex.

Winning a parity game

Let $\pi=v_{1} v_{2} v_{3} \ldots$ be a play:

- $\inf (\pi)$ denotes set of priorities occurring infinitely often in π;
- π is winning for player Even iff $\min (\inf (\pi))$ is even;

Definition (Winning strategy)

Strategy $\psi_{\text {Player }}$ is a winning strategy for Player from set $W \subseteq V$ if every play starting from a vertex in W, consistent with $\psi_{\text {Player }}$ is winning for Player.

- There is a memoryless winning strategy for Player from $W \subseteq V$ iff there is a winning strategy for Player from W.

Goal

Let $G=\left(V, E, p,\left(V_{E v e n}, V_{O d d}\right)\right)$ be a parity game.

- There is a unique partition ($W_{\text {Even }}, W_{\text {Odd }}$) of V such that:
- Even has winning strategy $\psi_{\text {Even }}$ from $W_{\text {Even }}$, and
- Odd has winning strategy $\psi_{\text {Odd }}$ from $W_{\text {Odd }}$.

Goal of parity game algorithms

Compute partitioning ($W_{\text {Even }}, W_{O d d}$) with strategies $\psi_{\text {Even }}$ and $\psi_{O d d}$ of V, such that $\psi_{\text {Even }}$ is winning for player Even from $W_{\text {Even }}$ and $\psi_{O d d}$ is winning for player $O d d$ from $W_{O d d}$.

Attractor sets

The attractor set for Player and set $U \subseteq V$ is the set of vertices such that Player can force any play to reach U.

Definition

Let $U \subseteq V$. We define the attractor sets inductively as follows:

$$
\begin{aligned}
\operatorname{Attr}_{\text {Player }}^{0}(G, U) & =U \\
\operatorname{Attr}_{\text {Player }}^{k+1}(G, U) & =\operatorname{Attr}_{\text {Player }}^{k}(G, U) \\
& \left.\cup\left(V_{\text {Player }}^{n} \cap v \mid v E \cap \operatorname{Attr}_{\text {Player }}^{k}(G, U) \neq \emptyset\right\}\right) \\
& \left.\cup\left(V_{1-\text { Player }}^{\cap} \cap v \mid v E \subseteq \operatorname{Attr}_{\text {Player }}^{k}(G, U)\right\}\right) \\
\operatorname{Attr}_{\text {Player }}(G, U) & =\bigcup_{k \in \mathbb{N}} \operatorname{Attr}_{\text {Player }}^{k}(G, U)
\end{aligned}
$$

Example of attractor sets

Example

Consider parity game G :

Compute:

- $\operatorname{Attr}_{0}(G,\{Z\})$
- $\operatorname{Attr}_{1}(G,\{W\})$

Example of attractor sets

Example

Consider parity game G :

Compute:

- $\operatorname{Attr}_{0}(G,\{Z\})$ $=\left\{Z, X^{\prime}, W\right\}$
- $\operatorname{Attr}_{1}(G,\{W\})=\{W, Y\}$

Observations

$$
\text { Let } U \subseteq V \text {. Let } A=\operatorname{Attr}_{E v e n}(G, U) \text {. }
$$

- Even cannot escape from $V \backslash A$. If it could, there would be an edge
 $\left(v, v^{\prime}\right) \in E$, such that $v \in V_{\text {Even }} \backslash A$, and $v^{\prime} \in A$, but then by definition also $v \in A$, which is not the case.
- Odd cannot escape from A. If it could, there would be an edge $\left(v, v^{\prime}\right) \in E$, such that $v \in V_{O d d} \cap A$, and $v^{\prime} \notin A$, but then by definition $v \notin A$.

Observations

$$
\text { Let } U \subseteq V \text {. Let } A=\operatorname{Attr}_{E v e n}(G, U)
$$

Assume:

- $X_{O d d}$ is winning set for $O d d$ on $G \backslash A$;
- $B=\operatorname{Attr}_{\text {Odd }}\left(G, X_{O d d}\right)$;
- $Y_{\text {Even }}$ is winning set for Even on $G \backslash B$;
- $Y_{O d d}$ is winning set for $O d d$ on $G \backslash B$.

Then:

- Player Even can never leave B;
- Player $O d d$ can never leave $V \backslash B$;
- A winning strategy for player $O d d$ in $G \backslash(V \backslash B)$ from $V_{O d d} \cap B$ is also a winning strategy for player $O d d$ in G from $V_{O d d} \cap B$.

Recursive algorithm (McNaughton '93, Zielonka '98)
Recursively solve a parity game: Recursive (G). Returns partitioning ($W_{\text {Even }}, W_{\text {Odd }}$) such that Even wins from $W_{\text {Even }}$, and Odd wins from $W_{\text {Odd }}$.

Base case:
1: if $V_{G}=\emptyset$ then
2: $\quad W_{\text {Even }} \leftarrow \emptyset$
3: $\quad W_{\text {Odd }} \leftarrow \emptyset$
4: return $\left(W_{\text {Even }}, W_{\text {Odd }}\right)$
5: end if

Inductive case (1):
6: $m \leftarrow \min \{p(v) \mid v \in V\}$ (* Paper: max; assumes max parity game model, we use min parity games *)
7: Player $\leftarrow m \bmod 2$
8: $U \leftarrow\{v \in V \mid p(v)=m\}$
9: $A \leftarrow \operatorname{Attr}_{\text {Player }}(G, U)$
10: $\left(X_{\text {Even }}, X_{\text {Odd }}\right) \leftarrow \operatorname{Recursive}(G \backslash A)$
11: if $X_{1-\text { Player }}=\emptyset$ then
12: $\quad W_{\text {Player }} \leftarrow A \cup X_{\text {Player }}$
13: $\quad W_{1-\text { Player }} \leftarrow \emptyset$
14: else
15:
19: end if
20: return $\left(W_{\text {Even }}, W_{\text {Odd }}\right)$

Inductive case (2):
6: $m \leftarrow \min \{p(v) \mid v \in V\}$
7: Player $\leftarrow m \bmod 2$
8: $U \leftarrow\{v \in V \mid p(v)=m\}$
9: $A \leftarrow \operatorname{Attr}_{\text {Player }}(G, U)$
10: $\left(X_{\text {Even }}, X_{O d d}\right) \leftarrow \operatorname{Recursive}(G \backslash A)$
11: if $X_{1-\text { Player }}=\emptyset$ then
12:

14: else

15: $\quad B \leftarrow \operatorname{Attr}_{1-\text { Player }}\left(G, X_{1-\text { Player }}\right)$
16: $\quad\left(Y_{\text {Even }}, Y_{\text {Odd }}\right) \leftarrow \operatorname{Recursive}(G \backslash B)$
17: $\quad W_{\text {Player }} \leftarrow Y_{\text {Player }}$
18: $\quad W_{1-\text { Player }} \leftarrow B \cup Y_{1-\text { Player }}$
19: end if
20: return $\left(W_{E v e n}, W_{O d d}\right)$

Example (Recursive $(G))$

Consider parity game G :

6: $m \leftarrow 1$
7: Player \leftarrow Odd
8: $U \leftarrow\{v \in V \mid p(v)=1\}=\left\{X, X^{\prime}\right\}$
9: $A \leftarrow \operatorname{Attr}_{O d d}(G, U)=\left\{X, X^{\prime}\right\}$
10: $\left(X_{\text {Even }}, X_{O d d}\right) \leftarrow \operatorname{Recursive}\left(G \backslash\left\{X, X^{\prime}\right\}\right)$

Technische Universiteit

Example (Recursive $\left.\left(G \backslash\left\{X, X^{\prime}\right\}\right)\right)$

Consider parity game $G \backslash\left\{X, X^{\prime}\right\}:$

6: $m \leftarrow 2$
7: Player \leftarrow Even
8: $U \leftarrow\left\{v \in V \backslash\left\{X, X^{\prime}\right\} \mid p(v)=2\right\}=\left\{Y, Y^{\prime}\right\}$
9: $A \leftarrow \operatorname{Attr}_{\text {Even }}\left(G \backslash\left\{X, X^{\prime}\right\}, U\right)=\left\{Y, Y^{\prime}\right\}$
10: $\left(X_{\text {Even }}, X_{O d d}\right) \leftarrow \operatorname{Recursive}\left(G \backslash\left\{X, X^{\prime}, Y, Y^{\prime}\right\}\right)$

Legend:
Odd Even

Consider parity game $G \backslash\left\{X, X^{\prime}, Y, Y^{\prime}\right\}:$

Odd Even

6: $m \leftarrow 3$
7: Player \leftarrow Odd
8: $U \leftarrow\left\{v \in V \backslash\left\{X, X^{\prime}, Y, Y^{\prime}\right\} \mid p(v)=3\right\}=$ $\left\{W, Z, Z^{\prime}\right\}$
9: $A \leftarrow \operatorname{Attr}_{\text {Odd }}\left(G \backslash\left\{X, X^{\prime}, Y, Y^{\prime}\right\}, U\right)=\left\{W, Z, Z^{\prime}\right\}$
10: $\left(X_{\text {Even }}, X_{\text {Odd }}\right) \leftarrow \operatorname{Recursive}(G \backslash V)=(\emptyset, \emptyset)$
11: if $X_{\text {Even }}=\emptyset$ then
12: $\quad W_{O d d} \leftarrow A \cup X_{O d d}=A=\left\{W, Z, Z^{\prime}\right\}$
13: $\quad W_{\text {Even }} \leftarrow \emptyset$
14: else
15:
19: end if
20: return $\left(W_{\text {Even }}, W_{O d d}\right)=\left(\emptyset,\left\{W, Z, Z^{\prime}\right\}\right)$

Example (Recursive $\left(G \backslash\left\{X, X^{\prime}\right\}\right)$)

Consider parity game $G \backslash\left\{X, X^{\prime}\right\}:$

Odd Even
Legend:

6: $m \leftarrow 2$
7: Player \leftarrow Even
8: $U \leftarrow\left\{v \in V \backslash\left\{X, X^{\prime}\right\} \mid p(v)=2\right\}=\left\{Y, Y^{\prime}\right\}$
9: $A \leftarrow \operatorname{Attr}_{\text {Even }}\left(G \backslash\left\{X, X^{\prime}\right\}, U\right)=\left\{Y, Y^{\prime}\right\}$
10: $\left(X_{\text {Even }}, X_{O d d}\right) \quad \leftarrow \quad$ Recursive $(G$ $\left.\left\{X, X^{\prime}, Y, Y^{\prime}\right\}\right)=\left(\emptyset,\left\{Z, Z^{\prime}, W\right\}\right)$
11: if $X_{O d d}=\emptyset$ then
12 :
14: else
15: $\quad B \leftarrow \operatorname{Attr}_{O d d}\left(G, X_{O d d}\right)=\left\{Y, Y^{\prime}, Z, Z^{\prime}, W\right\}$
16: $\quad\left(Y_{\text {Even }}, Y_{\text {Odd }}\right) \leftarrow \operatorname{Recursive}(G \backslash V)=(\emptyset, \emptyset)$
17: $\quad W_{\text {Even }} \leftarrow Y_{\text {Even }}=\emptyset$
18: $W_{O d d} \leftarrow B \cup Y_{O d d}=B=\left\{Y, Y^{\prime}, Z, Z^{\prime}, W\right\}$
19: end if
20: return $\left(W_{E v e n}, W_{O d d}\right)=\left(\emptyset,\left\{Y, Y^{\prime}, Z, Z^{\prime}, W\right\}\right)$

Example (Recursive $(G))$

Consider parity game G :
6: $m \leftarrow 1$

8: $U \leftarrow\{v \in V \mid p(v)=1\}=\left\{X, X^{\prime}\right\}$
9: $A \leftarrow \operatorname{Attr}_{\text {Odd }}(G, U)=\left\{X, X^{\prime}\right\}$
10: $\left(X_{\text {Even }}, X_{\text {Odd }}\right) \leftarrow \operatorname{Recursive}\left(G \backslash\left\{X, X^{\prime}\right\}\right)=$ $\left(\emptyset,\left\{Y, Y^{\prime}, Z, Z^{\prime}, W\right\}\right)$
11: if $X_{\text {Even }}=\emptyset$ then
12: $\quad W_{\text {Odd }} \leftarrow A \cup X_{E v e n}=\left\{X, X^{\prime}, Y, Y^{\prime}, Z, Z^{\prime}, W\right\}$
13: $W_{\text {Even }} \leftarrow \emptyset$
14: else
15:
19: end if
20: return $\quad\left(W_{\text {Even }}, W_{\text {Odd }}\right) \quad=$ ($\left.\emptyset,\left\{X, X^{\prime}, Y, Y^{\prime}, Z, Z^{\prime}, W\right\}\right)$

Example (Recursive $(G))$

Consider parity game G :

So, player $O d d$ wins from all vertices!

Complexity

Let $G=\left(V, E, p,\left(V_{E v e n}, V_{O d d}\right)\right.$ be a parity game; $n=|V|, e=|E|, d=\max \{p(v) \mid v \in V\}$.

Worst-case running time complexity:

$$
\mathcal{O}\left(e \cdot n^{d}\right)
$$

Lowerbound on worst-case:

$$
\Omega(f i b(n))=\Omega\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}\right)
$$

Complexity

Let $G=\left(V, E, p,\left(V_{E v e n}, V_{O d d}\right)\right.$ be a parity game; $n=|V|, e=|E|, d=\max \{p(v) \mid v \in V\}$.

- Algorithm with best known upper bound: Big step algorithm due to Schewe, with complexity

$$
\mathcal{O}\left(d \cdot n^{d / 3}\right)
$$

- Big step combines recursive algorithm with small progress measures;
- Small progress measures will be discussed first lecture in January

Exercise

Consider the following parity game:

- Compute the winning sets $W_{E v e n}, W_{\text {Odd }}$ for players Even and $O d d$ in this parity game using the recursive algorithm.
- Translate this parity game to BES and solve the BES using Gauss elimination.

