Modal μ-Calculus Exercises, December 15, 2009

1. Consider the following mixed Kripke Structure:

Let ϕ be the following formula:

$$
\nu X . \mu Y . \mu Z .(p \vee(\langle b\rangle Y \wedge[a] Z))
$$

(a) Use the Emerson-Lei algorithm to determine the set of states satisfying ϕ. Show the intermediate approximations.
(b) Use a transformation to BES, and subsequently solve the BES, to determine the set of states satisfying ϕ.
(c) Transform the BES you obtained as an answer to the previous question into a Parity Game, and use the recursive algorithm for solving the resulting Parity Game.
2. Consider the LPE description of a lossy channel system, where actions r, s and l represent receiving, sending and losing, respectively, and the action τ represents some internal behaviour of the system.

$$
\begin{aligned}
P(b: B o o l, c: B o o l, n: N a t) & =\sum_{m: N a t} \neg(b \vee c) \longrightarrow r(m) \cdot P(\text { false }, \text { true }, m) \\
& +\neg b \wedge c \longrightarrow s(n) \cdot P(\text { false, false }, n) \\
& +\neg b \wedge c \longrightarrow \tau \cdot P(\text { true, false }, n) \\
& +b \wedge \neg c \longrightarrow l \cdot P(\text { false }, \text { true }, n)
\end{aligned}
$$

Let ϕ be the first-order modal μ-calculus formula given below:

$$
\nu X . \mu Y .(([\neg(\tau \vee l)] X \wedge(\nu Z .\langle\forall j: N a t . \neg s(j)\rangle Z)) \vee[\neg(\tau \vee l)] Y)
$$

(a) Compute the PBES that is the result of the transformation $\mathbf{E}(\phi)$ applied to P.
(b) Solve the resulting PBES (if possible). Eliminate redundant parameters of the given PBES, and use logic to rewrite the right-hand side of the PBES, if necessary. Show all steps in all your computations.

