TU e Technische Universiteit Eindhoven University of Technology

The Recursive Algorithm for Parity games Material: "Recursive Solving of Parity Games Requires Exponential Time", Oliver Friedmann

Jeroen J.A. Keiren jkeiren@win.tue.nl http://www.win.tue.nl/~jkeiren HG 6.81

Department of Mathematics and Computer Science Technische Universiteit Eindhoven

department of mathematics and computing science

Parity games

Recall:

Definition (Parity game)

A parity game Γ is a four tuple $(V, E, p, (V_{Even}, V_{Odd}))$, where:

- (V, E) is a directed graph,
- E is a total edge relation,
- $\bullet \ p: V \to \textit{\textbf{N}}$ assigns priorities to vertices, and
- (V_{Even}, V_{Odd}) is a partitioning of V
- A player does a step in the game if a token is on a vertex owned by that player;
- A play (denoted π) is an infinite sequence of steps.

Notation

Let $G = (V, E, p, (V_{Even}, V_{Odd}))$ be a parity game. We use the following notation:

- $\bullet \ 0$ for $Even, \ 1$ for Odd
- 1 Even is Odd, 1 Odd is Even

•
$$vE = \{v' \mid (v, v') \in E\}$$

• $G \setminus U$ is parity game G restricted to the vertices outside U. Formally $G \setminus U = (V', E', p', (V'_{Even}, V'_{Odd}))$, with

•
$$V' = V \setminus U$$
,
• $E' = E \cap (V \setminus U)^2$,
• $p'(v) = p(v) \text{ for } v \in V \setminus U$,
• $V'_{Even} = V_{Even} \setminus U$, and
• $V'_{Odd} = V_{Odd} \setminus U$

Strategies

• A strategy for *Player* is a partial function $\psi_{Player}: V^* \times V_{Player} \to V.$

• A play $\pi = v_1 v_2 v_3 \dots$ is consistent with strategy ψ_{Player} for *Player* iff every $v_i \in \pi$ such that $v_i \in V_{Player}$ is immediately followed by $v_{i+1} = \psi_{Player}(v_1 \dots v_i)$.

Definition (Memoryless strategy)

A memoryless strategy for Player is a partial function $\psi_{Player}:V_{Player} \rightarrow V$ that decides the vertex the token is played to based on the current vertex.

Winning a parity game

Let $\pi = v_1 v_2 v_3 \dots$ be a play:

- $inf(\pi)$ denotes set of priorities occurring infinitely often in π ;
- π is winning for player *Even* iff $\min(\inf(\pi))$ is even;

Definition (Winning strategy)

Strategy ψ_{Player} is a winning strategy for Player from set $W \subseteq V$ if every play starting from a vertex in W, consistent with ψ_{Player} is winning for Player.

• There is a memoryless winning strategy for Player from $W \subseteq V$ iff there is a winning strategy for Player from W.

Goal

Let $G = (V, E, p, (V_{Even}, V_{Odd}))$ be a parity game.

- There is a unique partition (W_{Even}, W_{Odd}) of V such that:
 - Even has winning strategy ψ_{Even} from W_{Even} , and
 - Odd has winning strategy ψ_{Odd} from W_{Odd} .

Goal of parity game algorithms

Compute partitioning (W_{Even}, W_{Odd}) with strategies ψ_{Even} and ψ_{Odd} of V, such that ψ_{Even} is winning for player Even from W_{Even} and ψ_{Odd} is winning for player Odd from W_{Odd} .

Attractor sets

The attractor set for Player and set $U \subseteq V$ is the set of vertices such that Player can force any play to reach U.

Definition

Let $U \subseteq V$. We define the attractor sets inductively as follows:

$$Attr_{Player}^{0}(G,U) = U$$

$$Attr_{Player}^{k+1}(G,U) = Attr_{Player}^{k}(G,U)$$

$$\cup (V_{Player} \cap \{v \mid vE \cap Attr_{Player}^{k}(G,U) \neq \emptyset\})$$

$$\cup (V_{1-Player} \cap \{v \mid vE \subseteq Attr_{Player}^{k}(G,U)\})$$

$$Attr_{Player}(G, U) = \bigcup_{k \in \mathbb{N}} Attr_{Player}^k(G, U)$$

Example of attractor sets

Example

Consider parity game G:

Compute:

- $Attr_0(G, \{Z\})$
- $Attr_1(G, \{W\})$

Example of attractor sets

Example

Consider parity game G:

Compute:

- $Attr_0(G, \{Z\})$ = $\{Z, X', W\}$
- $Attr_1(G, \{W\}) = \{W, Y\}$

Observations

Let $U \subseteq V$. Let $A = Attr_{Even}(G, U)$.

- Even cannot escape from $V \setminus A$. If it could, there would be an edge $(v, v') \in E$, such that $v \in V_{Even} \setminus A$, and $v' \in A$, but then by definition also $v \in A$, which is not the case.
- Odd cannot escape from A. If it could, there would be an edge $(v, v') \in E$, such that $v \in V_{Odd} \cap A$, and $v' \notin A$, but then by definition $v \notin A$.

Observations

Let $U \subseteq V$. Let $A = Attr_{Even}(G, U)$. Assume:

- X_{Odd} is winning set for Odd on $G \setminus A$;
- $B = Attr_{Odd}(G, X_{Odd});$
- Y_{Even} is winning set for Even on $G \setminus B$;
- Y_{Odd} is winning set for Odd on $G \setminus B$.

Then:

- Player *Even* can never leave *B*;
- Player Odd can never leave $V \setminus B$;
- A winning strategy for player Odd in $G \setminus (V \setminus B)$ from $V_{Odd} \cap B$ is also a winning strategy for player Odd in G from $V_{Odd} \cap B$.

Recursive algorithm (McNaughton '93, Zielonka '98)

Recursively solve a parity game: Recursive(G). Returns partitioning (W_{Even}, W_{Odd}) such that Even wins from W_{Even} , and Odd wins from W_{Odd} .

Base case:

- 1: if $V_G = \emptyset$ then
- 2: $W_{Even} \leftarrow \emptyset$
- 3: $W_{Odd} \leftarrow \emptyset$
- 4: return (W_{Even}, W_{Odd})
- 5: end if

Inductive case (1):

6:
$$m \leftarrow \min\{p(v) \mid v \in V\}$$
 (* Paper: max; assumes max parity game model, we use min parity games *)

- 7: $Player \leftarrow m \mod 2$ 8: $U \leftarrow \{v \in V \mid p(v) = m\}$ 9: $A \leftarrow Attr_{Player}(G, U)$ 10: $(X_{Even}, X_{Odd}) \leftarrow Recursive(G \setminus A)$ 11: if $X_{1-Player} = \emptyset$ then 12: $W_{Player} \leftarrow A \cup X_{Player}$ 13: $W_{1-Player} \leftarrow \emptyset$ 14: else 15: ...
- 19: end if
- 20: return (W_{Even}, W_{Odd})

TU e Technische Universiteit Eindhoven University of Technology

> Inductive case (2): 6: $m \leftarrow \min\{p(v) \mid v \in V\}$ 7: Player $\leftarrow m \mod 2$ 8: $U \leftarrow \{v \in V \mid p(v) = m\}$ 9: $A \leftarrow Attr_{Player}(G, U)$ 10: $(X_{Even}, X_{Odd}) \leftarrow Recursive(G \setminus A)$ 11: if $X_{1-Player} = \emptyset$ then 12: 14: else 15: $B \leftarrow Attr_{1-Player}(G, X_{1-Player})$ 16: $(Y_{Even}, Y_{Odd}) \leftarrow Recursive(G \setminus B)$ 17: $W_{Player} \leftarrow Y_{Player}$ $W_{1-Player} \leftarrow B \cup Y_{1-Player}$ 18: 19: end if 20: return (W_{Even}, W_{Odd})

Example (Recursive(G))

Consider parity game G:

$$\begin{array}{ll} \textbf{6:} & m \leftarrow 1 \\ \textbf{7:} & Player \leftarrow Odd \\ \textbf{8:} & U \leftarrow \{v \in V \mid p(v) = 1\} = \{X, X'\} \\ \textbf{9:} & A \leftarrow Attr_{Odd}(G, U) = \{X, X'\} \\ \textbf{10:} & (X_{Even}, X_{Odd}) \leftarrow Recursive(G \setminus \{X, X'\}) \end{array}$$

TUe Technische Universiteit Eindhoven University of Technology

Example ($Recursive(G \setminus \{X, X'\})$)

e Technische Universiteit Eindhoven University of Technology

Example ($Recursive(G \setminus \{X, X', Y, Y'\})$)

Consider parity game 6: $m \leftarrow 3$ 7: Player $\leftarrow Odd$ $G \setminus \{X, X', Y, Y'\}$: 8: $U \leftarrow \{v \in V \setminus \{X, X', Y, Y'\} \mid p(v) = 3\} =$ $\{W, Z, Z'\}$ 9: $A \leftarrow Attr_{Odd}(G \setminus \{X, X', Y, Y'\}, U) = \{W, Z, Z'\}$ **10**: $(X_{Even}, X_{Odd}) \leftarrow Recursive(G \setminus V) = (\emptyset, \emptyset)$ 11: if $X_{Even} = \emptyset$ then 12: $W_{Odd} \leftarrow A \cup X_{Odd} = A = \{W, Z, Z'\}$ 13: $W_{Even} \leftarrow \emptyset$ 14: else 15: Odd Even 19: end if 20: return $(W_{Even}, W_{Odd}) = (\emptyset, \{W, Z, Z'\})$ Legend:

Technische Universiteit **Eindhoven** University of Technology

0

Example ($Recursive(G \setminus \{X, X'\})$)

TUE Technische Universiteit Eindhoven University of Technology

Example (Recursive(G))

 $6 \cdot m \leftarrow 1$ Consider parity

 $X \stackrel{\scriptstyle{\scriptstyle{\scriptstyle{\scriptstyle{1}}}}{\longrightarrow}}{\longrightarrow}$

X'

Legend:

Example (Recursive(G))

Consider parity game G:

So, player *Odd* wins from all vertices!

Complexity

Let
$$G = (V, E, p, (V_{Even}, V_{Odd})$$
 be a parity game;
 $n = |V|, e = |E|, d = \max\{p(v) \mid v \in V\}.$

Worst-case running time complexity:

$$\mathcal{O}(e \cdot n^d)$$

Lowerbound on worst-case:

$$\Omega(fib(n)) = \Omega((\frac{1+\sqrt{5}}{2})^n)$$

Complexity

Let
$$G = (V, E, p, (V_{Even}, V_{Odd})$$
 be a parity game;
 $n = |V|, e = |E|, d = \max\{p(v) \mid v \in V\}.$

• Algorithm with best known upper bound: Big step algorithm due to Schewe, with complexity

$$\mathcal{O}(d \cdot n^{d/3})$$

- Big step combines recursive algorithm with small progress measures;
- Small progress measures will be discussed first lecture in January

Exercise

Consider the following parity game:

- Compute the winning sets W_{Even} , W_{Odd} for players Even and Odd in this parity game using the recursive algorithm.
- Translate this parity game to BES and solve the BES using Gauss elimination.